CN112592463B - 一种二维共轭吩噁嗪基芴类共聚物光伏材料、制备方法和应用 - Google Patents

一种二维共轭吩噁嗪基芴类共聚物光伏材料、制备方法和应用 Download PDF

Info

Publication number
CN112592463B
CN112592463B CN202011165720.5A CN202011165720A CN112592463B CN 112592463 B CN112592463 B CN 112592463B CN 202011165720 A CN202011165720 A CN 202011165720A CN 112592463 B CN112592463 B CN 112592463B
Authority
CN
China
Prior art keywords
phenoxazine
octyldodecyl
polymer
thienyl
bis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011165720.5A
Other languages
English (en)
Other versions
CN112592463A (zh
Inventor
刘波
左雨珂
王晓波
王钢
刘骏
陈远道
胡霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan University of Arts and Science
Original Assignee
Hunan University of Arts and Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan University of Arts and Science filed Critical Hunan University of Arts and Science
Priority to CN202011165720.5A priority Critical patent/CN112592463B/zh
Publication of CN112592463A publication Critical patent/CN112592463A/zh
Application granted granted Critical
Publication of CN112592463B publication Critical patent/CN112592463B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/124Copolymers alternating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/143Side-chains containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/314Condensed aromatic systems, e.g. perylene, anthracene or pyrene
    • C08G2261/3142Condensed aromatic systems, e.g. perylene, anthracene or pyrene fluorene-based, e.g. fluorene, indenofluorene, or spirobifluorene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3228Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing nitrogen and oxygen as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/414Stille reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/91Photovoltaic applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)

Abstract

本发明属于聚合物光伏材料技术领域,具体是涉及到一种二维共轭吩噁嗪基芴类共聚物光伏材料、制备方法和应用,结构式如下:
Figure DDA0002745714240000011
其中,X和Y分别为H或F,n为10‑30,二维共轭吩噁嗪基芴类共聚物光伏材料具有宽的可见光区吸收,合适的HOMO以及LUMO能级和相对较窄的带隙;以此类聚合物为电子给体、有机小分子为电子受体制备了聚合物太阳能电池,其最高能量转换效率可达到7.49%,具有良好的光电转换效率。

Description

一种二维共轭吩噁嗪基芴类共聚物光伏材料、制备方法和 应用
技术领域
本发明属于聚合物光伏材料技术领域,具体是涉及到一种二维共轭吩噁嗪基芴类共聚物光伏材料、制备方法和应用。
背景技术
为了人类生活和社会经济的可持续健康发展,高效合理的利用可再生清洁能源成为摆在世界各国科学界面前的重大科学问题。太阳能作为一种可再生清洁能源越来越得到全球科学界和产业界的重视,开发一类将太阳能转换为电能的装置—太阳电池具有重大的战略意义。利用光伏效应的工作原理,太阳电池吸收具有一定能量的光子后产生激子,激子分离成空穴和电子,在正负极材料功函差产生的内建电场作用下,电子和空穴分别向负极和正极移动形成光电流。
近十年,非富勒烯聚合物太阳能电池取得了快速的发展,获得了超过15%的能量转换效率[Jun Yuan,Yunqiang Zhang,Liuyang Zhou,Guichuan Zhang,Hin-Lap Yip,Tsz-Ki Lau,Xinhui Lu,Can Zhu,Hongjian Peng,Paul A.Johnson,Mario Leclerc,Yong Cao,Jacek Ulanski,Yongfang Li,Yingping Zou.Joule,3,1140-1151.],但是聚合物给体材料和非富勒烯受体材料之间需要对各个性能进行优化,如:(1)通过调控聚合物材料的能级和带隙来获得较高的开路电压和短路电流;(2)提高聚合物材料的平面性来增加其电荷迁移率,但是在该过程中,要确保材料的溶解性和稳定性。这些因素相互关联,理想状态下,应该对这些因素同时优化,但是实际上这是十分困难的。因此,找到一个平衡点使电池取得最大光电转化效率,是材料化学家设计聚合物给体材料的关键。在设计有机太阳能电池聚合物材料的过程中,要遵循以下几个原则:(1)聚合物应具有较窄的能带间隙;(2)较高的摩尔消光系数;(3)良好的平面性;(4)高的电荷迁移率;(5)较好的光稳定性。同时,较高的分子量、较高的电荷迁移率、最优化的形貌、填充因子等等都可以影响材料的性能。
发明内容
本发明要解决的技术问题是提供一种二维共轭吩噁嗪基芴类共聚物光伏材料、制备方法和应用,其具有良好的光电转换效率。
基于上述目的,本发明提供的一种二维共轭吩噁嗪基芴类共聚物光伏材料,该聚合物光伏材料的结构如式(Ⅰ)所示:
Figure BDA0002745714220000021
其中,X和Y分别为H或F,n为10-30。
在本发明中,当X=H,Y=H时,合成的目标聚合物为9-(N-(2-辛基十二烷基)吩噁嗪基亚甲基)-2,7-芴-4’,7’-二(噻吩基)-苯并噁二唑(PDTBXF-PXz);
当X=H,Y=F时,合成的目标聚合物为9-(N-(2-辛基十二烷基)吩噁嗪基亚甲基)-2,7-芴-5’-氟-4’,7’-二(噻吩基)-苯并噁二唑(PfDTBXF-PXz);
当X=F,Y=F时,合成的目标聚合物为9-(N-(2-辛基十二烷基)吩噁嗪基亚甲基)-2,7-芴-5’,6’-二氟-4’,7’-二(噻吩基)-苯并噁二唑(PffDTBXF-PXz)。
本发明提供的一种二维共轭吩噁嗪基芴类共聚物光伏材料具有良好的可加工性,并且经过初步尝试证明具有较好的光电转换特性,作为聚合物太阳能电池的工作介质有着广阔的应用前景。
进一步的,本发明还提供了一种所述的二维共轭吩噁嗪基芴类共聚物光伏材料的制备方法,包括以下步骤:
1)吩噁嗪与碱性试剂(优选为氢氧化钠)混合在有机溶剂(优选为DMSO)中,搅拌约半小时后,在室温下滴加溴代-2-辛基十二烷,反应20-30h(优选为24小时),将混合物倒入水中,萃取,干燥,旋干溶剂,过硅胶柱,得到N-(2-辛基十二烷基)吩噁嗪;
2)在冰水浴下,将三氯氧磷滴加到有机溶剂(优选为DMF)中,室温搅拌半小时,N-(2-辛基十二烷基)吩噁嗪与1,2-二氯乙烷滴加到反应体系中,升温至80-100℃(优选为90℃)下反应40-50h(优选为48小时),冷却至室温,将混合物倒入水中,萃取,干燥,旋干溶剂,过硅胶柱,得到4-醛基-N-(2-辛基十二烷基)吩噁嗪;
3)优选氮气保护下,将2,7-二溴芴加入到无水乙醇中,搅拌,然后加入t-BuOK,继续搅拌一小时,升温至50-65℃(优选为60℃),加入4-醛基-N-(2-辛基十二烷基)吩噁嗪,反应10-14h(优选为12小时),将混合物倒入水中,萃取,干燥,旋干溶剂,过硅胶柱,得到9-(N-(2-辛基十二烷基)吩噁嗪基亚甲基)-2,7-二溴芴。
4)优选氮气保护下,将4,7-二(5-三甲基锡基-噻吩基)-苯并噁二唑与9-(N-(2-辛基十二烷基)吩噁嗪基亚甲基)-2,7-二溴芴加入到无水甲苯中,再加入四(三苯基膦)钯,100-115℃(优选110℃)下反应20-30h(优选24h),冷却至室温,沉析,过滤,索氏提取,得到聚合物PDTBXF-PXz;
或者,优选氮气保护下,将5-氟-4,7-二(5-三甲基锡基-噻吩基)-苯并噁二唑与9-(N-(2-辛基十二烷基)吩噁嗪基亚甲基)-2,7-二溴芴加入到无水甲苯中,再加入四(三苯基膦)钯,100-115℃(优选110℃)下反应20-30h(优选24h),冷却至室温,沉析,过滤,索氏提取,得到聚合物PfDTBXF-PXz;
或者,优选氮气保护下,将5,6-二氟-4,7-二(5-三甲基锡基-噻吩基)-苯并噁二唑与9-(N-(2-辛基十二烷基)吩噁嗪基亚甲基)-2,7-二溴芴加入到无水甲苯中,再加入四(三苯基膦)钯,100-115℃(优选110℃)下反应20-30h(优选24h),冷却至室温,沉析,过滤,索氏提取,得到聚合物PffDTBXF-PXz。
其中,N-(2-辛基十二烷基)吩噁嗪的结构式如下式(1)所示:
Figure BDA0002745714220000031
4-醛基-N-(2-辛基十二烷基)吩噁嗪的结构式如下式(2)所示:
Figure BDA0002745714220000032
9-(N-(2-辛基十二烷基)吩噁嗪基亚甲基)-2,7-二溴芴的结构式如下式(3)所示:
Figure BDA0002745714220000033
4,7-二(5-三甲基锡基-噻吩基)-苯并噁二唑的结构式如下式(4)所示:
Figure BDA0002745714220000041
5-氟-4,7-二(5-三甲基锡基-噻吩基)-苯并噁二唑的结构式如下式(5)所示:
Figure BDA0002745714220000042
5,6-二氟-4,7-二(5-三甲基锡基-噻吩基)-苯并噁二唑的结构式如下式(6)所示:
Figure BDA0002745714220000043
本发明目标化合物(Ⅰ)的合成路线如下:
Figure BDA0002745714220000044
在本发明中,优选的,步骤1)中所述吩噁嗪与溴代-2-辛基十二烷的摩尔比为1:1.0~1.2。
在本发明中,优选的,步骤2)中所述N-(2-辛基十二烷基)吩噁嗪与三氯氧磷的摩尔比为1:10~15。
在本发明中,优选的,步骤3)中所述2,7-二溴芴与4-醛基-N-(2-辛基十二烷基)吩噁嗪的摩尔比为1:1.2~1.5,反应温度为50~65℃。
在本发明中,优选的,步骤4)中所述9-(N-(2-辛基十二烷基)吩噁嗪基亚甲基)-2,7-二溴芴与4,7-二(5-三甲基锡基-噻吩基)-苯并噁二唑的摩尔比为1:1,反应温度为100~115℃。
在本发明中,优选的,步骤4)中所述9-(N-(2-辛基十二烷基)吩噁嗪基亚甲基)-2,7-二溴芴与5-氟-4,7-二(5-三甲基锡基-噻吩基)-苯并噁二唑的摩尔比为1:1,反应温度为100~115℃。
在本发明中,优选的,步骤4)中所述9-(N-(2-辛基十二烷基)吩噁嗪基亚甲基)-2,7-二溴芴与5,6-二氟-4,7-二(5-三甲基锡基-噻吩基)-苯并噁二唑的摩尔比为1:1,反应温度为100~115℃。
本发明提供的一系列苯并噁二唑和吩噁嗪基芴类共聚物光伏材料的制备方法是采用Stille偶联的方法,将吩噁嗪基芴电子给体单元与二噻吩苯并噁二唑电子受体单元直接偶联而成。
本发明合成了一种吩噁嗪基芴电子给体单元,通过Stille偶联的方法,将吩噁嗪基芴单元通过碳-碳单键与另一个电子受体单元二噻吩苯并噁二唑相连接,得到苯并噁二唑和吩噁嗪基芴类共聚物光伏材料。它们在常见的有机溶剂(如三氯甲烷、甲苯、氯苯、四氢呋喃等)中有良好的溶解性,可以用溶液旋涂的方法制备高质量的聚合物薄膜。同时,这些聚合物光伏材料具有较宽的可见光-近红外区吸收,合适的HOMO以及LUMO能级和相对较窄的带隙。以此类聚合物为电子给体、有机小分子为电子受体制备了聚合物太阳能电池,其最高能量转换效率可达到7.49%,具有良好的光电转换效率。
因此,更进一步的,本发明还提供了所述的苯并噁二唑和吩噁嗪基芴类共聚物光伏材料在太阳能电池中的应用。
在本发明中,优选的,所述苯并噁二唑和吩噁嗪基芴类共聚物光伏材料用作太阳能电池电子给体材料。
本发明用上述苯并噁二唑和吩噁嗪基芴类共聚物光伏材料为电子给体材料,应用于聚合物太阳能电池,其制备方法如下:
将本发明的苯并噁二唑和吩噁嗪基芴类共聚物电子给体材料与电子受体(有机小分子)物质共混,加入氯苯,使混合物充分溶解,旋涂在导电玻璃ITO上制备出导电薄膜,然后在薄膜上蒸镀金属铝电极。
本发明提供的苯并噁二唑和吩噁嗪基芴类共聚物光伏材料具有较宽的吸收光谱和合适的电化学能级,并用核磁共振谱、质谱和元素分析的方法表征了各步合成产物的分子结构。用紫外-可见吸收光谱研究了苯并噁二唑和吩噁嗪基芴类共聚物光伏材料的光学性能。用循环伏安法研究了苯并噁二唑和吩噁嗪基芴类共聚物光伏材料的电化学性能。并以其作为电子给体做成了太阳能电池器件,获得了良好的光电转换效率。
与现有技术相比,本发明具有以下有益效果:
(1)本发明合成的路线简单,成本低,且合成方法具有普适性,可以较好的推广应用到其他的芴类光伏材料的合成。
(2)本发明的二维共轭吩噁嗪基芴类聚合物光伏材料具有与非富勒烯受体材料互补的光学吸收,能够保障吸收足够多的太阳光子,获得高的光电流。
(3)本发明的二维共轭吩噁嗪基芴类聚合物光伏材料具有较为平面的共轭结构,有利于载流子的分离与传输,从而获得较高的填充因子。
(4)本发明用苯并噁二唑和吩噁嗪基芴类共聚物光伏材料为电子给体材料,应用于聚合物太阳能电池获得了较高的能量转换效率(PCE=7.49%),具有良好的应用前景。
附图说明
图1为本发明吩噁嗪基芴类共聚物光伏材料的吸收光谱图;
图2为本发明吩噁嗪基芴类共聚物光伏材料的电化学分析图;
图3为本发明吩噁嗪基芴类共聚物光伏材料的光电转换效率图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。
本发明苯并噁二唑和吩噁嗪基芴类共聚物光伏材料的合成路线如下所示:
Figure BDA0002745714220000061
实施例1 9-(N-(2-辛基十二烷基)吩噁嗪基亚甲基)-2,7-芴-4’,7’-二(噻吩基)-苯并噁二唑(PDTBXF-PXz)的制备
具体步骤如下:
①化合物1的合成
将吩噁嗪(7.32g,40mmol),氢氧化钠(16g,0.4mol)和二甲基亚砜(80mL)置于250mL的三口烧瓶中,搅拌30分钟后,溴代-2-辛基十二烷基(15.84g,44mmol)在30分钟内逐滴加入上面的反应液中。反应混合溶液在室温下搅拌反应48小时后,反应物倾入水中,用二氯甲烷萃取,无水硫酸镁干燥有机相,过滤,旋干溶剂,用石油醚作为淋洗液经硅胶层析柱分离得到无色液体化合物1(13.18g,产率:71%)。
化合物1的核磁共振谱、质谱如下所示:
1H NMR(δ/ppm,CDCl3):6.84(m,4H),6.80-6.74(t,2H),6.70-6.62(d,2H),3.42(d,2H),1.91(s,1H),1.38-1.19(m,32H),0.84(t,6H).
GC-MS:m/z=464.
②化合物2的合成
在冰水浴下,POCl3(22mL,240mmol)在30分钟内逐滴加入DMF(23mL,260mmol)中,室温下搅拌30分钟,将化合物1(11.14g,24mmol)溶解在150mL 1,2-二氯乙烷中,然后缓慢滴加到反应液中,然后在90℃下加热反应48小时。反应液冷至室温后倾入大量水中,用饱和氢氧化钠溶液调节PH值至中性。反应液用二氯甲烷萃取,合并有机相,水洗数次,有机相用无水硫酸镁干燥,过滤,旋干溶剂。粗产物用石油醚/乙酸乙酯(10/1)为淋洗液经硅胶柱层析分离得黄色油状液体化合物2(6.97g,产率:59%)。
化合物2的核磁共振谱、质谱如下所示:
1H NMR(δ/ppm,CDCl3):9.86(s,1H),6.86(m,1H),6.80(t,1H),6.74(m,1H),6.61-7.58(d,2H),6.51(d,1H),6.33(d,1H),3.44(d,2H),1.93(s,1H),1.39-1.18(m,32H),0.86(t,6H).
GC-MS:m/z=492.
③化合物3的合成
氮气保护下,将2,7-二溴芴(1.30g,4.0mmol)与无水乙醇(60mL)加入150mL三口圆底烧瓶中,搅拌,再加入t-BuOK(0.90g,8.0mmol),升温至60℃继续搅拌一小时后,然后加入化合物2(3.05g,6.0mmol),反应12小时,停止反应,冷却至室温,反应物倾入水中,用二氯甲烷萃取,无水硫酸镁干燥有机相,过滤,旋干溶剂,粗产物用石油醚/二氯甲烷=10:1作为淋洗液经硅胶层析柱分离得到红色目标产物化合物3(2.07g,产率:65%)。
化合物3的核磁共振谱、质谱如下所示:
1H NMR(δ/ppm,CDCl3):8.02(d,1H),7.75(s,1H),7.46(t,2H),7.37(m,3H),6.99(d,1H),6.76-6.73(m,2H),6.61-6.59(m,2H),6.51-6.48(t,2H),3.34(d,2H),1.91(s,1H),1.41-1.17(m,32H),0.86(t,6H).
GC-MS:m/z=798.
④聚合物PDTBXF-PXz的合成
氮气保护下,将等摩尔量的化合物3和4,7-二(5-三甲基锡基-噻吩基)-苯并噁二唑(0.2mmol,购买于苏州纳凯科技有限公司)加入到20mL无水甲苯中,再加入Pd(PPh3)4(15mg),110℃下搅拌反应24小时后,冷却至室温,倒入200ml甲醇中沉析,过滤,粗产物经过甲醇、正己烷、三氯甲烷分别抽提,得到聚合物PDTBXF-PXz(154mg,产率82%)。
聚合物PDTBXF-PXz的凝胶渗透色谱分析如下所示:
Mn=14,400,Mw=46,900,PDI=3.3。
Anal.Calcd for(C60H63N3O2S2)n(%):C,78.14;H,6.89;N,4.56.Found(%):C,78.42;H,6.71;N,4.63.
实施例2 9-(N-(2-辛基十二烷基)吩噁嗪基亚甲基)-2,7-芴-5’-氟-4’,7’-二(噻吩基)-苯并噁二唑(PfDTBXF-PXz)的制备
化合物3的合成方法与实施例1中化合物3的合成方法相同,电子受体单元采用5-氟-4,7-二(5-三甲基锡基-噻吩基)-苯并噁二唑,具体步骤如下:
①化合物1的合成
将吩噁嗪(7.32g,40mmol),氢氧化钠(16g,0.4mol)和二甲基亚砜(80mL)置于250mL的三口烧瓶中,搅拌30分钟后,溴代-2-辛基十二烷基(15.84g,44mmol)在30分钟内逐滴加入上面的反应液中。反应混合溶液在室温下搅拌反应48小时后,反应物倾入水中,用二氯甲烷萃取,无水硫酸镁干燥有机相,过滤,旋干溶剂,用石油醚作为淋洗液经硅胶层析柱分离得到无色液体化合物1(13.18g,产率:71%)。
化合物1的核磁共振谱、质谱如下所示:
1H NMR(δ/ppm,CDCl3):6.84(m,4H),6.80-6.74(t,2H),6.70-6.62(d,2H),3.42(d,2H),1.91(s,1H),1.38-1.19(m,32H),0.84(t,6H).
GC-MS:m/z=464.
②化合物2的合成
在冰水浴下,POCl3(22mL,240mmol)在30分钟内逐滴加入DMF(23mL,260mmol)中,室温下搅拌30分钟,将化合物1(11.14g,24mmol)溶解在150mL 1,2-二氯乙烷中,然后缓慢滴加到反应液中,然后在90℃下加热反应48小时。反应液冷至室温后倾入大量水中,用饱和氢氧化钠溶液调节PH值至中性。反应液用二氯甲烷萃取,合并有机相,水洗数次,有机相用无水硫酸镁干燥,过滤,旋干溶剂。粗产物用石油醚/乙酸乙酯(10/1)为淋洗液经硅胶柱层析分离得黄色油状液体化合物2(6.97g,产率:59%)。
化合物2的核磁共振谱、质谱如下所示:
1H NMR(δ/ppm,CDCl3):9.86(s,1H),6.86(m,1H),6.80(t,1H),6.74(m,1H),6.61-7.58(d,2H),6.51(d,1H),6.33(d,1H),3.44(d,2H),1.93(s,1H),1.39-1.18(m,32H),0.86(t,6H).
GC-MS:m/z=492.
③化合物3的合成
氮气保护下,将2,7-二溴芴(1.30g,4.0mmol)与无水乙醇(60mL)加入150mL三口圆底烧瓶中,搅拌,再加入t-BuOK(0.90g,8.0mmol),升温至60℃继续搅拌一小时后,然后加入化合物2(3.05g,6.0mmol),反应12小时,停止反应,冷却至室温,反应物倾入水中,用二氯甲烷萃取,无水硫酸镁干燥有机相,过滤,旋干溶剂,粗产物用石油醚/二氯甲烷=10:1作为淋洗液经硅胶层析柱分离得到红色目标产物化合物3(2.07g,产率:65%)。
化合物3的核磁共振谱、质谱如下所示:
1H NMR(δ/ppm,CDCl3):8.02(d,1H),7.75(s,1H),7.46(t,2H),7.37(m,3H),6.99(d,1H),6.76-6.73(m,2H),6.61-6.59(m,2H),6.51-6.48(t,2H),3.34(d,2H),1.91(s,1H),1.41-1.17(m,32H),0.86(t,6H).
GC-MS:m/z=798.
④聚合物PfDTBXF-PXz的合成
氮气保护下,将等摩尔量的化合物3和5’-氟-4’,7’-二(5-三甲基锡基-噻吩基)-苯并噁二唑(0.2mmol,购买于苏州纳凯科技有限公司)加入到20mL无水甲苯中,再加入Pd(PPh3)4(15mg),110℃下搅拌反应24小时后,冷却至室温,倒入200ml甲醇中沉析,过滤,粗产物经过甲醇、正己烷、三氯甲烷分别抽提,得到聚合物PfDTBXF-PXz(154mg,产率82%)。
聚合物PfDTBXF-PXz的凝胶渗透色谱分析如下所示:
Mn=27,300,Mw=58,200,PDI=2.1。
Anal.Calcd for(C60H62FN3O2S2)n(%):C,76.64;H,6.65;N,4.47.Found(%):C,76.87;H,6.53;N,4.29.
实施例3 9-(N-(2-辛基十二烷基)吩噁嗪基亚甲基)-2,7-芴-5’,6’-二氟-4’,7’-二(噻吩基)-苯并噁二唑(PffDTBXF-PXz)的制备
化合物3的合成方法与实施例1中化合物3的合成方法相同,电子受体单元采用5,6-二氟-4,7-二(5-三甲基锡基-噻吩基)-苯并噁二唑,具体步骤如下:
①化合物1的合成
将吩噁嗪(7.32g,40mmol),氢氧化钠(16g,0.4mol)和二甲基亚砜(80mL)置于250mL的三口烧瓶中,搅拌30分钟后,溴代-2-辛基十二烷基(15.84g,44mmol)在30分钟内逐滴加入上面的反应液中。反应混合溶液在室温下搅拌反应48小时后,反应物倾入水中,用二氯甲烷萃取,无水硫酸镁干燥有机相,过滤,旋干溶剂,用石油醚作为淋洗液经硅胶层析柱分离得到无色液体化合物1(13.18g,产率:71%)。
化合物1的核磁共振谱、质谱如下所示:
1H NMR(δ/ppm,CDCl3):6.84(m,4H),6.80-6.74(t,2H),6.70-6.62(d,2H),3.42(d,2H),1.91(s,1H),1.38-1.19(m,32H),0.84(t,6H).
GC-MS:m/z=464.
②化合物2的合成
在冰水浴下,POCl3(22mL,240mmol)在30分钟内逐滴加入DMF(23mL,260mmol)中,室温下搅拌30分钟,将化合物1(11.14g,24mmol)溶解在150mL 1,2-二氯乙烷中,然后缓慢滴加到反应液中,然后在90℃下加热反应48小时。反应液冷至室温后倾入大量水中,用饱和氢氧化钠溶液调节PH值至中性。反应液用二氯甲烷萃取,合并有机相,水洗数次,有机相用无水硫酸镁干燥,过滤,旋干溶剂。粗产物用石油醚/乙酸乙酯(10/1)为淋洗液经硅胶柱层析分离得黄色油状液体化合物2(6.97g,产率:59%)。
化合物2的核磁共振谱、质谱如下所示:
1H NMR(δ/ppm,CDCl3):9.86(s,1H),6.86(m,1H),6.80(t,1H),6.74(m,1H),6.61-7.58(d,2H),6.51(d,1H),6.33(d,1H),3.44(d,2H),1.93(s,1H),1.39-1.18(m,32H),0.86(t,6H).
GC-MS:m/z=492.
③化合物3的合成
氮气保护下,将2,7-二溴芴(1.30g,4.0mmol)与无水乙醇(60mL)加入150mL三口圆底烧瓶中,搅拌,再加入t-BuOK(0.90g,8.0mmol),升温至60℃继续搅拌一小时后,然后加入化合物2(3.05g,6.0mmol),反应12小时,停止反应,冷却至室温,反应物倾入水中,用二氯甲烷萃取,无水硫酸镁干燥有机相,过滤,旋干溶剂,粗产物用石油醚/二氯甲烷=10:1作为淋洗液经硅胶层析柱分离得到红色目标产物化合物3(2.07g,产率:65%)。
化合物3的核磁共振谱、质谱如下所示:
1H NMR(δ/ppm,CDCl3):8.02(d,1H),7.75(s,1H),7.46(t,2H),7.37(m,3H),6.99(d,1H),6.76-6.73(m,2H),6.61-6.59(m,2H),6.51-6.48(t,2H),3.34(d,2H),1.91(s,1H),1.41-1.17(m,32H),0.86(t,6H).
GC-MS:m/z=798.
④聚合物PffDTBXF-PXz的合成
氮气保护下,将等摩尔量的化合物3和5,6-二氟-4,7-二(噻吩基)-苯并噁二唑(0.2mmol,购买于苏州纳凯科技有限公司)加入到20mL无水甲苯中,再加入Pd(PPh3)4(15mg),110℃下搅拌反应24小时后,冷却至室温,倒入200ml甲醇中沉析,过滤,粗产物经过甲醇、正己烷、三氯甲烷分别抽提,得到聚合物PffDTBXF-PXz(136mg,产率70%)。
聚合物PffDTBXF-PXz的凝胶渗透色谱分析如下所示:
Mn=24,900,Mw=57,100,PDI=2.3。
Anal.Calcd for(C60H61F2N3O2S2)n(%):C,75.20;H,6.42;N,4.38.Found(%):C,75.87;H,6.45;N,4.25.
实施例4聚合物太阳能电池的制备
本发明以苯并噁二唑和吩噁嗪基芴类共聚物作为工作介质,制备太阳能电池的方法是:将上述苯并噁二唑和吩噁嗪基芴类共聚物材料与适量的有机小分子电子受体混合,加入适量的溶剂溶解,通过常规的旋涂在ITO(氧化铟锡)导电玻璃上制备出一层半透明的薄膜,然后通过真空蒸镀的方式在光伏活性层上制备金属电极。
具体步骤为:3.0mg的PffDTBXF-PXz与3.0mg的IT-4F混合,加入0.25mL氯苯溶解,通过旋涂方式在经PEDOT:PSS修饰过的导电玻璃上制备出一层约120nm厚的薄膜,然后通过真空蒸镀的方式用铝/氟化锂在光伏活性层上制备金属电极。其聚合物太阳能电池器件性能表现为:
短路电流=9.87mA/cm2;开路电压=0.99V;填充因子=51%;
模拟太阳光(A.M.1.5,100mW/cm2)下的能量转换效率=4.98%。
实施例5聚合物太阳能电池的制备
2.0mg的PffDTBXF-PXz与3.0mg的IT-4F混合,加入0.20mL氯苯溶解,通过旋涂方式在经PEDOT:PSS修饰过的导电玻璃上制备出一层约120nm厚的薄膜,然后通过真空蒸镀的方式用铝/氟化锂在光伏活性层上制备金属电极。其聚合物太阳能电池器件性能表现为:
短路电流=11.66mA/cm2;开路电压=1.02V;填充因子=63%;
模拟太阳光(A.M.1.5,100mW/cm2)下的能量转换效率=7.49%。
实施例6聚合物太阳能电池的制备
2.0mg的PffDTBXF-PXz与4.0mg的IT-4F混合,加入0.25mL氯苯溶解,通过旋涂方式在经PEDOT:PSS修饰过的导电玻璃上制备出一层约120nm厚的薄膜,然后通过真空蒸镀的方式用铝/氟化锂在光伏活性层上制备金属电极。其聚合物太阳能电池器件性能表现为:
短路电流=11.32mA/cm2;开路电压=0.98V;填充因子=61%;
模拟太阳光(A.M.1.5,100mW/cm2)下的能量转换效率=6.77%。
实施例7聚合物PffDTBXF-PXz的光谱分析
聚合物PffDTBXF-PXz在三氯甲烷溶液下的吸收光谱如图1所示,在实施例7所制备的溶液状态下,聚合物PffDTBXF-PXz在300~730nm范围内对光有明显吸收,与电子受体IT-4F的吸收光谱形成很好的互补,因而光伏活性层可以吸收更多的太阳光,获得高的短路电流。说明二维共轭吩噁嗪基芴类聚合物光伏材料在太阳能电池中有着广阔的应用前景。
实施例8聚合物PffDTBXF-PXz的电化学性能分析
在电化学中,循环伏安法通常被用来测定物质的起始氧化和还原电位,进而计算得到相应的HOMO和LUMO能级。图2是PffDTBXF-PXz在0.1mol/L的Bu4NPF6/CH3CN溶液中测得的循环伏安曲线,从图中可以测得对应的氧化和还原电位分别是0.79V和-0.62V,根据公式
Figure BDA0002745714220000121
计算得到对应的HOMO和LUMO能级分别是-5.59eV和-4.18eV,电化学能隙为1.41eV。低的HOMO能级表明PffDTBXF-PXz有良好的空气稳定性,非常适合制备长使用寿命的太阳能电池器件。
实施例9聚合物PffDTBXF-PXz的光伏性能分析
聚合物PffDTBXF-PXz的光伏性能如图3所示,结果表明聚合物PffDTBXF-PXz与IT-4F共混比例为1:1.5时,具有最好的光伏性能,对应的短路电流=11.66mA/cm2;开路电压=1.02V;填充因子=63.0%;模拟太阳光(AM.1.5,100mW/cm2)下的能量转换效率=7.49%,参见表1。我们相信太阳能电池的转换效率可以通过器件条件的优化得到进一步提升。
表1聚合物PffDTBXF-PXz的光伏性能结果
Figure BDA0002745714220000122
由实施例1-9可知,本发明合成的路线简单,成本低,且合成方法具有普适性,可以较好的推广应用到其他的芴类材料的合成;本发明的芴类聚合物光伏材料具有强给电子作用而产生共振能量传递,有望获得更宽的紫外-可见吸收光谱;本发明的芴类聚合物光伏材料具有较低的HOMO能级,对氧的稳定性高,有利于制备性能更加稳定的太阳能电池器件;本发明用芴类聚合物光伏材料为电子给体材料,应用于聚合物太阳能电池获得了较高的能量转换效率(PCE=7.49%),具有良好的应用前景。
综上所述,本发明合成了一种二维共轭芴有机电子给体单元,通过Stille偶联的方法,将芴给体单元通过碳-碳单键与另一个电子受体单元二噻吩苯并噁二唑相连接,得到芴类聚合物光伏材料。它们在常见的有机溶剂(如氯苯、二氯苯、甲苯等)中有良好的溶解性,可以用溶液方法制备高质量的薄膜。同时,这些聚合物光伏材料具有宽的可见光区吸收,合适的HOMO以及LUMO能级和相对较窄的带隙。以此类聚合物为电子给体、有机小分子为电子受体制备了有机太阳能电池,其最高能量转换效率可达到7.49%,具有良好的光电转换效率。
所属领域的普通技术人员应当理解:以上任何实施例的讨论仅为示例性的,并非旨在暗示本公开的范围(包括权利要求)被限于这些例子;在本发明的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,并存在如上所述的本发明的不同方面的许多其它变化,为了简明它们没有在细节中提供。因此,凡在本发明的精神和原则之内,所做的任何省略、修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种二维共轭吩噁嗪基芴类共聚物光伏材料的制备方法,其特征是,二维共轭吩噁嗪基芴类共聚物光伏材料的结构式如下:
Figure 664395DEST_PATH_IMAGE001
其中,X和Y分别为H或F,n为10-30;
包括如下步骤:
1)吩噁嗪与碱性试剂混合在有机溶剂中,搅拌,滴加溴代-2-辛基十二烷,反应,将混合物倒入水中,萃取,干燥,旋干溶剂,过滤,得到N-(2-辛基十二烷基)吩噁嗪;
2)在冰水浴下,将三氯氧磷滴加到有机溶剂中,搅拌,将N-(2-辛基十二烷基)吩噁嗪与1,2-二氯乙烷滴加到上述反应体系中,升温至80-100℃下反应,冷却,将混合物倒入水中,萃取,干燥,旋干溶剂,过硅胶柱,得到4-醛基-N-(2-辛基十二烷基)吩噁嗪;
3)将2,7-二溴芴加入到无水乙醇中,搅拌,然后加入叔丁醇钾,继续搅拌,升温至50-65℃,加入4-醛基-N-(2-辛基十二烷基)吩噁嗪,反应,将混合物倒入水中,萃取,干燥,旋干溶剂,过硅胶柱,得到9-(N-(2-辛基十二烷基)吩噁嗪基亚甲基)-2,7-二溴芴;
4)将4,7-二(5-三甲基锡基-噻吩基)-苯并噁二唑类化合物与9-(N-(2-辛基十二烷基)吩噁嗪基亚甲基)-2,7-二溴芴加入到无水甲苯中,再加入(四(三苯基膦)钯),100-115℃下反应,冷却,沉析,过滤,索氏提取,得到二维共轭吩噁嗪基芴类共聚物光伏材料;
上述4,7-二(5-三甲基锡基-噻吩基)-苯并噁二唑类化合物包括4,7-二(5-三甲基锡基-噻吩基)-苯并噁二唑、5-氟-4,7-二(5-三甲基锡基-噻吩基)-苯并噁二唑或5,6-二氟-4,7-二(5-三甲基锡基-噻吩基)-苯并噁二唑。
2.如权利要求1所述的制备方法,其特征是,所述步骤1)中的有机溶剂为二甲基亚砜。
3.如权利要求1或2所述的制备方法,其特征是,步骤1)中所述吩噁嗪与溴代-2-辛基十二烷的摩尔比为1:1.0~1.2。
4.如权利要求1或2所述的制备方法,其特征是,所述步骤2)中有机溶剂为二甲基甲酰胺。
5.如权利要求1或2所述的制备方法,其特征是,所述步骤2)中反应的温度为90℃,时间为40-50h。
6.如权利要求1或2所述的制备方法,其特征是,步骤2)中所述N-(2-辛基十二烷基)吩噁嗪与三氯氧磷的摩尔比为1:10~15。
7.如权利要求1或2所述的制备方法,其特征是,步骤3)中所述2,7-二溴芴与4-醛基-N-(2-辛基十二烷基)吩噁嗪的摩尔比为1:1.2~1.5;所述步骤3)中反应的温度为60℃,时间为10-14h。
8.如权利要求1或2所述的制备方法,其特征是,步骤4)中所述9-(N-(2-辛基十二烷基)吩噁嗪基亚甲基)-2,7-二溴芴与4,7-二(5-三甲基锡基-噻吩基)-苯并噁二唑类化合物的摩尔比为1:1。
CN202011165720.5A 2020-10-27 2020-10-27 一种二维共轭吩噁嗪基芴类共聚物光伏材料、制备方法和应用 Active CN112592463B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011165720.5A CN112592463B (zh) 2020-10-27 2020-10-27 一种二维共轭吩噁嗪基芴类共聚物光伏材料、制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011165720.5A CN112592463B (zh) 2020-10-27 2020-10-27 一种二维共轭吩噁嗪基芴类共聚物光伏材料、制备方法和应用

Publications (2)

Publication Number Publication Date
CN112592463A CN112592463A (zh) 2021-04-02
CN112592463B true CN112592463B (zh) 2023-03-24

Family

ID=75180747

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011165720.5A Active CN112592463B (zh) 2020-10-27 2020-10-27 一种二维共轭吩噁嗪基芴类共聚物光伏材料、制备方法和应用

Country Status (1)

Country Link
CN (1) CN112592463B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103848972A (zh) * 2012-11-29 2014-06-11 海洋王照明科技股份有限公司 含二噻吩苯并噻二唑单元的聚合物及其制备方法和太阳能电池器件
CN110229316A (zh) * 2019-06-25 2019-09-13 中国科学院长春应用化学研究所 含硼氮配位键的高分子化合物及其制备方法与应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2749060C (en) * 2009-01-20 2016-10-04 Toray Industries, Inc. Material for photovoltaic device, and photovoltaic device
CN103154057B (zh) * 2010-11-25 2015-04-01 海洋王照明科技股份有限公司 含异靛单元的共轭聚合物及其制备方法和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103848972A (zh) * 2012-11-29 2014-06-11 海洋王照明科技股份有限公司 含二噻吩苯并噻二唑单元的聚合物及其制备方法和太阳能电池器件
CN110229316A (zh) * 2019-06-25 2019-09-13 中国科学院长春应用化学研究所 含硼氮配位键的高分子化合物及其制备方法与应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Novel photovoltaic donor 1–acceptor–donor 2–acceptor terpolymers with tunable energy levels based on a difluorinated benzothiadiazole acceptor;Deng ZQ, et al;《Royal Society of Chemistry》;20150112(第5期);第12087-12093页 *
卢科蓉等.含噻吩窄带隙共轭聚合物类太阳能电池材料的研究进展.《高分子通报》.2012,(第05期),第99-110页. *
含噻吩窄带隙共轭聚合物类太阳能电池材料的研究进展;卢科蓉等;《高分子通报》;20120515(第05期);第99-110页 *

Also Published As

Publication number Publication date
CN112592463A (zh) 2021-04-02

Similar Documents

Publication Publication Date Title
CN101935389B (zh) 二噻吩苯并三唑基聚合物材料及其光伏应用
CN103435782B (zh) 含9,9’-联亚芴基及其衍生物的有机半导体材料及其制备方法与应用
CN104045657A (zh) 五元杂环衍生物桥联的苝二酰亚胺二聚体、其制备方法及其在有机光伏器件中的应用
CN101665563A (zh) 一种给受体共轭聚合物及其在太阳能电池中的应用
US20120312374A1 (en) Conjugated fluorene polymer, preparing method thereof and solar cell device
CN101787020A (zh) 一种可溶液加工的有机共轭分子及在太阳能电池中的应用
JP5688164B2 (ja) 光起電重合体材料、その調製方法及び応用
Liu et al. A trilobal non-fullerene electron acceptor based on benzo [1, 2-b: 3, 4-b′: 5, 6-b ″] trithiophene and perylenediimide for polymer solar cells
Miao et al. An A–D–A′–D–A type small molecule acceptor with wide absorption spectrum and near-infrared absorption
CN102964570B (zh) 一种萘并二呋喃类化合物和聚合物及制备方法和应用
Liu et al. Solution processable low bandgap small molecule donors with naphthalene end-groups for organic solar cells
CN101962380A (zh) 一种新型有机共轭分子及其在有机太阳能电池中的应用
CN107286177B (zh) 一种引达省并二噻吩类光伏材料及其制备方法和应用
CN102827355A (zh) 苯并二呋喃基聚合物材料及其光伏应用
CN112592464B (zh) 一种二维共轭2-氯苯基芴类共聚物光伏材料、制备方法和应用
CN112592463B (zh) 一种二维共轭吩噁嗪基芴类共聚物光伏材料、制备方法和应用
Li et al. Tuning photovoltaic performance of 9, 9‐dioctylfluorene‐alt‐5, 7‐bis (thiophen‐2‐yl)‐2, 3‐biphenylthieno [3, 4‐b] pyrazine copolymeric derivatives by attaching additional donor units in pendant phenyl ring
Wu et al. Synthesis and photovoltaic properties of an alternating polymer based fluorene and fluorine substituted quinoxaline derivatives
CN112592462B (zh) 一种吩噁嗪基芴与吡咯并吡咯二酮类共聚物光伏材料、制备方法和应用
Yu et al. Modification of a donor-acceptor photovoltaic polymer by integration of optoelectronic moieties into its side chains
Weng et al. Regular terpolymers with benzothiadiazole side groups for improving the performances of polymer solar cells
Zhou et al. Effect of chlorination and fluorination of benzothiadiazole on the performance of polymer solar cells
CN103396534B (zh) 一种二维共轭喹喔啉类聚合物及其用途
CN103833979B (zh) 并三噻吩-苯并二(苯并硒二唑)共聚物及其制备方法和应用
CN112574396B (zh) 一种2-氟苯基芴与吡咯并吡咯二酮共聚物光伏材料、制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant