CN112588310A - 一种可见光响应的镍-磷化氮化碳光催化剂的制备方法 - Google Patents

一种可见光响应的镍-磷化氮化碳光催化剂的制备方法 Download PDF

Info

Publication number
CN112588310A
CN112588310A CN202011389834.8A CN202011389834A CN112588310A CN 112588310 A CN112588310 A CN 112588310A CN 202011389834 A CN202011389834 A CN 202011389834A CN 112588310 A CN112588310 A CN 112588310A
Authority
CN
China
Prior art keywords
carbon nitride
nickel
temperature
photocatalyst
visible light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011389834.8A
Other languages
English (en)
Inventor
朱相林
陈金洲
许晖
李华明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN202011389834.8A priority Critical patent/CN112588310A/zh
Publication of CN112588310A publication Critical patent/CN112588310A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/28Phosphorising
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/344Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明属于光催化材料的制备方法技术领域,公开了一种可见光响应的镍‑磷化氮化碳光催化剂的制备方法。该方法首先三聚氰胺高温共聚合的方案得到氮化碳,之后通过次亚磷酸钠与氮化碳混合煅烧的方案得到磷化的氮化碳材料,最后通过原位光沉积的方法原位修饰金属镍。镍‑磷化氮化碳光催化具有良好的可见光吸收以及不含贵金属的特点,提高了制氢活性并且降低了催化剂成本。

Description

一种可见光响应的镍-磷化氮化碳光催化剂的制备方法
技术领域
本发明属于光催化材料的制备方法技术领域,涉及一种可见光响应的镍-磷化氮化碳光催化剂的制备方法及其光催化制氢应用。
背景技术
石墨相氮化碳是一种一种非金属半导体材料,具有合适的能带位置,可以进行可见光催化反应,而且物理化学性质稳定,制备方法简单,可见光吸收的特点。因此,石墨相氮化碳被广泛的应用于光解水制氢、光催化二氧化碳还原及可污染物降解领域。然而,普通的氮化碳因其存在的一些缺点限制了其活性,例如光吸收范围不够宽、载流子复合率高、析氢活性位点少以及需要负载铂等贵金属助催化剂等。研究人员已经证明可以通过一些纳米设计的方法提高氮化碳的光催化性能,例如纳米形貌调控、元素掺杂、以及与其他半导体材料构筑异质结形成复合光催化材料等。针对氮化碳进行元素掺杂或修饰是一种改性氮化碳光催化活性的有效方案,主要包含,金属掺杂和非金属掺杂以及共掺杂等。对于普通氮化碳进行磷化改性,极大地拓展了氮化碳可见光吸收能力、提供了大量的路易斯碱活性位点、更低的价带位置和更低的光生电子空穴对复合率。目前氮化碳掺杂主要制备方法包括溶剂热法、固相烧结法等。针对特定的元素改性寻找一种简单高产方法来制备氮化碳是十分必要的。
非金属改性氮化碳是一种制备高活性氮化碳的有效方法,其具有以下特点:首先是非金属元素能够取代到氮化碳中的氮或碳原子,从而不会破坏氮化碳的共轭结构,并且掺入的非金属元素可以作为路易斯碱位点,能够为助催化剂的附着提供位点。而金属掺杂只能修饰在氮化碳边缘或者络合在三嗪环之间,这种掺杂元素不能进入晶格,具有位置不确定性,最终导致可能形成新的复合中心。
发明内容
本发明目的是研发一种可见光响应的镍-磷化氮化碳光催化剂的制备方法,并将该光催化材料用于光催化产氢应用。本发明采用的改进的固相-气相界面掺杂法,可以在反应气体分子的逐渐释放的过程中,通过氮化碳聚合的方式掺入到晶格中形成磷化氮化碳材料。新的氮化碳共轭面由氮、碳、磷组成,磷作为路易斯碱位点能够锚定路易斯酸Ni2+,最终原位光还原形成金属团簇,作为助催化剂促进产氢活性的提升。
本发明首先以三聚氰胺高温共聚合的方案得到普通氮化碳,之后通过次亚磷酸钠与普通氮化碳混合煅烧的方案得到磷化的氮化碳材料,最后通过原位光沉积的方法原位修饰金属镍。镍-磷化氮化碳光催化具有良好的可见光吸收以及不含贵金属的特点,提高了制氢活性并且降低了催化剂成本。
实现本发明目的的技术解决方案为:
一种可见光响应的镍-磷化氮化碳光催化剂的制备方法,包括如下步骤:
(1)制备氮化碳,备用;
(2)按比例将氮化碳和次亚磷酸钠研磨混合均匀,在氩气气氛中,程序升温至煅烧温度,并保温一段时间,然后自然降温后用去离子水清洗,最终真空干燥得到磷化氮化碳;
(3)将步骤(2)得到的磷化氮化碳和氯化镍加入到三乙醇胺溶液中,超声分散后,氙灯光照一段时间,最后分离沉淀,真空干燥,得到镍-磷化氮化碳光催化剂。
步骤(1)中,氮化碳的制备步骤为:将2克三聚氰胺至于坩埚中,以每分钟7℃的升温速度升温至530℃,并保温4小时,随后立即取出自然冷却降温,得到粉体研磨半小时得到氮化碳。
步骤(2)中,氮化碳和次亚磷酸钠的质量比为1:1-4;程序升温的速率为5℃/min。煅烧温度为400-500℃,保温2小时。
步骤(3)中,磷化氮化碳和三乙醇胺溶液用量比例为50mg:50mL;其中,三乙醇胺溶液的体积百分浓度为10%,超声分散的时间为半小时,氙灯光照的时间为1-5小时,真空干燥的温度为60℃。
步骤(3)中,镍的负载量为质量分数1%-10%。
将本发明制得的可见光响应的镍-磷化氮化碳光催化剂用于可见光分解水制氢的用途。
本发明与现有技术相比有着显著地优点:
磷化氮化碳相比于普通的氮化碳具有更优越的光吸收范围,磷元素取代了特定位置的碳原子进入了氮化碳共轭骨架,磷原子具有孤对电子,作为路易斯碱能够影响价带顶位置,并且能够与Ni2+通过路易斯酸碱络合锚定助催化。该制备方法简单,产物产率,操作简单,重复性好,适合规模化制备。
附图说明
图1为本发明实施例所制备的镍-磷化氮化碳光催化剂与普通氮化碳的X-射线衍射图谱。
图2为本发明实施例所制备的镍-磷化氮化碳光催化剂的扫描电镜图片。
图3为发明本实施例所制备的镍-磷化氮化碳光催化剂与普通氮化碳的紫外-可见漫反射吸收光谱对比图。
图4为本发明实施例所制备出的镍-磷化氮化碳光催化剂的价带x射线光电子能谱。
图5为本发明实施例所制备出的镍-磷化氮化碳光催化剂的活性图。
具体实施方式
下面结合说明书附图和具体实施例对本发明作进一步的阐述。
实施例1
本发明的镍磷化氮化碳光催化剂的制备方法,具体包括以下步骤:
(1)将2克三聚氰胺至于坩埚中,以每分钟7℃的升温速度升温至530℃,并保温4小时,随后立即取出自然冷却降温,得到粉体研磨半小时得到氮化碳;
(2)将1克氮化碳和0.5克次亚磷酸钠研磨混合均匀,在氩气煅烧反应中以每分钟5℃的升温速度升温至430℃,保温2小时,然后自然降温后用其离子水清洗,最终真空干燥得到磷化氮化碳;
(3)磷化氮化碳和氯化镍(镍原子的负载量为质量分数3%)加入到50毫升10%体积分数的三乙醇胺溶液中,的超声分散半小时后,氙灯光照2小时,最后6000-8000转/分钟离心5-10分钟分离沉淀,最后60℃真空干燥,得到镍-磷化氮化碳光催化剂。
图1为本实施例所制备的镍-磷化氮化碳光催化剂与普通氮化碳的X-射线衍射图谱。普通的氮化碳在13.1°的衍射峰为氮化碳的(100)晶面,在27.3°的强的衍射峰为氮化碳的(002)晶面,这分别是由于氮化碳平面结构上的重复单元和夹层叠加反射引起的。与普通的氮化碳相比镍-磷化氮化碳光催化剂的衍射峰没有发生明显的变化,说明制备的镍-磷化氮化碳光催化剂并没有发生组分和成分的变化。
图2为本实施例所制备的镍-磷化氮化碳光催化剂的扫描电镜图片,由图2可知所得到的镍-磷化氮化碳光催化剂为无规则的块状结构。
图3为本实施例所制备的镍-磷化氮化碳光催化剂与普通氮化碳的紫外-可见漫反射吸收光谱对比图,从图3可知镍-磷化氮化碳光催化剂相比于普通氮化碳拥有更好的可见光吸收,这种更好的光吸收能力有利于镍-磷化氮化碳光催化剂的光催化产氢性能。
图4为本实施例所制备出的镍-磷化氮化碳光催化剂的价带x射线光电子能谱。普通氮化碳价带EVB的值被测定大约是1.87eV,而镍-磷化氮化碳光催化剂催化剂的EVB为2.10eV。镍-磷化氮化碳光催化剂催化剂的价带位置更正,表明镍-磷化氮化碳光催化剂催化剂拥有更强的氧化能力,这有利于催化反应的进行。
图5为本实施例所制备出的镍-磷化氮化碳光催化剂的活性图。如图5所示,20毫克镍-磷化氮化碳光催化剂在可见光照射下2.5小时产氢量为13.6微摩尔,而负载1%铂的普通氮化碳产氢量为2.1微摩尔,活性提高了越3.4倍。这种优越的活性充分体现了本材料设计的先进性。
实施例2
本发明的镍磷化氮化碳光催化剂的制备方法,具体包括以下步骤:
(1)将2克三聚氰胺至于坩埚中,以每分钟10℃的升温速度升温至550℃,并保温4小时,随后立即取出自然冷却降温,得到粉体研磨半小时得到普通氮化碳;
(2)1克普通氮化碳和0.5克次亚磷酸钠研磨混合均匀,在氩气煅烧反应中以每分钟5℃的升温速度升温至450℃,保温2小时,然后自然降温后用其离子水清洗,最终真空干燥得到磷化氮化碳;
(3)磷化氮化碳和氯化镍(镍原子的负载量为质量分数5%)加入到50毫升10%体积分数的三乙醇胺溶液中,超声分散半小时后,氙灯光照2小时,最后6000-8000转/分钟离心5-10分钟分离沉淀,最后60℃真空干燥得到镍-磷化氮化碳光催化剂。
实施例3
本发明的镍磷化氮化碳光催化剂的制备方法,具体包括以下步骤:
(1)将2克三聚氰胺至于坩埚中,以每分钟10℃的升温速度升温至550℃,并保温4小时,随后立即取出自然冷却降温,得到粉体研磨半小时得到普通氮化碳;
(2)1克普通氮化碳和1克次亚磷酸钠研磨混合均匀,在氩气煅烧反应中以每分钟5℃的升温速度升温至430℃,保温2小时,然后自然降温后用其离子水清洗,最终真空干燥得到磷化氮化碳;
(3)磷化氮化碳和氯化镍(镍原子的负载量为质量分数1%)加入到50毫升10%体积分数的三乙醇胺溶液中,超声分散半小时后,氙灯光照2小时,最后6000-8000转/分钟离心5-10分钟分离沉淀,最后60℃真空干燥得到镍-磷化氮化碳光催化剂。

Claims (6)

1.一种可见光响应的镍-磷化氮化碳光催化剂的制备方法,其特征在于,包括如下步骤:
(1)制备氮化碳,备用;
(2)按比例将氮化碳和次亚磷酸钠研磨混合均匀,在氩气气氛中,程序升温至煅烧温度,并保温一段时间,然后自然降温后用去离子水清洗,最终真空干燥得到磷化氮化碳;
(3)将步骤(2)得到的磷化氮化碳和氯化镍加入到三乙醇胺溶液中,超声分散后,氙灯光照一段时间,最后分离沉淀,真空干燥,得到镍-磷化氮化碳光催化剂。
2.如权利要求1所述的制备方法,其特征在于,步骤(1)中,氮化碳的制备步骤为:将2克三聚氰胺至于坩埚中,以每分钟7℃的升温速度升温至530℃,并保温4小时,随后立即取出自然冷却降温,得到粉体研磨半小时得到氮化碳。
3.如权利要求1所述的制备方法,其特征在于,步骤(2)中,氮化碳和次亚磷酸钠的质量比为1:1-4;程序升温的速率为5℃/min,煅烧温度为400-500℃,保温2小时。
4.如权利要求1所述的制备方法,其特征在于,步骤(3)中,磷化氮化碳和三乙醇胺溶液用量比例为50mg:50mL;其中,三乙醇胺溶液的体积百分浓度为10%,超声分散的时间为半小时,氙灯光照的时间为1-5小时,真空干燥的温度为60℃。
5.如权利要求1所述的制备方法,其特征在于,步骤(3)中,镍的负载量为质量分数1%-10%。
6.将权利要求1~5任一项所述制备方法制得的可见光响应的镍-磷化氮化碳光催化剂用于可见光分解水制氢的用途。
CN202011389834.8A 2020-12-02 2020-12-02 一种可见光响应的镍-磷化氮化碳光催化剂的制备方法 Pending CN112588310A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011389834.8A CN112588310A (zh) 2020-12-02 2020-12-02 一种可见光响应的镍-磷化氮化碳光催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011389834.8A CN112588310A (zh) 2020-12-02 2020-12-02 一种可见光响应的镍-磷化氮化碳光催化剂的制备方法

Publications (1)

Publication Number Publication Date
CN112588310A true CN112588310A (zh) 2021-04-02

Family

ID=75187679

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011389834.8A Pending CN112588310A (zh) 2020-12-02 2020-12-02 一种可见光响应的镍-磷化氮化碳光催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN112588310A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115283002A (zh) * 2022-08-25 2022-11-04 西安交通大学 氮化碳-磷化镍-结晶红磷复合光催化剂制备方法及应用
WO2024036756A1 (zh) * 2022-08-19 2024-02-22 台州学院 多功能磷镍掺杂石墨状氮化碳纳米片、其制备方法及abs材料

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105964288A (zh) * 2016-06-12 2016-09-28 常州大学 一种介孔氮化碳负载纳米磷化镍的制备方法
CN108906105A (zh) * 2018-06-28 2018-11-30 湘潭大学 一种金属单原子/磷掺杂氮化碳光催化剂的制备方法
CN109746017A (zh) * 2018-12-27 2019-05-14 西安交通大学 一种p掺杂溶剂热石墨相氮化碳光催化剂的制备方法
CN110449176A (zh) * 2019-08-16 2019-11-15 江南大学 一种非贵金属单原子催化剂的制备方法及应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105964288A (zh) * 2016-06-12 2016-09-28 常州大学 一种介孔氮化碳负载纳米磷化镍的制备方法
CN108906105A (zh) * 2018-06-28 2018-11-30 湘潭大学 一种金属单原子/磷掺杂氮化碳光催化剂的制备方法
CN109746017A (zh) * 2018-12-27 2019-05-14 西安交通大学 一种p掺杂溶剂热石墨相氮化碳光催化剂的制备方法
CN110449176A (zh) * 2019-08-16 2019-11-15 江南大学 一种非贵金属单原子催化剂的制备方法及应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MANH-HIEP VU ET AL.: ""Chemically Bonded Ni Cocatalyst onto the S Doped g-C3N4 Nanosheets and Their Synergistic Enhancement in H2 Production under Sunlight Irradiation"", 《ACS SUSTAINABLE CHEMISTRY & ENGINEERING》 *
QIACHUN LIN ET AL.: ""Controlled preparation of P-doped g-C3N4 nanosheets for efficient photocatalytic hydrogen production"", 《CHINESE JOURNAL OF CHEMICAL ENGINEERING》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024036756A1 (zh) * 2022-08-19 2024-02-22 台州学院 多功能磷镍掺杂石墨状氮化碳纳米片、其制备方法及abs材料
CN115283002A (zh) * 2022-08-25 2022-11-04 西安交通大学 氮化碳-磷化镍-结晶红磷复合光催化剂制备方法及应用

Similar Documents

Publication Publication Date Title
CN110449176B (zh) 一种非贵金属单原子催化剂的制备方法及应用
Han et al. Metallic ruthenium-based nanomaterials for electrocatalytic and photocatalytic hydrogen evolution
CN107252700B (zh) 一种催化中心均匀分布的多金属磷化物纳米管催化剂及低温制备方法
CN109772355B (zh) 非晶羟基氧化铁/矾酸铋复合光催化材料的制备方法
CN109420514A (zh) 一种镍单活性位点石墨相氮化碳基光催化材料及其制备方法和应用
CN108906105A (zh) 一种金属单原子/磷掺杂氮化碳光催化剂的制备方法
CN110327962B (zh) 镍钴双金属氧化物@氮氧共掺杂碳材料/CdS光催化材料、制备方法及其应用
CN112808288A (zh) 一种氮磷或氮磷硫共掺杂碳负载金属单原子的催化剂及其微波辅助制备方法
CN112588310A (zh) 一种可见光响应的镍-磷化氮化碳光催化剂的制备方法
CN113042090B (zh) 一种具有电荷传递链的非金属光催化剂及其制备方法和应用
CN112705207A (zh) 一种可调控金属单原子掺杂多孔碳的制备方法及其在微波催化中的应用
CN113549935B (zh) 杂原子掺杂过渡金属单原子催化剂及其制备方法与应用
CN110512231B (zh) 一种镍基复合纳米颗粒及其制备方法和应用
CN107308967B (zh) 一种光催化分解甲酸制氢助催化剂、光催化体系及分解甲酸制氢的方法
CN115007186B (zh) 一种氮化碳基位点特异的双单原子催化剂、制备及其应用
CN114588925A (zh) 一种无贵金属负载的磷化镍/氮化碳可见光催化剂及其制备方法
CN111790431A (zh) 一种以Al2O3修饰的g-C3N4光催化材料的制备方法
CN108823598B (zh) 一种Ag修饰多孔结构Cu3P/泡沫铜复合电极及其制备方法
Miao et al. Polymeric carbon nitride-based single atom photocatalysts for CO2 reduction to C1 products
CN111672527B (zh) 一种磷化钼催化剂及其制备方法
CN109267095B (zh) 一种新型磷化镍催化剂及其制备方法
CN114797940B (zh) 一种具有界面协同相互作用的mxp/p-pcn复合催化剂及其制备方法和应用
CN110433852A (zh) 一种石墨相氮化碳负载原子级双金属催化剂及其制备方法与应用
CN113277514A (zh) 一种过渡金属碳化物Mo2C材料的制备方法
CN110947408A (zh) 一种铁单原子催化剂及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination