CN112592462B - 一种吩噁嗪基芴与吡咯并吡咯二酮类共聚物光伏材料、制备方法和应用 - Google Patents

一种吩噁嗪基芴与吡咯并吡咯二酮类共聚物光伏材料、制备方法和应用 Download PDF

Info

Publication number
CN112592462B
CN112592462B CN202011165709.9A CN202011165709A CN112592462B CN 112592462 B CN112592462 B CN 112592462B CN 202011165709 A CN202011165709 A CN 202011165709A CN 112592462 B CN112592462 B CN 112592462B
Authority
CN
China
Prior art keywords
octyldodecyl
photovoltaic material
phenoxazine
pyrrolopyrroledione
copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011165709.9A
Other languages
English (en)
Other versions
CN112592462A (zh
Inventor
刘波
李朵朵
王晓波
王钢
刘骏
陈远道
胡霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan University of Arts and Science
Original Assignee
Hunan University of Arts and Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan University of Arts and Science filed Critical Hunan University of Arts and Science
Priority to CN202011165709.9A priority Critical patent/CN112592462B/zh
Publication of CN112592462A publication Critical patent/CN112592462A/zh
Application granted granted Critical
Publication of CN112592462B publication Critical patent/CN112592462B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/125Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one oxygen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/124Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one nitrogen atom in the ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/124Copolymers alternating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1412Saturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/149Side-chains having heteroaromatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/15Side-groups conjugated side-chains
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/18Definition of the polymer structure conjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/314Condensed aromatic systems, e.g. perylene, anthracene or pyrene
    • C08G2261/3142Condensed aromatic systems, e.g. perylene, anthracene or pyrene fluorene-based, e.g. fluorene, indenofluorene, or spirobifluorene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3222Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more oxygen atoms as the only heteroatom, e.g. furan
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/414Stille reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/91Photovoltaic applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明属于聚合物光伏材料技术领域,具体是涉及到一种吩噁嗪基芴与吡咯并吡咯二酮类共聚物光伏材料、制备方法和应用,结构式如下:
Figure DDA0002745709820000011
其中,R为烷基,n为10‑30;吩噁嗪基芴与吡咯并吡咯二酮类共聚物光伏材料具有宽的可见‑近红外光区吸收,合适的HOMO以及LUMO能级和相对较窄的带隙。以此类聚合物为电子给体、有机小分子为电子受体制备了非富勒烯聚合物太阳能电池,其最高能量转换效率可达到6.8%,具有良好的光电转换效率。

Description

一种吩噁嗪基芴与吡咯并吡咯二酮类共聚物光伏材料、制备方法和应用
技术领域
本发明属于聚合物光伏材料技术领域,具体是涉及到一种吩噁嗪基芴与吡咯并吡咯二酮类共聚物光伏材料、制备方法和应用。
背景技术
在过去的二十年中,聚合物太阳能电池(PSCs)受到人们的广泛关注,主要是由于聚合物太阳能电池具有制备工艺简单、质量轻、成本低廉、容易制备大面积柔性器件等优点[Huifeng Yao,Long Ye,Hao Zhang,Sunsun Li,Shaoqing Zhang,and JianhuiHou.Chem.Rev.2016,116,7397-7457.]。设计和合成新的共轭聚合物在PSCs的发展过程中扮演着一个重要的角色。共轭聚合物由给体(D)和受体(A)单元组成,通过改变不同的给受单元很容易调节聚合物的性能,因此被广泛运用到PSCs上。选择合适的给体(D)和受体(A)单元是制备高能量转换效率D-A共聚物的关键。
发明内容
本发明要解决的技术问题是提供一种吩噁嗪基芴与吡咯并吡咯二酮类共聚物光伏材料、制备方法和应用,其具有良好的光电转换效率。
基于上述目的,本发明提供的一种吩噁嗪基芴与吡咯并吡咯二酮类共聚物光伏材料,该聚合物光伏材料的结构如式(Ⅰ)所示:
Figure BDA0002745709800000011
其中,R为烷基,n为10-30。
式(Ⅰ)所示的化合物为9-(N-(2-辛基十二烷基)-吩噁嗪基亚甲基)-2,7-芴-3’,6’-二(呋喃基)-2’,5’-二(烷基)-吡咯并吡咯二酮。
在本发明中,优选的,R为8~20个碳原子的直链或支链烷烃。
在本发明中,进一步优选的,所述R选自以下基团中的一种:
Figure BDA0002745709800000021
在本发明中,当
Figure BDA0002745709800000022
时,合成的目标聚合物为9-(N-(2-辛基十二烷基)吩噁嗪基亚甲基)-2,7-芴-2’,5’-二(异辛基)-3’,6’-二(呋喃基)-2’-吡咯并吡咯二酮(P1);
Figure BDA0002745709800000023
时,合成的目标聚合物为9-(N-(2-辛基十二烷基)吩噁嗪基亚甲基)-2,7-芴-2’,5’-二(正辛基)-3’,6’-二(呋喃基)-2’-吡咯并吡咯二酮(P2);
Figure BDA0002745709800000024
时,合成的目标聚合物为9-(N-(2-辛基十二烷基)吩噁嗪基亚甲基)-2,7-芴-2’,5’-二(2-辛基十二烷基)-3’,6’-二(呋喃基)-2’-吡咯并吡咯二酮(P3)。
本发明提供的一种吩噁嗪基芴与吡咯并吡咯二酮类共聚物光伏材料具有良好的可加工性,并且经过初步尝试证明具有较好的光电转换特性,作为聚合物太阳能电池的工作介质有着广阔的应用前景。
进一步的,本发明还提供了一种所述的吩噁嗪基芴与吡咯并吡咯二酮类共聚物光伏材料的制备方法,包括以下步骤:
1)吩噁嗪与碱性试剂(优选为氢氧化钠)混合在有机溶剂(优选为DMSO)中,搅拌约半小时后,在室温下滴加溴代-2-辛基十二烷,反应20-30h(优选为24小时),将混合物倒入水中,萃取,干燥,旋干溶剂,过硅胶柱,得到N-(2-辛基十二烷基)吩噁嗪;
2)在冰水浴下,将三氯氧磷滴加到有机溶剂(优选为DMF)中,室温搅拌半小时,N-(2-辛基十二烷基)吩噁嗪与1,2-二氯乙烷滴加到反应体系中,升温至80-100℃(优选为90℃)下反应40-50h(优选为48小时),冷却至室温,将混合物倒入水中,萃取,干燥,旋干溶剂,过硅胶柱,得到4-醛基-N-(2-辛基十二烷基)吩噁嗪;
3)优选氮气保护下,将2,7-二溴芴加入到无水乙醇中,搅拌,然后加入t-BuOK,继续搅拌一小时,升温至50-65℃(优选为60℃),加入4-醛基-N-(2-辛基十二烷基)吩噁嗪,反应10-14h(优选为12小时),将混合物倒入水中,萃取,干燥,旋干溶剂,过硅胶柱,得到9-(N-(2-辛基十二烷基)吩噁嗪基亚甲基)-2,7-二溴芴;
4)优选氮气保护下,将2,5-二烷基-3,6-二(5-(三甲基锡基)呋喃)-2-吡咯并吡咯二酮与9-(N-(2-辛基十二烷基)吩噁嗪基亚甲基)-2,7-二溴芴加入到无水甲苯中,再加入(四(三苯基膦)钯),100-115℃(优选115℃)下反应40-50h(优选48h),冷却至室温,沉析,过滤,索氏提取,得到吩噁嗪基芴与吡咯并吡咯二酮类共聚物光伏材料;
上述2,5-二烷基-3,6-二(5-(三甲基锡基)呋喃)-2-吡咯并吡咯二酮包括2,5-二(异辛基)-3,6-二(5-(三甲基锡基)呋喃)-2-吡咯并吡咯二酮、2,5-二(正辛基)-3,6-二(5-(三甲基锡基)呋喃)-2-吡咯并吡咯二酮或2,5-二(2-辛基十二烷基)-3,6-二(5-(三甲基锡基)呋喃)-2-吡咯并吡咯二酮。
其中,N-(2-辛基十二烷基)吩噁嗪的结构式如下式(1)所示:
Figure BDA0002745709800000031
4-醛基-N-(2-辛基十二烷基)吩噁嗪的结构式如下式(2)所示:
Figure BDA0002745709800000032
9-(N-(2-辛基十二烷基)吩噁嗪基亚甲基)-2,7-二溴芴的结构式如下式(3)所示:
Figure BDA0002745709800000033
2,5-二(异辛基)-3,6-二(5-(三甲基锡基)呋喃)-2-吡咯并吡咯二酮的结构式如下式(4)所示:
Figure BDA0002745709800000041
2,5-二(正辛基)-3,6-二(5-(三甲基锡基)呋喃)-2-吡咯并吡咯二酮的结构式如下式(5)所示:
Figure BDA0002745709800000042
2,5-二(2-辛基十二烷基)-3,6-二(5-(三甲基锡基)呋喃)-2-吡咯并吡咯二酮的结构式如下式(6)所示:
Figure BDA0002745709800000043
本发明目标化合物(Ⅰ)的合成路线如下:
Figure BDA0002745709800000051
在本发明中,优选的,步骤1)中所述吩噁嗪与溴代-2-辛基十二烷的摩尔比为1:1.0~1.2。
在本发明中,优选的,步骤2)中所述N-(2-辛基十二烷基)吩噁嗪与三氯氧磷的摩尔比为1:10~15。
在本发明中,优选的,步骤3)中所述2,7-二溴芴与4-醛基-N-(2-辛基十二烷基)吩噁嗪的摩尔比为1:1.2~1.5,反应温度为50~65℃。
在本发明中,优选的,步骤4)中所述9-(N-(2-辛基十二烷基)吩噁嗪基亚甲基)-2,7-二溴芴与2,5-二(异辛基)-3,6-二(5-(三甲基锡基)呋喃)-2-吡咯并吡咯二酮的摩尔比为1:1,反应温度为100~115℃,反应时间为48小时。
在本发明中,优选的,步骤4)中所述9-(N-(2-辛基十二烷基)吩噁嗪基亚甲基)-2,7-二溴芴与2,5-二(正辛基)-3,6-二(5-(三甲基锡基)呋喃)-2-吡咯并吡咯二酮的摩尔比为1:1,反应温度为100~115℃,反应时间为48小时。
在本发明中,优选的,步骤4)中所述9-(N-(2-辛基十二烷基)吩噁嗪基亚甲基)-2,7-二溴芴与2,5-二(2-辛基十二烷基)-3,6-二(5-(三甲基锡基)呋喃)-2-吡咯并吡咯二酮的摩尔比为1:1,反应温度为100~115℃,反应时间为48小时。
本发明提供的一系列吩噁嗪基芴与吡咯并吡咯二酮类共聚物光伏材料的制备方法是采用Stille偶联的方法,将DPP电子受体单元与吩噁嗪基芴电子给体单元直接偶联而成。
本发明合成了一种含有二维共轭侧链的芴电子给体单元,通过Stille偶联的方法,将芴单元通过碳-碳单键与另一个电子受体体单元DPP相连接,得到吩噁嗪基芴与吡咯并吡咯二酮类共聚物光伏材料。它们在常见的有机溶剂(如甲苯、氯苯、二氯苯等)中有良好的溶解性,可以用溶液旋涂的方法制备高质量的聚合物薄膜。同时,这些聚合物光伏材料具有宽的可见光-近红外区吸收,合适的HOMO以及LUMO能级和相对较窄的带隙。以此类聚合物为电子给体、有机小分子为电子受体制备了聚合物太阳能电池,其最高能量转换效率可达到6.8%,具有良好的光电转换效率。
因此,更进一步的,本发明还提供了所述的吩噁嗪基芴与吡咯并吡咯二酮类共聚物光伏材料在太阳能电池中的应用。
在本发明中,优选的,所述吩噁嗪基芴与吡咯并吡咯二酮类共聚物光伏材料用作太阳能电池电子给体材料。
本发明用上述吩噁嗪基芴与吡咯并吡咯二酮类共聚物光伏材料为电子给体材料,应用于聚合物太阳能电池,其制备方法如下:
将本发明的吩噁嗪基芴与吡咯并吡咯二酮类共聚物电子给体材料与电子受体(有机小分子)物质共混,加入氯苯,使混合物充分溶解,旋涂在导电玻璃ITO上制备出导电薄膜,然后在薄膜上蒸镀金属铝电极。
本发明提供的吩噁嗪基芴与吡咯并吡咯二酮类共聚物光伏材料具有宽的吸收光谱和合适的电化学能级,并用核磁共振谱、质谱和元素分析的方法表征了各步合成产物的分子结构。用紫外-可见吸收光谱研究了吩噁嗪基芴与吡咯并吡咯二酮类共聚物光伏材料的光学性能。用循环伏安法研究了吩噁嗪基芴与吡咯并吡咯二酮类共聚物光伏材料的电化学性能。并以其作为电子给体做成了太阳能电池器件,获得了良好的光电转换效率。
与现有技术相比,本发明具有以下有益效果:
(1)本发明合成的路线简单,成本低,且合成方法具有普适性,可以较好的推广应用到其他的芴类光伏材料的合成。
(2)本发明的吩噁嗪基芴与吡咯并吡咯二酮类聚合物光伏材料在可见-近红外光区具有较宽的光学吸收,能够保障吸收足够多的太阳光子,获得高的光电流。
(3)本发明的吩噁嗪基芴与吡咯并吡咯二酮类聚合物光伏材料具有较为平面的共轭结构,有利于载流子的分离与传输,从而获得较高的填充因子。
(4)本发明用吩噁嗪基芴与吡咯并吡咯二酮类共聚物光伏材料为电子给体材料,应用于聚合物太阳能电池获得了较高的能量转换效率(PCE=6.8%),具有良好的应用前景。
在本发明中,我们通过优化给体或受体单元的结构可以很好地改变吸收范围、电化学能级和活性层形貌,从而大大提高能量转换效率。与侧链为柔性链的芴类聚合物相比,二维共轭的芴类聚合物具有更好的平面结构和共轭长度,可以显著的改善和提高聚合物的吸收光谱和载流子迁移率,因此,采用共轭结构的吩噁嗪作为侧链,来取代烷基侧链是一个非常好的途径。
本发明合成了吩噁嗪基芴电子给体单元,并与含有不同柔性侧链的DPP电子受体单体,采用Stille偶联的方法制备了一类二维共轭吩噁嗪基芴类共聚物太阳能电池材料,对它们进行了光学和电化学等表征,并对其在太阳能电池上的应用进行了研究。
附图说明
图1为本发明吩噁嗪基芴与吡咯并吡咯二酮类共聚物光伏材料的吸收光谱图;
图2为本发明吩噁嗪基芴与吡咯并吡咯二酮类共聚物光伏材料的电化学分析图;
图3为本发明吩噁嗪基芴与吡咯并吡咯二酮类共聚物光伏材料的光电转换效率图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。
本发明吩噁嗪基芴与吡咯并吡咯二酮类共聚物光伏材料的合成路线如下所示:
Figure BDA0002745709800000071
实施例1 9-(N-(2-辛基十二烷基)吩噁嗪基亚甲基)-2,7-芴-2’,5’-二(异辛基)-3’,6’-二(呋喃基)-2’-吡咯并吡咯二酮(P1)的制备
具体步骤如下:
①化合物1的合成
将吩噁嗪(7.32g,40mmol),氢氧化钠(16g,0.4mol)和二甲基亚砜(80mL)置于250mL的三口烧瓶中,搅拌30分钟后,溴代-2-辛基十二烷基(15.84g,44mmol)在30分钟内逐滴加入上面的反应液中。反应混合溶液在室温下搅拌反应48小时后,反应物倾入水中,用二氯甲烷萃取,无水硫酸镁干燥有机相,过滤,旋干溶剂,用石油醚作为淋洗液经硅胶层析柱分离得到无色液体化合物1(13.18g,产率:71%)。
化合物1的核磁共振谱、质谱如下所示:
1H NMR(δ/ppm,CDCl3):6.84(m,4H),6.80-6.74(t,2H),6.70-6.62(d,2H),3.42(d,2H),1.91(s,1H),1.38-1.19(m,32H),0.84(t,6H).
GC-MS:m/z=464.
②化合物2的合成
在冰水浴下,POCl3(22mL,240mmol)在30分钟内逐滴加入DMF(23mL,260mmol)中,室温下搅拌30分钟,将化合物1(11.14g,24mmol)溶解在150mL 1,2-二氯乙烷中,然后缓慢滴加到反应液中,然后在90℃下加热反应48小时。反应液冷至室温后倾入大量水中,用饱和氢氧化钠溶液调节PH值至中性。反应液用二氯甲烷萃取,合并有机相,水洗数次,有机相用无水硫酸镁干燥,过滤,旋干溶剂。粗产物用石油醚/乙酸乙酯(10/1)为淋洗液经硅胶柱层析分离得黄色油状液体化合物2(6.97g,产率:59%)。
化合物2的核磁共振谱、质谱如下所示:
1H NMR(δ/ppm,CDCl3):9.86(s,1H),6.86(m,1H),6.80(t,1H),6.74(m,1H),6.61-7.58(d,2H),6.51(d,1H),6.33(d,1H),3.44(d,2H),1.93(s,1H),1.39-1.18(m,32H),0.86(t,6H).
GC-MS:m/z=492.
③化合物3的合成
氮气保护下,将2,7-二溴芴(1.30g,4.0mmol)与无水乙醇(60mL)加入150mL三口圆底烧瓶中,搅拌,再加入t-BuOK(0.90g,8.0mmol),升温至60℃继续搅拌一小时后,然后加入化合物2(3.05g,6.0mmol),反应12小时,停止反应,冷却至室温,反应物倾入水中,用二氯甲烷萃取,无水硫酸镁干燥有机相,过滤,旋干溶剂,粗产物用石油醚/二氯甲烷=10:1作为淋洗液经硅胶层析柱分离得到红色目标产物化合物3(2.07g,产率:65%)。
化合物3的核磁共振谱、质谱如下所示:
1H NMR(δ/ppm,CDCl3):8.02(d,1H),7.75(s,1H),7.46(t,2H),7.37(m,3H),6.99(d,1H),6.76-6.73(m,2H),6.61-6.59(m,2H),6.51-6.48(t,2H),3.34(d,2H),1.91(s,1H),1.41-1.17(m,32H),0.86(t,6H).
GC-MS:m/z=798.
④聚合物P1的合成
氮气保护下,将等摩尔量的化合物3和2,5-二(异辛基)-3,6-二(5-(三甲基锡基)呋喃)-2-吡咯并吡咯二酮(0.2mmol,购买于无锡赛乐光电材料科技有限公司)加入到20mL无水甲苯中,再加入Pd(PPh3)4(18mg),115℃下搅拌反应48小时后,冷却至室温,倒入200ml甲醇中沉析,过滤,粗产物经过甲醇、正己烷和三氯甲烷一次抽提,得到绿色固体P1(93mg,产率41%);其中聚合物P1中R基团如下所示:
Figure BDA0002745709800000081
聚合物P1的凝胶渗透色谱分析如下所示:
Mn=12,800,Mw=32,300,PDI=2.52.
实施例2 9-(N-(2-辛基十二烷基)吩噁嗪基亚甲基)-2,7-芴-2’,5’-二(正辛基)-3’,6’-二(呋喃基)-2’-吡咯并吡咯二酮(P2)的制备
化合物2的合成方法与实施例1中化合物2的合成方法相同,溴代烷烃采用溴代正辛烷,具体步骤如下:
①化合物1的合成
将吩噁嗪(7.32g,40mmol),氢氧化钠(16g,0.4mol)和二甲基亚砜(80mL)置于250mL的三口烧瓶中,搅拌30分钟后,溴代-2-辛基十二烷基(15.84g,44mmol)在30分钟内逐滴加入上面的反应液中。反应混合溶液在室温下搅拌反应48小时后,反应物倾入水中,用二氯甲烷萃取,无水硫酸镁干燥有机相,过滤,旋干溶剂,用石油醚作为淋洗液经硅胶层析柱分离得到无色液体化合物1(13.18g,产率:71%)。
化合物1的核磁共振谱、质谱如下所示:
1H NMR(δ/ppm,CDCl3):6.84(m,4H),6.80-6.74(t,2H),6.70-6.62(d,2H),3.42(d,2H),1.91(s,1H),1.38-1.19(m,32H),0.84(t,6H).
GC-MS:m/z=464.
②化合物2的合成
在冰水浴下,POCl3(22mL,240mmol)在30分钟内逐滴加入DMF(23mL,260mmol)中,室温下搅拌30分钟,将化合物1(11.14g,24mmol)溶解在150mL 1,2-二氯乙烷中,然后缓慢滴加到反应液中,然后在90℃下加热反应48小时。反应液冷至室温后倾入大量水中,用饱和氢氧化钠溶液调节PH值至中性。反应液用二氯甲烷萃取,合并有机相,水洗数次,有机相用无水硫酸镁干燥,过滤,旋干溶剂。粗产物用石油醚/乙酸乙酯(10/1)为淋洗液经硅胶柱层析分离得黄色油状液体化合物2(6.97g,产率:59%)。
化合物2的核磁共振谱、质谱如下所示:
1H NMR(δ/ppm,CDCl3):9.86(s,1H),6.86(m,1H),6.80(t,1H),6.74(m,1H),6.61-7.58(d,2H),6.51(d,1H),6.33(d,1H),3.44(d,2H),1.93(s,1H),1.39-1.18(m,32H),0.86(t,6H).
GC-MS:m/z=492.
③化合物3的合成
氮气保护下,将2,7-二溴芴(1.30g,4.0mmol)与无水乙醇(60mL)加入150mL三口圆底烧瓶中,搅拌,再加入t-BuOK(0.90g,8.0mmol),升温至60℃继续搅拌一小时后,然后加入化合物2(3.05g,6.0mmol),反应12小时,停止反应,冷却至室温,反应物倾入水中,用二氯甲烷萃取,无水硫酸镁干燥有机相,过滤,旋干溶剂,粗产物用石油醚/二氯甲烷=10:1作为淋洗液经硅胶层析柱分离得到红色目标产物化合物3(2.07g,产率:65%)。
化合物3的核磁共振谱、质谱如下所示:
1H NMR(δ/ppm,CDCl3):8.02(d,1H),7.75(s,1H),7.46(t,2H),7.37(m,3H),6.99(d,1H),6.76-6.73(m,2H),6.61-6.59(m,2H),6.51-6.48(t,2H),3.34(d,2H),1.91(s,1H),1.41-1.17(m,32H),0.86(t,6H).
GC-MS:m/z=798.
④聚合物P2的合成
氮气保护下,将等摩尔量的化合物3和2,5-二(异辛基)-3,6-二(5-(三甲基锡基)呋喃)-2-吡咯并吡咯二酮(0.2mmol,购买于无锡赛乐光电材料科技有限公司)加入到20mL无水甲苯中,再加入Pd(PPh3)4(18mg),115℃下搅拌反应48小时后,冷却至室温,倒入200ml甲醇中沉析,过滤,粗产物经过甲醇、正己烷和三氯甲烷一次抽提,得到绿色固体P2(68mg,产率30%);其中聚合物P2中R基团如下所示:
Figure BDA0002745709800000101
聚合物P2的凝胶渗透色谱分析如下所示:
Mn=15,300,Mw=36,100,PDI=2.36.
实施例3 9-(N-(2-辛基十二烷基)吩噁嗪基亚甲基)-2,7-芴-2’,5’-二(2-辛基十二烷基)-3’,6’-二(呋喃基)-2’-吡咯并吡咯二酮(P3)的制备
化合物2的合成方法与实施例1中化合物2的合成方法相同,溴代烷烃采用溴代2-辛基-十二烷,具体步骤如下:
①化合物1的合成
将吩噁嗪(7.32g,40mmol),氢氧化钠(16g,0.4mol)和二甲基亚砜(80mL)置于250mL的三口烧瓶中,搅拌30分钟后,溴代-2-辛基十二烷基(15.84g,44mmol)在30分钟内逐滴加入上面的反应液中。反应混合溶液在室温下搅拌反应48小时后,反应物倾入水中,用二氯甲烷萃取,无水硫酸镁干燥有机相,过滤,旋干溶剂,用石油醚作为淋洗液经硅胶层析柱分离得到无色液体化合物1(13.18g,产率:71%)。
化合物1的核磁共振谱、质谱如下所示:
1H NMR(δ/ppm,CDCl3):6.84(m,4H),6.80-6.74(t,2H),6.70-6.62(d,2H),3.42(d,2H),1.91(s,1H),1.38-1.19(m,32H),0.84(t,6H).
GC-MS:m/z=464.
②化合物2的合成
在冰水浴下,POCl3(22mL,240mmol)在30分钟内逐滴加入DMF(23mL,260mmol)中,室温下搅拌30分钟,将化合物1(11.14g,24mmol)溶解在150mL 1,2-二氯乙烷中,然后缓慢滴加到反应液中,然后在90℃下加热反应48小时。反应液冷至室温后倾入大量水中,用饱和氢氧化钠溶液调节PH值至中性。反应液用二氯甲烷萃取,合并有机相,水洗数次,有机相用无水硫酸镁干燥,过滤,旋干溶剂。粗产物用石油醚/乙酸乙酯(10/1)为淋洗液经硅胶柱层析分离得黄色油状液体化合物2(6.97g,产率:59%)。
化合物2的核磁共振谱、质谱如下所示:
1H NMR(δ/ppm,CDCl3):9.86(s,1H),6.86(m,1H),6.80(t,1H),6.74(m,1H),6.61-7.58(d,2H),6.51(d,1H),6.33(d,1H),3.44(d,2H),1.93(s,1H),1.39-1.18(m,32H),0.86(t,6H).
GC-MS:m/z=492.
③化合物3的合成
氮气保护下,将2,7-二溴芴(1.30g,4.0mmol)与无水乙醇(60mL)加入150mL三口圆底烧瓶中,搅拌,再加入t-BuOK(0.90g,8.0mmol),升温至60℃继续搅拌一小时后,然后加入化合物2(3.05g,6.0mmol),反应12小时,停止反应,冷却至室温,反应物倾入水中,用二氯甲烷萃取,无水硫酸镁干燥有机相,过滤,旋干溶剂,粗产物用石油醚/二氯甲烷=10:1作为淋洗液经硅胶层析柱分离得到红色目标产物化合物3(2.07g,产率:65%)。
化合物3的核磁共振谱、质谱如下所示:
1H NMR(δ/ppm,CDCl3):8.02(d,1H),7.75(s,1H),7.46(t,2H),7.37(m,3H),6.99(d,1H),6.76-6.73(m,2H),6.61-6.59(m,2H),6.51-6.48(t,2H),3.34(d,2H),1.91(s,1H),1.41-1.17(m,32H),0.86(t,6H).
GC-MS:m/z=798.
④聚合物P3的合成
氮气保护下,将等摩尔量的化合物3和2,5-二(异辛基)-3,6-二(5-(三甲基锡基)呋喃)-2-吡咯并吡咯二酮(0.2mmol,购买于无锡赛乐光电材料科技有限公司)加入到20mL无水甲苯中,再加入Pd(PPh3)4(18mg),115℃下搅拌反应48小时后,冷却至室温,倒入200ml甲醇中沉析,过滤,粗产物经过甲醇、正己烷和三氯甲烷一次抽提,得到绿色固体P3(144mg,产率49%);其中聚合物P3中R基团如下所示:
Figure BDA0002745709800000111
聚合物P3的凝胶渗透色谱分析如下所示:
Mn=19,400,Mw=67,000,PDI=3.45.
实施例4聚合物太阳能电池的制备
本发明以吩噁嗪基芴与吡咯并吡咯二酮类共聚物作为工作介质,制备太阳能电池的方法是:将上述吩噁嗪基芴与吡咯并吡咯二酮类共聚物材料与适量的有机小分子电子受体混合,加入适量的溶剂溶解,通过常规的旋涂在ITO(氧化铟锡)导电玻璃上制备出一层半透明的薄膜,然后通过真空蒸镀的方式在光伏活性层上制备金属电极。
具体步骤为:2.0mg的聚合物P1与4.0mg的SFDRCN混合,加入0.25mL氯苯溶解,通过旋涂方式在经PEDOT:PSS修饰过的导电玻璃上制备出一层约120nm厚的薄膜,然后通过真空蒸镀的方式用铝/氟化锂在光伏活性层上制备金属电极。其聚合物太阳能电池器件性能表现为:
短路电流=11.47mA/cm2;开路电压=0.83V;填充因子=62.0%;
模拟太阳光(A.M.1.5,100mW/cm2)下的能量转换效率=5.90%。
实施例5聚合物太阳能电池的制备
2.0mg的聚合物P2与4.0mg的SFDRCN混合,加入0.25mL氯苯溶解,通过旋涂方式在经PEDOT:PSS修饰过的导电玻璃上制备出一层约120nm厚的薄膜,然后通过真空蒸镀的方式用铝/氟化锂在光伏活性层上制备金属电极。其聚合物太阳能电池器件性能表现为:
短路电流=13.49mA/cm2;开路电压=0.84V;填充因子=60.0%;
模拟太阳光(A.M.1.5,100mW/cm2)下的能量转换效率=6.80%。
实施例6聚合物太阳能电池的制备
2.0mg的聚合物P3与4.0mg的SFDRCN混合,加入0.25mL氯苯溶解,通过旋涂方式在经PEDOT:PSS修饰过的导电玻璃上制备出一层约120nm厚的薄膜,然后通过真空蒸镀的方式用铝/氟化锂在光伏活性层上制备金属电极。其聚合物太阳能电池器件性能表现为:
短路电流=10.93mA/cm2;开路电压=0.80V;填充因子=48.0%;
模拟太阳光(A.M.1.5,100mW/cm2)下的能量转换效率=4.20%。
实施例7
以聚合物P1为例,对其进行吸收光谱分析、电化学性能分析、光伏性能分析。
①聚合物P1的光谱分析
聚合物P1在溶液状态下的吸收光谱如图1所示,在实施例7所制备的溶液状态下,聚合物P1在300~770nm范围内对光有明显吸收,光学帯隙为1.61eV,说明聚合物P1是窄帯隙光伏材料,可以吸收更多的太阳光,获得高的短路电流。较窄的能隙主要归因于吩噁嗪基芴电子给体单元引入到A-D型聚合物中,形成了分子内电荷转移态,从而降低带隙,达到更宽的吸光范围。这类二维共轭的DPP类聚合物光伏材料在太阳能电池的制备中有着广阔的应用前景。
②聚合物P1的电化学性能
在电化学中,循环伏安法通常被用来测定物质的起始氧化和还原电位,进而计算得到相应的HOMO和LUMO能级。图2是P1在0.1mol/L的Bu4NPF6/CH3CN溶液中测得的循环伏安曲线,从图中可以测得对应的氧化和还原电位分别是1.11V和-0.40V,根据公式
Figure BDA0002745709800000131
Figure BDA0002745709800000132
计算得到对应的HOMO和LUMO能级分别是-5.91eV和-4.40eV,电化学能隙为1.51eV。低的HOMO能级表明P1有良好的空气稳定性,非常适合制备长使用寿命的太阳能电池器件。
③聚合物P1的光伏性能分析
聚合物P1的光伏性能如图3所示,结果表明聚合物P1与SFDRCN共混比例为1:2时,具有最好的光伏性能,对应的短路电流=11.47mA/cm2;开路电压=0.83V;填充因子=62.0%;模拟太阳光(AM.1.5,100mW/cm2)下的能量转换效率=5.90%,参见表1。我们相信太阳能电池的转换效率可以通过器件条件的优化得到进一步提升。
表1聚合物P1的光伏性能结果
Figure BDA0002745709800000133
由实施例1-7可知,本发明合成的路线简单,成本低,且合成方法具有普适性,可以较好的推广应用到其他的芴类材料的合成;本发明的芴类聚合物光伏材料具有强给电子作用而产生共振能量传递,有望获得更宽的紫外-可见吸收光谱;本发明的芴类聚合物光伏材料具有较低的HOMO能级,对氧的稳定性高,有利于制备性能更加稳定的太阳能电池器件;本发明用芴类聚合物光伏材料为电子给体材料,应用于聚合物太阳能电池获得了较高的能量转换效率(PCE=6.8%),具有良好的应用前景。
综上所述,本发明合成了一种二维共轭芴有机电子给体单元,通过Stille偶联的方法,将芴给体单元通过碳-碳单键与另一个电子受体单元DPP相连接,得到芴类聚合物光伏材料。它们在常见的有机溶剂(如氯苯、二氯苯、甲苯等)中有良好的溶解性,可以用溶液方法制备高质量的薄膜。同时,这些聚合物光伏材料具有宽的可见光区吸收,合适的HOMO以及LUMO能级和相对较窄的带隙。以此类聚合物为电子给体、有机小分子为电子受体制备了有机太阳能电池,其最高能量转换效率可达到6.8%,具有良好的光电转换效率。
所属领域的普通技术人员应当理解:以上任何实施例的讨论仅为示例性的,并非旨在暗示本公开的范围(包括权利要求)被限于这些例子;在本发明的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,并存在如上所述的本发明的不同方面的许多其它变化,为了简明它们没有在细节中提供。因此,凡在本发明的精神和原则之内,所做的任何省略、修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种吩噁嗪基芴与吡咯并吡咯二酮类共聚物光伏材料,其特征是,结构式如下:
其中,R为烷基,n为10-30。
2.如权利要求1所述的吩噁嗪基芴与吡咯并吡咯二酮类共聚物光伏材料,其特征是,R为8~20个碳原子的直链或支链烷烃。
3.如权利要求2所述的吩噁嗪基芴与吡咯并吡咯二酮类共聚物光伏材料,其特征是,所述R选自以下基团中的一种:
4.一种如权利要求1-3任一项所述的吩噁嗪基芴与吡咯并吡咯二酮类共聚物光伏材料的制备方法,其特征是,包括如下步骤:
1)吩噁嗪与碱性试剂混合在有机溶剂中,搅拌,滴加溴代-2-辛基十二烷,反应,将混合物倒入水中,萃取,干燥,旋干溶剂,过滤,得到N-(2-辛基十二烷基)吩噁嗪;
2)在冰水浴下,将三氯氧磷滴加到有机溶剂中,搅拌,将N-(2-辛基十二烷基)吩噁嗪与1,2-二氯乙烷滴加到上述反应体系中,升温至80-100℃下反应,冷却,将混合物倒入水中,萃取,干燥,旋干溶剂,过硅胶柱,得到4-醛基-N-(2-辛基十二烷基)吩噁嗪;
3)将2,7-二溴芴加入到无水乙醇中,搅拌,然后加入叔丁醇钾,继续搅拌,升温至50-65℃,加入4-醛基-N-(2-辛基十二烷基)吩噁嗪,反应,将混合物倒入水中,萃取,干燥,旋干溶剂,过硅胶柱,得到9-(N-(2-辛基十二烷基)吩噁嗪基亚甲基)-2,7-二溴芴;
4)将2,5-二烷基-3,6-二(5-(三甲基锡基)呋喃)-2-吡咯并吡咯二酮与9-(N-(2-辛基十二烷基)吩噁嗪基亚甲基)-2,7-二溴芴加入到无水甲苯中,再加入四(三苯基膦)钯,100-115℃下反应,冷却,沉析,过滤,索氏提取,得到吩噁嗪基芴与吡咯并吡咯二酮类共聚物光伏材料。
5.如权利要求4所述的制备方法,其特征是,所述步骤1)中的有机溶剂为二甲基亚砜。
6.如权利要求4或5所述的制备方法,其特征是,步骤1)中所述吩噁嗪与溴代-2-辛基十二烷的摩尔比为1:1.0~1.2。
7.如权利要求4或5所述的制备方法,其特征是,步骤2)中所述N-(2-辛基十二烷基)吩噁嗪与三氯氧磷的摩尔比为1:10~15。
8.如权利要求4或5所述的制备方法,其特征是,步骤3)中所述2,7-二溴芴与4-醛基-N-(2-辛基十二烷基)吩噁嗪的摩尔比为1:1.2~1.5;所述步骤3)中反应的温度为60℃,时间为10-14h。
9.如权利要求4或5所述的制备方法,其特征是,步骤4)中所述9-(N-(2-辛基十二烷基)吩噁嗪基亚甲基)-2,7-二溴芴与2,5-二烷基-3,6-二(5-(三甲基锡基)呋喃)-2-吡咯并吡咯二酮的摩尔比为1:1;所述步骤4)中反应的温度为100℃,时间为48h。
10.一种如权利要求1-3任一项所述的吩噁嗪基芴与吡咯并吡咯二酮类共聚物光伏材料在太阳能电池中的应用。
CN202011165709.9A 2020-10-27 2020-10-27 一种吩噁嗪基芴与吡咯并吡咯二酮类共聚物光伏材料、制备方法和应用 Active CN112592462B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011165709.9A CN112592462B (zh) 2020-10-27 2020-10-27 一种吩噁嗪基芴与吡咯并吡咯二酮类共聚物光伏材料、制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011165709.9A CN112592462B (zh) 2020-10-27 2020-10-27 一种吩噁嗪基芴与吡咯并吡咯二酮类共聚物光伏材料、制备方法和应用

Publications (2)

Publication Number Publication Date
CN112592462A CN112592462A (zh) 2021-04-02
CN112592462B true CN112592462B (zh) 2023-04-18

Family

ID=75180429

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011165709.9A Active CN112592462B (zh) 2020-10-27 2020-10-27 一种吩噁嗪基芴与吡咯并吡咯二酮类共聚物光伏材料、制备方法和应用

Country Status (1)

Country Link
CN (1) CN112592462B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2754038A1 (en) * 2009-03-13 2010-09-16 Sun Chemical Corporation Colored fluids for electrowetting, electrofluidic, and electrophoretic technologies
JP2012119652A (ja) * 2010-03-17 2012-06-21 Fujifilm Corp 有機光電変換素子の製造方法、有機光電変換素子、撮像素子、撮像装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2754038A1 (en) * 2009-03-13 2010-09-16 Sun Chemical Corporation Colored fluids for electrowetting, electrofluidic, and electrophoretic technologies
JP2012119652A (ja) * 2010-03-17 2012-06-21 Fujifilm Corp 有機光電変換素子の製造方法、有機光電変換素子、撮像素子、撮像装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Zhen Yang等.Near-Infrared Semiconducting Polymer Brush and pH/GSHResponsive Polyoxometalate Cluster Hybrid Platform for Enhanced Tumor-Specific Phototheranostics.Angewandte Chemie.2018,第57卷(第47期),第14297 –14301页. *
黄飞等.光电高分子材料的研究进展.高分子学报.2019,第50卷(第10期),第988-1046页. *

Also Published As

Publication number Publication date
CN112592462A (zh) 2021-04-02

Similar Documents

Publication Publication Date Title
Balaji et al. Synthesis and photovoltaic properties of a furan-diketopyrrolopyrrole-fluorene terpolymer
CN110698498A (zh) 一种非对称稠环苯并三氮唑类受体及其制备方法和应用
CN103435782B (zh) 含9,9’-联亚芴基及其衍生物的有机半导体材料及其制备方法与应用
Tao et al. Wide bandgap copolymers with vertical benzodithiophene dicarboxylate for high-performance polymer solar cells with an efficiency up to 7.49%
Zhao et al. Isomers of dialkyl diketo-pyrrolo-pyrrole: Electron-deficient units for organic semiconductors
Tamilavan et al. Synthesis and photovoltaic properties of donor–acceptor polymers incorporating a structurally-novel pyrrole-based imide-functionalized electron acceptor moiety
CN106674491B (zh) 基于噻吩并异苯并吡喃不对称给电子单元的d-a型聚合物光伏材料及其应用
Ohshita et al. Synthesis of poly (dithienogermole-2, 6-diyl) s
Yuan et al. Correlation between structure and photovoltaic performance of a series of furan bridged donor–acceptor conjugated polymers
Sun et al. Improved bulk-heterojunction polymer solar cell performance through optimization of the linker groupin donor–acceptor conjugated polymer
JP5688164B2 (ja) 光起電重合体材料、その調製方法及び応用
US20120312374A1 (en) Conjugated fluorene polymer, preparing method thereof and solar cell device
Handoko et al. Effect of cyano substituent on photovoltaic properties of quinoxaline-based polymers
Liu et al. Solution processable low bandgap small molecule donors with naphthalene end-groups for organic solar cells
Shahid et al. Low-bandgap polymers with quinoid unit as π bridge for high-performance solar cells
CN110143976A (zh) 基于支化卟啉-苝二酰亚胺小分子受体的合成方法及应用
CN106700039B (zh) 氟代吡啶[3,4-b]吡嗪化合物及氟代吡啶[3,4-b]吡嗪基共聚物材料和应用
Zhu et al. Triisopropylsilylethynyl substituted benzodithiophene copolymers: synthesis, properties and photovoltaic characterization
Chan et al. A new series of random conjugated copolymers containing 3, 4-diphenyl-maleimide and thiophene units for organic photovoltaic cell applications
Li et al. Cyclopentadithiophene–naphthalenediimide polymers; synthesis, characterisation, and n-type semiconducting properties in field-effect transistors and photovoltaic devices
Liu et al. Synthesis and photovoltaic properties of copolymers based on benzo [1, 2-b: 4, 5-b′] dithiophene and thiazole with different conjugated side groups
CN112592462B (zh) 一种吩噁嗪基芴与吡咯并吡咯二酮类共聚物光伏材料、制备方法和应用
Wu et al. Synthesis and photovoltaic properties of an alternating polymer based fluorene and fluorine substituted quinoxaline derivatives
CN112592464B (zh) 一种二维共轭2-氯苯基芴类共聚物光伏材料、制备方法和应用
Wang et al. Alkoxyphenyl or alkylphenyl side-chained Thieno [2, 3-f] benzofuran polymer for efficient non-fullerene solar cells

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant