WO2024036756A1 - 多功能磷镍掺杂石墨状氮化碳纳米片、其制备方法及abs材料 - Google Patents

多功能磷镍掺杂石墨状氮化碳纳米片、其制备方法及abs材料 Download PDF

Info

Publication number
WO2024036756A1
WO2024036756A1 PCT/CN2022/128470 CN2022128470W WO2024036756A1 WO 2024036756 A1 WO2024036756 A1 WO 2024036756A1 CN 2022128470 W CN2022128470 W CN 2022128470W WO 2024036756 A1 WO2024036756 A1 WO 2024036756A1
Authority
WO
WIPO (PCT)
Prior art keywords
abs
nanosheets
phosphorus
nickel
carbon nitride
Prior art date
Application number
PCT/CN2022/128470
Other languages
English (en)
French (fr)
Inventor
黄国波
马丽娜
秦子豪
任佳豪
王天乐
肖圣威
Original Assignee
台州学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台州学院 filed Critical 台州学院
Publication of WO2024036756A1 publication Critical patent/WO2024036756A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation

Definitions

  • the invention belongs to the technical field of flame retardant materials and relates to a multifunctional phosphorus-nickel-doped graphite carbon nitride nanosheet, its preparation method and ABS material.
  • ABS Acrylonitrile-butadiene-styrene copolymer
  • ABS is widely used in electronics, automobiles, aviation and other fields because of its light weight, good thermal stability, high mechanical properties and excellent chemical stability.
  • ABS is flammable and releases a large amount of heat and smoke during the combustion process. A lot of work has been done on the development of flame retardant ABS.
  • halogen-containing compounds have high flame retardant efficiency and are widely used in the preparation of flame retardant polymer materials.
  • some halogenated flame retardants have been banned due to their potential harm to the environment and humans, resulting in various halogen-free alternatives, such as phosphorus (P), nitrogen (N) and metal compounds that have come to the fore.
  • P phosphorus
  • N nitrogen
  • these common flame retardants often impart flame retardancy to polymers at the expense of mechanical properties.
  • nanomaterials with flame retardant and reinforcing effects have been developed in recent years (such as graphene, clay, boron nitride, carbon nanotubes, etc.).
  • most reported flame-retardant ABS composite materials have poor smoke suppression properties and low thermal stability. Therefore, it is particularly urgent to develop multifunctional nano-additives to improve the mechanical properties, thermal stability, flame retardancy and smoke suppression of ABS.
  • Graphite carbon nitride (gC 3 N 4 ), as a two-dimensional (2D) nanosheet, has shown promise in enhancing the flame retardancy of polymer materials due to its high thermal stability, excellent chemical stability and excellent barrier effect. out huge potential. Similar to other nanomaterials, gC3N4 needs to be doped with flame retardants to improve its flame retardant efficiency and interfacial interaction with the polymer matrix.
  • the object of the present invention is to provide a multifunctional phosphorus-nickel-doped graphite carbon nitride (Ni-PC 3 N 4 ) nanosheet, its preparation method and ABS material in view of the shortcomings of the existing technology.
  • the nanosheet can simultaneously Improve the mechanical properties, thermal stability, flame retardancy and smoke suppression properties of ABS.
  • a method for preparing multifunctional phosphorus-nickel-doped graphite carbon nitride nanosheets including the following steps:
  • step 1) the calcination is heated to 420°C to 450°C at a heating rate of 5°C/min, and maintained at this temperature for 2 to 8 hours, and then heated to 510°C to 540°C, and then Keep warm for 3 to 6 hours to complete the reaction.
  • step 2 the centrifugation described in step 2) is at a speed of 8000 rpm and a duration of 3 minutes.
  • the dosage ratio of toluene, gC 3 N 4 nanosheets, phosphorus oxychloride and triethylamine described in step 3) is 100ml:3g:0.5g:3g.
  • the usage ratio of PC 3 N 4 and nickel nitrate in step 4) is 100:3-15.
  • drying is: drying at 60°C for 24 hours.
  • ABS nanocomposite material the raw material of which contains the multifunctional phosphorus-nickel-doped graphite carbon nitride nanosheets as mentioned above.
  • the proportion of Ni-PC 3 N 4 nanosheets in the material is 0.1wt% to 15wt%.
  • the multifunctional P/Ni-modified gC 3 N 4 nanosheets provided by the invention can be added to ABS materials to simultaneously improve the thermal stability, mechanical properties, flame retardancy and smoke suppression properties of polymer materials.
  • composite materials The uniformly dispersed Ni-PC 3 N 4 in combination with the physical barrier effect of gC 3 N 4 nanosheets and the catalytic carbonization effect of phosphorus and nickel elements can effectively improve the heat resistance, carbonization ability and Mechanical strength.
  • the TTI of ABS/Ni-P-CN2 composite with 2.0wt% Ni-PC 3 N 4 increased by 12s, PHRR and PSPR decreased by 32.4% and 33.8% respectively, and Ni-PC 3 N
  • the introduction of 4 also increased the tensile strength of the material by 24.3% and the initial degradation temperature by 15°C.
  • the invention can produce high-performance polymer composite materials and has broad industrial application prospects.
  • Figure 1 is the FT-IR (a) and XPS (b) spectra of bulk gC 3 N 4 , gC 3 N 4 nanosheets, PC 3 N 4 and Ni-PC 3 N 4 in the present invention.
  • Ni-PC 3 N High-resolution C1s( c ), N1s(d), O1s(e), P2p(f) and Ni2p(g) XPS spectra of 4, TEM micrograph of Ni-PC 3 N 4 (h), and STEM- HAADF image and corresponding element map of C, N, O, P, Ni in selected areas of Ni-PC 3 N 4 .
  • Figure 2 is a TEM image of ABS/CN2 (a, b) and ABS/Ni-P-CN2 (c, d) composite materials in the present invention.
  • Figure 3 is the XRD pattern of ABS and the ABS composite material of the present invention.
  • Figure 4 is the stress-strain curve (a) and tensile performance parameters (b) of ABS and ABS composite materials in the present invention.
  • Figure 5 is the TGA (a) and DTG (b) curves of ABS and the ABS composite material of the present invention under N2 conditions.
  • Figure 6 shows the heat release rate (a) and smoke production rate (b) curves of ABS and ABS composite materials in the present invention when the thermal irradiation power is 35kW/ m2 , as well as the heat release (c) and smoke production rate (d) ).
  • Figure 7 is the digital photos and scanning electron microscope photos of the carbon residue after the cone calorimetry test: ABS (a), ABS/CN2 (b), ABS/P-CN2 (c) and ABS/Ni-P-CN2 (d) .
  • Figure 8 is the infrared spectrum of ABS and ABS/CN2, ABS/P-CN2 and ABS/Ni-P-CN2 carbon residues in the present invention.
  • Urea, phosphorus oxychloride and sulfuric acid used in the following examples were provided by Shanghai Chemical Reagent Co., Ltd. (Shanghai, China).
  • Nickel nitrate hexahydrate (Ni(NO 3 ) 3 ⁇ 6H 2 O) was purchased from Shanghai Aladdin Biochemical Technology Co., Ltd. (Shanghai, China).
  • ABS resin (model: DG-417) was provided by Tianjin Dagu Chemical Co., Ltd. (Tianjin, China). Unless otherwise stated, all reagents are commercially available and used as received.
  • Ni-PC 3 N 4 nanosheets including:
  • Step One Fabrication of Bulk gC 3 N 4
  • Step 2 Exfoliation of gC 3 N 4 nanosheets
  • Step 3 Preparation of phosphorus-grafted C 3 N 4 (PC 3 N 4 ) nanosheets
  • Step 4 Preparation of Ni/P-doped C 3 N 4 (Ni-PC 3 N 4 ) nanosheets
  • the steps in this example only include the first step and the second step in Example 1, and gC 3 N 4 nanosheets are obtained.
  • the steps in this example only include the first step, the second step, and the third step in Example 1, and what is obtained is PC 3 N 4 nanosheets.
  • Figure 1a shows the FT-IR spectra of bulk gC 3 N 4 , gC 3 N 4 nanosheets, PC 3 N 4 and Ni-PC 3 N 4 .
  • Bulk gC 3 N 4 and gC 3 N 4 nanosheets show characteristic absorption peaks at 3200 and 810 cm -1 , which belong to NH 2 and triazine rings.
  • Figure 1b shows the XPS full scan spectra of bulk gC 3 N 4 , gC 3 N 4 nanosheets, PC 3 N 4 and Ni-PC 3 N 4 .
  • Bulk gC 3 N 4 consists of the elements carbon (43.51 wt%), nitrogen (52.07 wt%) and oxygen (4.42 wt%), the presence of oxygen being due to surface oxidation in air.
  • the oxygen content of gC 3 N 4 nanosheets increases due to acidification. It is worth noting that carbon, nitrogen, oxygen, phosphorus and nickel can be found in the XPS spectrum of Ni- PC3N4 .
  • the high-resolution XPS spectra of C1s, N1s, O1s, P2p and Ni2p of Ni-PC 3 N 4 are shown in Figure 1c-1g.
  • the O1s spectrum shows a COC/C-OH peak at 531.92eV.
  • the peak of PO appears at 132.83eV
  • the peaks of Ni 2p 3/2 and Ni 2p 1/2 are concentrated at 856.44 and 872.11eV.
  • Table 1 The quantitative results of elements detected by XPS spectrum are shown in Table 1. These results indicate the successful preparation of Ni-PC 3 N 4 .
  • Figures 1h and 1i show TEM and STEM -HAADF images of Ni- PC3N4 , as well as the corresponding elemental maps of selected areas.
  • the lamellar gC 3 N 4 can be clearly observed in the TEM micrograph of Ni-PC 3 N 4 , and P and Ni atoms are evenly dispersed on the lamella surface.
  • Nanocomposites containing 0.2 and 2.0 wt% gC 3 N 4 , PC 3 N 4 and Ni-PC 3 N 4 are represented as ABS/CN0.2, ABS/CN2, ABS/P-CN0.2, ABS/P respectively. -CN2, ABS/Ni-P-CN0.2 and ABS/Ni-P-CN2.
  • FIG 2 shows the TEM images of ABS/CN2 and ABS/Ni-P-CN2 composites. Without surface functionalization, gC3N4 nanosheets tend to agglomerate in the ABS matrix, resulting in poor dispersion (see Figures 2a and 2b) . In contrast, Ni-PC 3 N 4 is evenly distributed in ABS, and no large agglomerates are seen (see Figure 2c). This is due to Ni/P doping changing the functional groups and molecular polarity of the C 3 N 4 surface. , which is more conducive to the dispersion of Ni-PC 3 N 4 in the ABS matrix. As shown in Figure 2d, most of the Ni-PC 3 N 4 nanosheets were exfoliated into gray or black lines in the matrix.
  • a T i and b T max refer to the temperature at which 5 wt% loss and maximum weight loss occur respectively.
  • the initial degradation temperature (T i ) and maximum mass loss temperature (T max ) of original ABS are 378°C and 417°C, respectively.
  • the introduction of functionalized gC 3 N 4 leads to an increase in Ti and T max of ABS composites.
  • the Ti and T max of ABS/P-CN2 increased by 10°C
  • the Ti and T max of ABS/Ni-P-CN2 increased by 15°C.
  • the increase in T i and T max is mainly due to the physical barrier effect of gC 3 N 4 nanosheets on the thermal decomposition of ABS.
  • the T i and T max of ABS/Ni-P-CN are both higher than those of ABS/CN and ABS/P-CN because Ni-PC 3 N 4 has better dispersion in the ABS matrix.
  • the residual carbon content of ABS at 600°C is only 1.47wt%.
  • the residual carbon content of ABS/Ni-P-CN2 increases to 5.18wt% at 600°C, which is 2.5 times that of ABS.
  • Ni-PC 3 N 4 promotes the carbonization of ABS better than gC 3 N 4 and PC 3 N 4 , and the ABS/Ni-P-CN composite material has a higher carbon residual rate. It can be seen that adding Ni-PC 3 N 4 can simultaneously improve the thermal stability and char-forming ability of ABS.
  • the cone calorimeter was used to evaluate the fire safety of ABS and its composite materials under 35kW/ m2 thermal irradiation power, and the results are shown in Figure 6 and Table 3.
  • TTI ignition time
  • PHRR peak heat release rate
  • THR total heat release
  • AMLR average mass loss rate
  • PSPR peak smoke release rate
  • TSP total smoke release
  • the TTI of pure ABS is 37s, indicating that it burns easily in a fire.
  • the addition of gC 3 N 4 and its derivatives improves the TTI of ABS composites. It can be seen that the TTI values of ABS/Ni-P-CN0.2 and ABS/Ni-P-CN2 increase to 47 and 49 seconds respectively.
  • the increase in TTI is mainly due to the physical barrier effect of gC 3 N 4 nanosheets.
  • the PHRR of pure ABS is as high as 752kW/m 2
  • the PHRR of ABS/Ni-P-CN0.2 and ABS/Ni-P-CN2 is reduced to 620 and 508kW/m 2 , relative to ABS decreased by 17.6% and 32.4% respectively (see Figure 6c).
  • the THR values of ABS/Ni-P-CN0.2 and ABS/Ni-P-CN2 are 7.6% and 9.5% lower than ABS, respectively.
  • Ni-PC 3 N 4 has a better inhibitory effect on ABS heat release than gC 3 N 4 and PC 3 N 4 .
  • AMLR is usually used to reflect the overall fire intensity, as shown in Table 3.
  • the introduction of functional gC3N4 reduces the AMLR of ABS composites.
  • the AMLR of ABS/Ni-P-CN2 is 25.3% lower than that of ABS.
  • Ni-PC 3 N 4 significantly improves the flame retardant properties of ABS.
  • Thick smoke is one of the key factors leading to death in fires. Therefore, the impact of gC 3 N 4 and its derivatives on ABS matrix smoke generation was also studied in detail in the present invention.
  • the results are shown in Figures 6b and 6d and Table 3.
  • the PSPR and TSP of pure ABS are as high as 0.296m 2 /s and 44.2m 2 (see Table 3).
  • the introduction of functionalized gC 3 N 4 significantly reduces the smoke emission of ABS.
  • the PSPR and TSP of ABS/Ni-P-CN2 were reduced by 33.8% and 35.1%, respectively.
  • Ni-PC 3 N 4 exhibits better smoke suppression effect than gC 3 N 4 and PC 3 N 4 due to P/Ni co-doping (see Figure 6d). Therefore, Ni-PC 3 N 4 also acts as a smoke suppressant during the combustion process.
  • Ni-PC 3 N 4 simultaneously improves the flame resistance, flame retardancy and smoke suppression properties of ABS.
  • the present invention also studies the morphology and composition of the carbon residue obtained from the cone calorimetry test to reveal the effect of functionalized gC 3 N 4 on the carbon residue formation of the ABS matrix.
  • Figure 7 shows the digital photos and SEM images of the carbon residues of ABS, ABS/CN2, ABS/P-CN2 and ABS/Ni-P-CN2, and the EDX data are listed in Table 4.
  • the original ABS was almost burned out, leaving a small amount of brittle and broken carbon residue (see Figure 7a).
  • there are many microcracks and holes on the surface of ABS carbon residue as shown in the SEM image in Figure 7a.
  • Table 4 lists the EDX data of carbon residues of ABS and its composite materials.
  • the carbon and oxygen contents of pure ABS carbon residue are 68.86% and 31.14% respectively.
  • the C content increases to 71.64 wt% and the N content reaches 2.17 wt%, indicating that gC 3 N 4 mainly plays a role in the condensed phase to delay the decomposition of the ABS matrix.
  • PC 3 N 4 replaced gC 3 N 4
  • the carbon content of the carbon further increased, indicating the catalytic role of P in carbon formation.
  • the ABS/Ni-P-CN2 residue has the highest carbon content, reaching 77.19wt%.
  • FIG. 8 shows the FT-IR spectra of ABS, ABS/CN2, ABS/P-CN2 and ABS/Ni-P-CN2 carbon residues.
  • the present invention has produced an ABS composite material with excellent flame resistance and smoke suppression properties.
  • gC 3 N 4 By co-doping gC 3 N 4 with phosphorus and nitrogen, its dispersion in ABS can be effectively improved. property, and effectively improves the heat resistance, carbonization ability and mechanical strength of the final ABS composite material through the physical barrier effect of gC 3 N 4 nanosheets and the catalytic carbonization effect of phosphorus and nickel elements, which is conducive to the promotion of its industrial application.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Ceramic Products (AREA)

Abstract

本发明公开了一种多功能磷镍掺杂石墨状氮化碳(Ni-P-C3N4)纳米片、其制备方法及ABS材料,所述Ni-P-C3N4纳米片通过采用磷镍共掺杂能够有效改善其在ABS材料中的分散性,将其添加入ABS材料中可以同时提高聚合物材料的热稳定性、机械性能、阻燃性和抑烟性,在复合材料中均匀分散的Ni-P-C3N4结合g-C3N4纳米片的物理阻隔作用和磷、镍元素的催化成炭作用,在低添加量下就能够有效提高ABS的耐热性、碳化能力和机械强度。本发明制得的高性能的ABS聚合物复合材料,具有广泛的工业应用前景。

Description

多功能磷镍掺杂石墨状氮化碳纳米片、其制备方法及ABS材料 技术领域
本发明属于阻燃材料技术领域,涉及一种多功能磷镍掺杂石墨状氮化碳纳米片、其制备方法及ABS材料。
背景技术
丙烯腈-丁二烯-苯乙烯(ABS)共聚物因其质轻、有良好的热稳定性、机械性能高和优异的化学稳定性而广泛应用于电子、汽车、航空等领域。然而,ABS易燃,在燃烧过程中会释放大量的热量和烟雾,人们对ABS的阻燃开发进行了大量工作。
引入阻燃剂是制备阻燃聚合物有效而简单的方法。含卤化合物具有很高的阻燃效率,被广泛应用于阻燃高分子材料的制备。近年来,一些卤代阻燃剂因其对环境和人类具有潜在危害而被禁用,从而产生了各种无卤替代品,如含磷(P)、含氮(N)和金属化合物等脱颖而出。然而,这些常见的阻燃剂通常以牺牲机械性能为代价来赋予聚合物阻燃性。为了避免这一缺陷,近年来开发了许多具有阻燃和增强效果的纳米材料(如石墨烯、粘土、氮化硼和碳纳米管等)。但多数报道的阻燃ABS复合材料的抑烟性差,热稳定性低。因此,开发多功能纳米添加剂来提高ABS的力学性能、热稳定性、阻燃性和抑烟性显得尤为迫切。
石墨状氮化碳(g-C 3N 4)作为二维(2D)纳米片,由于其高的热稳定性、卓越的化学稳定性和优异的阻隔效果,在增强聚合物材料的阻燃性方面显示出巨大的潜力。与其他纳米材料类似,g-C 3N 4需要掺杂阻燃剂,以提高其阻燃效率和与聚合物基体的界面相互作用。如已报道的磷酸掺杂的g-C 3N 4/聚苯胺(g-C 3N 4/PANI@PA)杂化材料的制备及其在膨胀型阻燃环氧涂料中的应用、一种用于环氧树脂(EP)的植酸锌接枝g-C 3N 4(g-C 3N 4/PAZn)阻燃剂等,尽管取得了一些令人鼓舞的进展,但是g-C 3N 4的阻燃效率需要进一步提高,并且基于g-C 3N 4阻燃ABS的性能还不能很好的满足需求。
发明内容
本发明的目的在于针对现有技术的不足,提供一种多功能磷镍掺杂石墨状氮化碳(Ni-P-C 3N 4)纳米片、其制备方法及ABS材料,所述纳米片可同时提高ABS的力学性能、热稳定性、阻燃性和抑烟性。
本发明采用的技术方案如下:
一种多功能磷镍掺杂石墨状氮化碳纳米片的制备方法,包括如下步骤:
1)将尿素放于带盖坩埚中并放置在马弗炉中煅烧,冷却至室温后,通过研磨获得块状g-C 3N 4粉末;
2)将块状g-C 3N 4粉末在质量浓度25%硫酸溶液中搅拌至少48小时,形成悬浮液,离心弃去上清液,再加入蒸馏水并再次离心除去上清液,重复加蒸馏水及离心直到上清液变成中性,最后将固体产物干燥、研磨得到g-C 3N 4纳米片;
3)将甲苯和g-C 3N 4纳米片放入三颈圆底烧瓶中,并超声处理至少10分钟,加入三氯氧磷和三乙胺,在室温下搅拌至少30分钟后将混合物加热至60℃,并搅拌3小时,过滤获得粗产物,并用乙醇洗涤数次,干燥,得到磷接枝C 3N 4即P-C 3N 4纳米片;
4)将P-C 3N 4纳米片分散于蒸馏水中,超声处理后,加入硝酸镍水溶液,搅拌至少2h,过滤收集得到Ni-P-C 3N 4纳米片,用乙醇洗涤后干燥。
上述技术方案中,进一步地,步骤1)中煅烧是以5℃/min的升温速率升温至420℃~450℃,并在该温度下保温2~8h,然后升温至510℃~540℃,再保温3~6h以完成反应。
进一步地,步骤2)中所述离心为转速8000转/分钟,时长3分钟。
进一步地,步骤3)中所述甲苯、g-C 3N 4纳米片、三氯氧磷和三乙胺的用量比例为100ml:3g:0.5g:3g。
进一步地,步骤4)中P-C 3N 4和硝酸镍的用量比为100:3~15。
进一步地,所述干燥为:60℃下干燥24h。
一种ABS纳米复合材料,所述材料的原料中含有如上所述的多功能磷镍掺杂石墨状氮化碳纳米片。
进一步地,所述的材料中Ni-P-C 3N 4纳米片的占比为0.1wt%~15wt%。
本发明的有益效果是:
本发明提供的多功能P/Ni修饰的g-C 3N 4纳米片,将其添加入ABS材料中可 以同时提高聚合物材料的热稳定性、机械性能、阻燃性和抑烟性,在复合材料中均匀分散的Ni-P-C 3N 4结合g-C 3N 4纳米片的物理阻隔作用和磷、镍元素的催化成炭作用,在低添加量下就能够有效提高ABS的耐热性、碳化能力和机械强度。相对于纯的ABS,具有2.0wt%Ni-P-C 3N 4的ABS/Ni-P-CN2复合材料的TTI增加了12s,PHRR和PSPR分别降低了32.4%和33.8%,且Ni-P-C 3N 4的引入还使得材料的拉伸强度提高24.3%,初始降解温度提高了15℃。本发明可制得高性能的聚合物复合材料,具有广泛的工业应用前景。
附图说明
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整的描述。
图1是本发明中块状g-C 3N 4、g-C 3N 4纳米片、P-C 3N 4和Ni-P-C 3N 4的FT-IR(a)和XPS(b)光谱,Ni-P-C 3N 4的高分辨率C1s(c)、N1s(d)、O1s(e)、P2p(f)和Ni2p(g)XPS光谱,Ni-P-C 3N 4(h)的TEM显微照片,以及STEM-HAADF图像和Ni-P-C 3N 4选定区域中C、N、O、P、Ni的相应元素图。
图2是本发明中ABS/CN2(a,b)和ABS/Ni-P-CN2(c,d)复合材料的TEM图像。
图3是ABS及本发明中ABS复合材料的XRD图谱。
图4是ABS及本发明中ABS复合材料的应力-应变曲线(a)和拉伸性能参数(b)。
图5是ABS及本发明中ABS复合材料在N 2条件下的TGA(a)和DTG(b)曲线。
图6是热辐照功率为35kW/m 2时,ABS及本发明中ABS复合材料的热释放速率(a)和产烟率(b)曲线,以及热释放(c)和产烟率(d)的降低幅度。
图7是锥形量热试验后残炭的数码照片和扫描电镜照片:ABS(a)、ABS/CN2(b)、ABS/P-CN2(c)和ABS/Ni-P-CN2(d)。
图8是ABS及本发明中ABS/CN2、ABS/P-CN2和ABS/Ni-P-CN2残炭红外光谱。
具体实施方式
下面结合说明书附图和具体优选的实施例对本发明作进一步描述,但并不因 此而限制本发明的保护范围。
以下实施例中所采用的尿素、三氯氧磷和硫酸由上海化学试剂有限公司(中国上海)提供。六水合硝酸镍(Ni(NO 3) 3·6H 2O)由上海阿拉丁生化科技有限公司(中国上海)购买。ABS树脂(型号:DG-417)由天津大沽化工有限公司(中国天津)提供。除非另有说明,所有试剂都是市售的,并按原样使用。
实施例1
一种Ni-P-C 3N 4纳米片的合成,包括:
第一步:块体g-C 3N 4的制造
将10g尿素放于带盖坩埚中并放置在马弗炉中煅烧,以5℃/min的升温速率升温至430℃,并在430℃保温4h,然后升温至520℃,再保温4h以完成反应。冷却至室温后,通过研磨获得淡黄色g-C 3N 4粉末。
第二步:g-C 3N 4纳米片的剥离
将1.0g块状g-C 3N 4粉末在25%硫酸溶液中搅拌48小时,形成亮黄色悬浮液。将悬浮液以8000转/分钟离心3分钟,弃去上清液。然后,加入一定量的蒸馏水并再次离心,除去上清液。重复上述步骤,直到上清液变成中性。最后,将固体产物在60℃的真空烘箱中干燥24h,研磨后得到g-C 3N 4纳米片。
第三步:磷接枝C 3N 4(P-C 3N 4)纳米片的制备
将100ml甲苯和3克C 3N 4纳米片放入300ml三颈圆底烧瓶中,并超声处理10分钟。然后,加入0.5g三氯氧磷和3g三乙胺,并在室温下搅拌30分钟。将混合物加热至60℃,并搅拌3小时。之后,通过过滤获得粗产物,并用乙醇洗涤数次。于60℃干燥24h后,得到了P-C 3N 4纳米片。
第四步:Ni/P掺杂的C 3N 4(Ni-P-C 3N 4)纳米片的制备
将1g P-C 3N 4和30mL蒸馏水放入到50mL烧瓶中,超声处理15分钟,共3次。然后加入硝酸镍水溶液,搅拌2h。过滤收集得到Ni-P-C 3N 4纳米片,随后用乙醇洗涤并在60℃下干燥24h。
对比例1
本例中步骤仅包括实施例1中的第一步、第二步,得到的是g-C 3N 4纳米片。
对比例2
本例中步骤仅包括实施例1中的第一步、第二步、第三步,得到的是P-C 3N 4 纳米片。
图1a显示了块状g-C 3N 4、g-C 3N 4纳米片、P-C 3N 4和Ni-P-C 3N 4的FT-IR光谱。块状g-C 3N 4和g-C 3N 4纳米片在3200和810cm -1处显示特征吸收峰,属于NH 2和三嗪环。除了上述吸收峰,P-C 3N 4和Ni-P-C 3N 4都在1190cm -1处显示P=O峰,表明g-C 3N 4纳米片的磷掺杂。图1b显示了块状g-C 3N 4、g-C 3N 4纳米片、P-C 3N 4和Ni-P-C 3N 4的XPS全扫描光谱。块状g-C 3N 4由碳(43.51wt%)、氮(52.07wt%)和氧(4.42wt%)元素组成,氧的存在是由于空气中的表面氧化。与块状g-C 3N 4相比,由于酸化,g-C 3N 4纳米片的氧含量增加。值得注意的是,碳、氮、氧、磷和镍可以在Ni-P-C 3N 4的XPS光谱中发现。Ni-P-C 3N 4的高分辨率C1s、N1s、O1s、P2p和Ni2p的XPS光谱如图1c-1g所示。Ni-P-C 3N 4的C1s谱分为四个峰。284.72、285.43、288.40和289.35eV处的峰分别归因于C-C/C-H、C-O-C/C-OH、N-C=N和N=C(N)-NH,证明了g-C 3N 4的存在。N1s光谱有三个峰,分别属于C-N=C基团中sp 2键合的N原子(398.76eV)、N-(C)3结构中sp 3键合的N原子(399.53eV)和C-N-H基团中的N原子(400.51eV)。O1s光谱在531.92eV处显示出一个C-O-C/C-OH的峰。此外,P-O的峰出现在132.83eV,Ni 2p 3/2和Ni 2p 1/2的峰集中在856.44和872.11eV。XPS光谱检测的元素定量结果如表1,这些结果均表明Ni-P-C 3N 4的成功制备。
表1.从XPS光谱检测的元素的定量比较(以wt%计)
Figure PCTCN2022128470-appb-000001
图1h和1i显示了Ni-P-C 3N 4的TEM和STEM-HAADF图像,以及所选区域的相应元素图。在Ni-P-C 3N 4的TEM显微照片中可以清楚地观察到片状的g-C 3N 4,并且P和Ni原子均匀地分散在片层表面。
使用Thermo Hakker流变仪(温度:200℃,时间:12分钟,转子速度:50rpm)通过熔融共混在ABS制备中加入上述各实例制得的g-C 3N 4、P-C 3N 4和Ni-P-C 3N 4,得到ABS纳米复合材料。然后,将纳米复合材料放入模具中,于180℃下预热6分钟,在12MPa下压制8分钟,以制备用于后续测试的样板。含有0.2和2.0wt%g-C 3N 4、P-C 3N 4和Ni-P-C 3N 4的纳米复合材料分别表示为ABS/CN0.2、ABS/CN2、 ABS/P-CN0.2、ABS/P-CN2、ABS/Ni-P-CN0.2和ABS/Ni-P-CN2。
图2显示了ABS/CN2和ABS/Ni-P-CN2复合材料的TEM图像。在没有表面功能化的情况下,g-C 3N 4纳米片倾向于在ABS基质中团聚,导致分散性差(见图2a和2b)。相比之下,Ni-P-C 3N 4均匀分布在ABS中,未见大的团聚体(见图2c),这是由于Ni/P掺杂改变了C 3N 4表面的官能团和分子极性,更有利于Ni-P-C 3N 4在ABS基体的分散。如图2d所示,大部分Ni-P-C 3N 4纳米片在基质中被剥落成灰色或黑色的线条。显然,磷酸的修饰增强了Ni-P-C 3N 4纳米片与ABS的界面相互作用,从而显著提高了Ni-P-C 3N 4的分散性。采用XRD进一步研究官能化的g-C 3N 4在ABS基质中的分散(如图3),在ABS/CN2、ABS/P-CN2和ABS/Ni-P-CN2纳米复合材料的XRD图谱中没有发现g-C 3N 4纳米片的特征衍射峰。这可能是因为g-C 3N 4的峰非常弱并且与ABS的峰重叠。上述结果充分证明了Ni-P-C 3N 4纳米片均匀地分布在ABS基体中。
聚合物复合材料的机械性能,尤其是机械强度,往往决定了其工业应用。因此,研究了g-C 3N 4、P-C 3N 4和Ni-P-C 3N 4对ABS机械性能的影响,结果如图4所示。如图4a和4b所示,纯ABS的拉伸强度(σ)和断裂伸长率或延展性(ε)分别为58.5MPa和26.5%。当g-C 3N 4的质量分数为2wt%时,ABS/CN2的σ增加了10.2%,ε相对于ABS降低了41.9%。此外,引入2wt%P-C 3N 4可使ABS/P-CN2的σ增加20.0%,ε降低54.0%。值得注意的是,在所有样品中,具有2wt%Ni-P-C 3N 4的ABS/Ni-P-CN2表现出最高的σ(72.7MPa),显示出优异的机械强度。显然,Ni/P共掺杂改善了Ni-P-C 3N 4纳米片与ABS之间的界面相互作用,因此Ni-P-C 3N 4可以很好地分散在基体中并作为ABS的增强填料。Ni-P-C 3N 4的突出增强效果使其优于许多传统阻燃剂,如卤素基和磷基化合物。
通过TGA技术研究了ABS及其纳米复合材料的热稳定性,曲线和数据显示在图5和表2中。
表2 N 2气氛下ABS及其复合材料的热稳定性数据
Figure PCTCN2022128470-appb-000002
Figure PCTCN2022128470-appb-000003
aT i and  bT max分别指发生5wt%损失和最大重量损失时的温度。
所有ABS复合材料在N 2条件下表现出相似的降解过程。原始ABS的初始降解温度(T i)和最大质量损失温度(T max)分别为378℃和417℃。功能化g-C 3N 4的引入导致ABS复合材料的T i和T max增加。例如,ABS/P-CN2的T i和T max增加了10℃,而ABS/Ni-P-CN2的T i和T max增加了15℃。T i和T max的增加主要是由于g-C 3N 4纳米片对ABS热分解的物理屏障效应。值得注意的是,ABS/Ni-P-CN的T i和T max均高于ABS/CN和ABS/P-CN,因为Ni-P-C 3N 4在ABS基体中的分散性更好。此外,ABS在600℃的残炭量仅为1.47wt%。随着2.0wt%Ni-P-C 3N 4的加入,ABS/Ni-P-CN2的残炭量在600℃时增加到5.18wt%,是ABS的2.5倍。Ni-P-C 3N 4对ABS碳化的促进作用优于g-C 3N 4和P-C 3N 4,ABS/Ni-P-CN复合材料具有较高的残炭率。可以看出,添加Ni-P-C 3N 4可以同时提高ABS的热稳定性和成炭能力。
锥形量热计用于在35kW/m 2热辐照功率下评价ABS及其复合材料的防火安全性,结果如图6和表3所示。
表3 ABS及其复合材料的锥形量热法测试结果
Figure PCTCN2022128470-appb-000004
aTTI:点火时间,PHRR:热释放速率峰值,THR:总热释放量,AMLR:平均质量损失率,PSPR:烟释放速率峰值,TSP:总烟释放量
纯ABS的TTI是37s,表明它在火中容易燃烧。g-C 3N 4及其衍生物的加入提高了ABS复合材料的TTI。可以看出ABS/Ni-P-CN0.2和ABS/Ni-P-CN2的TTI值分别增加到47和49秒。TTI的增加主要是由于g-C 3N 4纳米片的物理屏障效应。如图6a和表3所示,纯ABS的PHRR高达752kW/m 2,而ABS/Ni-P-CN0.2和 ABS/Ni-P-CN2的PHRR降低至620和508kW/m 2,相对于ABS分别降低了17.6%和32.4%(见图6c)。同样,ABS/Ni-P-CN0.2和ABS/Ni-P-CN2的THR值分别比ABS低7.6%和9.5%。如图6c所示,在相同添加量下,Ni-P-C 3N 4对ABS放热的抑制效果优于g-C 3N 4和P-C 3N 4。这些结果表明,g-C 3N 4、磷和镍共同抑制了ABS基体在燃烧过程中的放热。AMLR通常用于反映整体火灾强度,如表3所示。显然,引入功能性g-C 3N 4降低了ABS复合材料的AMLR。添加2.0wt%Ni-P-C3N4后,ABS/Ni-P-CN2的AMLR比ABS降低了25.3%。总之,Ni-P-C 3N 4显著提高了ABS的阻燃性能。
浓烟是导致火灾中死亡的关键因素之一,因此本发明中还详细研究了g-C 3N 4及其衍生物对ABS基质生烟的影响,结果如图6b和6d以及表3所示。纯的ABS的PSPR和TSP高达0.296m 2/s和44.2m 2(见表3)。功能化g-C 3N 4的引入明显降低了ABS的发烟量。例如,与ABS相比,ABS/Ni-P-CN2的PSPR和TSP分别降低了33.8%和35.1%。此外,由于P/Ni共掺杂,Ni-P-C 3N 4表现出比g-C 3N 4和P-C 3N 4更好的烟雾抑制效果(参见图6d)。因此,Ni-P-C 3N 4在燃烧过程中也起到消烟剂的作用。
可以看出,Ni-P-C 3N 4同时提高了ABS的耐燃性、阻燃性和抑烟性。
本发明还研究了从锥形量热试验中获得的残炭的形态和组成,以揭示功能化g-C 3N 4对ABS基体的残炭形成的影响。图7显示了ABS、ABS/CN2、ABS/P-CN2和ABS/Ni-P-CN2的残炭的数码照片和SEM图像,EDX数据列于表4中。锥形量热试验后,原始ABS几乎烧尽,留下少量易碎和破碎的残炭(见图7a)。同时,在ABS残炭的表面上有许多微裂纹和孔,如图7a中的SEM图像所示。随着g-C 3N 4及其衍生物的引入,ABS炭的致密性和连续性得到改善(见图7b-7d)。特别是ABS/Ni-P-CN2的残炭呈现出表面致密的连续结构,有利于抑制放热和发烟。因此,ABS/Ni-P-CN2阻燃性和抑烟性的显著提高主要是由于这种致密连续炭的形成。
表4 ABS及其复合材料残炭的EDX数据
Figure PCTCN2022128470-appb-000005
Figure PCTCN2022128470-appb-000006
表4列出了ABS及其复合材料残炭的EDX数据。纯ABS残炭的碳和氧含量分别为68.86%和31.14%。随着2wt%g-C 3N 4的加入,C含量增加到71.64wt%,N含量达到2.17wt%,表明g-C 3N 4主要在凝聚相中起作用,以延缓ABS基体的分解。P-C 3N 4取代g-C 3N 4后,炭的含碳量进一步增加,表明P的催化成炭作用。ABS/Ni-P-CN2残渣的含碳量最高,达到77.19wt%。同时,在ABS/Ni-P-CN2的炭中有2.93wt%的P和1.43wt%的Ni,进一步证实大部分P和Ni保留在凝聚相中,促进了ABS基体的碳化。图8给出了ABS、ABS/CN2、ABS/P-CN2和ABS/Ni-P-CN2残炭的FT-IR光谱。ABS的残炭在3440、1600、1260和970cm -1处显示特征吸收峰,分别属于O-H/N-H、C=C、C-O-C和C-C基团。对于ABS/CN2、ABS/P-CN2和ABS/Ni-P-CN2的残炭,额外的峰(-C≡N和-C=N)出现在2200-2400和1410cm -1,进一步表明g-C 3N 4保留在凝聚相中以延缓基质的分解。
综上,可以看出,本发明制得了具有优异耐燃阻燃性、抑烟性的ABS复合材料,通过对g-C 3N 4进行磷、氮共掺杂,可以有效的改善其在ABS中的分散性,并通过g-C 3N 4纳米片的物理阻隔作用和磷、镍元素的催化成炭作用有效提高最终ABS复合材料的耐热性、碳化能力和机械强度,有利于其工业应用推广。

Claims (9)

  1. 一种多功能磷镍掺杂石墨状氮化碳纳米片的制备方法,其特征在于,包括如下步骤:
    1)将尿素放于带盖坩埚中并放置在马弗炉中煅烧,冷却至室温后,通过研磨获得块状g-C 3N 4粉末;
    2)将块状g-C 3N 4粉末在质量浓度25%硫酸溶液中搅拌至少48小时,形成悬浮液,离心弃去上清液,再加入蒸馏水并再次离心除去上清液,重复加蒸馏水及离心直到上清液变成中性,最后将固体产物干燥、研磨得到g-C 3N 4纳米片;
    3)将甲苯和g-C 3N 4纳米片放入三颈圆底烧瓶中,并超声处理至少10分钟,加入三氯氧磷和三乙胺,在室温下搅拌至少30分钟后将混合物加热至60℃,并搅拌3小时,过滤获得粗产物,并用乙醇洗涤数次,干燥,得到磷接枝C 3N 4即P-C 3N 4纳米片;
    4)将P-C 3N 4纳米片分散于蒸馏水中,超声处理后,加入硝酸镍水溶液,搅拌至少2h,过滤收集得到Ni-P-C 3N 4纳米片,用乙醇洗涤后干燥。
  2. 根据权利要求1所述的多功能磷镍掺杂石墨状氮化碳纳米片的制备方法,其特征在于,步骤1)中煅烧是以5℃/min的升温速率升温至420℃~450℃,并在该温度下保温2~8h,然后升温至510℃~540℃,再保温3~6h以完成反应。
  3. 根据权利要求1所述的多功能磷镍掺杂石墨状氮化碳纳米片的制备方法,其特征在于,步骤2)中所述离心为转速8000转/分钟,时长3分钟。
  4. 根据权利要求1所述的多功能磷镍掺杂石墨状氮化碳纳米片的制备方法,其特征在于,步骤3)中所述甲苯、g-C 3N 4纳米片、三氯氧磷和三乙胺的用量比例为100ml:3g:0.5g:3g。
  5. 根据权利要求1所述的多功能磷镍掺杂石墨状氮化碳纳米片的制备方法,其特征在于,步骤4)中P-C 3N 4和硝酸镍的用量比为100:3~15。
  6. 根据权利要求1所述的多功能磷镍掺杂石墨状氮化碳纳米片的制备方法,其特征在于,所述干燥为:60℃下干燥24h。
  7. 多功能磷镍掺杂石墨状氮化碳纳米片,其特征在于,采用如权利要求1-6任一项所述的方法制得。
  8. 一种ABS纳米复合材料,其特征在于,所述材料的原料中含有如权利要 求7所述的纳米片。
  9. 根据权利要求8所述的ABS纳米复合材料,其特征在于,所述的材料中Ni-P-C 3N 4纳米片的占比为0.1wt%~15wt%。
PCT/CN2022/128470 2022-08-19 2022-10-30 多功能磷镍掺杂石墨状氮化碳纳米片、其制备方法及abs材料 WO2024036756A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211000459.2A CN116178795A (zh) 2022-08-19 2022-08-19 多功能磷镍掺杂石墨状氮化碳纳米片、其制备方法及abs材料
CN202211000459.2 2022-08-19

Publications (1)

Publication Number Publication Date
WO2024036756A1 true WO2024036756A1 (zh) 2024-02-22

Family

ID=86437062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/128470 WO2024036756A1 (zh) 2022-08-19 2022-10-30 多功能磷镍掺杂石墨状氮化碳纳米片、其制备方法及abs材料

Country Status (2)

Country Link
CN (1) CN116178795A (zh)
WO (1) WO2024036756A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117484901B (zh) * 2024-01-03 2024-03-22 江苏康辉新材料科技有限公司 一种磷修饰氮化碳阻燃改性bopet薄膜的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101640545B1 (ko) * 2015-03-27 2016-07-18 부산대학교 산학협력단 촉매-그래파이트형 탄소질화물-환원된 그래핀 옥사이드 복합체의 제조방법, 이에 의하여 제조된 복합체, 및 이를 이용한 전극
CN105964288A (zh) * 2016-06-12 2016-09-28 常州大学 一种介孔氮化碳负载纳米磷化镍的制备方法
AU2016363675A1 (en) * 2015-11-30 2018-07-19 Adelaide Research And Innovation Photocatalytic conversion of carbon dioxide and water into substituted or unsubstituted hydrocarbon(s)
CN108940340A (zh) * 2018-07-13 2018-12-07 启东创绿绿化工程有限公司 一种g-C3N4/Ni2P复合材料的制备方法
CN109052344A (zh) * 2018-07-24 2018-12-21 江苏理工学院 一种石墨相氮化碳/氧化镍复合材料的制备方法
CN109181207A (zh) * 2018-09-29 2019-01-11 台州学院 一种钼-锑溴化氧化石墨烯改性abs复合阻燃材料及其制备方法
CN111774084A (zh) * 2020-07-09 2020-10-16 上海纳米技术及应用国家工程研究中心有限公司 一种磷掺杂氮化碳负载镍高效催化剂的制备方法及其产品和应用
CN112588310A (zh) * 2020-12-02 2021-04-02 江苏大学 一种可见光响应的镍-磷化氮化碳光催化剂的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101640545B1 (ko) * 2015-03-27 2016-07-18 부산대학교 산학협력단 촉매-그래파이트형 탄소질화물-환원된 그래핀 옥사이드 복합체의 제조방법, 이에 의하여 제조된 복합체, 및 이를 이용한 전극
AU2016363675A1 (en) * 2015-11-30 2018-07-19 Adelaide Research And Innovation Photocatalytic conversion of carbon dioxide and water into substituted or unsubstituted hydrocarbon(s)
CN105964288A (zh) * 2016-06-12 2016-09-28 常州大学 一种介孔氮化碳负载纳米磷化镍的制备方法
CN108940340A (zh) * 2018-07-13 2018-12-07 启东创绿绿化工程有限公司 一种g-C3N4/Ni2P复合材料的制备方法
CN109052344A (zh) * 2018-07-24 2018-12-21 江苏理工学院 一种石墨相氮化碳/氧化镍复合材料的制备方法
CN109181207A (zh) * 2018-09-29 2019-01-11 台州学院 一种钼-锑溴化氧化石墨烯改性abs复合阻燃材料及其制备方法
CN111774084A (zh) * 2020-07-09 2020-10-16 上海纳米技术及应用国家工程研究中心有限公司 一种磷掺杂氮化碳负载镍高效催化剂的制备方法及其产品和应用
CN112588310A (zh) * 2020-12-02 2021-04-02 江苏大学 一种可见光响应的镍-磷化氮化碳光催化剂的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MENG-DI ZHAO ,, LI YONG-LI , WANG JIN-SHU: "Recent progress of graphitic phase carbon nitride photocatalytic materials on solar energy conversion ", CHINESE JOURNAL OF ENGINEERING, vol. 44, no. 4, 3 March 2022 (2022-03-03), pages 641 - 653, XP093139667, DOI: 10.13374/j.issn2095-9389.2021.09.01.001 *
UMAPATHI D., DEVARAJU A., RATHINASURIYAN C., RAJI A.: "Mechanical and tribological properties of electroless nickel phosphorous and nickel Phosphorous-Titanium nitride coating", MATERIALS TODAY: PROCEEDINGS, ELSEVIER, NL, vol. 22, 1 January 2020 (2020-01-01), NL , pages 1038 - 1042, XP093139666, ISSN: 2214-7853, DOI: 10.1016/j.matpr.2019.11.283 *

Also Published As

Publication number Publication date
CN116178795A (zh) 2023-05-30

Similar Documents

Publication Publication Date Title
Yu et al. Functionalized graphene oxide/phosphoramide oligomer hybrids flame retardant prepared via in situ polymerization for improving the fire safety of polypropylene
Ren et al. A novel P/Ni-doped g-C3N4 nanosheets for improving mechanical, thermal and flame-retardant properties of acrylonitrile–butadienestyrene resin
Hong et al. Facile preparation of graphene supported Co3O4 and NiO for reducing fire hazards of polyamide 6 composites
Zhou et al. Multigram-scale fabrication of organic modified MoS 2 nanosheets dispersed in polystyrene with improved thermal stability, fire resistance, and smoke suppression properties
WO2024036756A1 (zh) 多功能磷镍掺杂石墨状氮化碳纳米片、其制备方法及abs材料
CN108503895B (zh) 镧负载有机磷修饰氮掺杂石墨烯的制备方法及其阻燃改性abs
Wang et al. Combining layered double hydroxides and carbon nanotubes to synergistically enhance the flame retardant properties of composite coatings
Yu et al. Construction of hetero-structured nanohybrid relying on reactive phosphazene towards flame retardation and mechanical enhancement of epoxy resins
Li et al. ZIF-8@ Co-doped boronate ester polymer core-shell particles: Catalytically enhancing the nonflammability and smoke suppression of epoxy resin
Ma et al. Nacre-inspired intumescent flame retardant bridging network for intelligent fire warning and prevention
JP2017078014A (ja) リン酸水素イオンがインターカレートされた層状複水酸化物、該層状複水酸化物を含む難燃剤、難燃性合成樹脂組成物および該層状複水酸化物の製造方法
Kong et al. Synergistic flammability and thermal stability of polypropylene/aluminum trihydroxide/Fe‐montmorillonite nanocomposites
Ren et al. Interface engineering of Ti3C2 nanosheets for fabricating thermoplastic polyurethane composites with excellent flame-retardant and smoke suppressive properties
Kong et al. Improving the thermal stability and flame retardancy of PP/IFR composites by NiAl-layered double hydroxide
CN115028897B (zh) 一种功能化碳化钛纳米阻燃剂的制备及其在环氧树脂中的应用
Liu et al. Preparation and properties of bio-based intumescent flame retardant containing chitosan functionalized ammonium polyphosphate for polyurethane
CN112898754B (zh) 一种具有易结晶性、抗静电性以及阻燃性的聚乳酸纳米复合材料的制备方法及其应用
Kędzierski et al. Graphite oxide as an intumescent flame retardant for polystyrene
CN113150440B (zh) 一种阻燃性聚丙烯的制备方法
CN115558164A (zh) 一种具有核-壳结构的纳米阻燃剂及制备方法
CN111320883B (zh) 一种镁基多功能复合粒子的制备方法
CN114395167A (zh) 一种碳微球@水滑石@聚磷腈杂化阻燃剂及其制备方法
Dhumal et al. Halogen-free, phosphorus decorated, bio-waste derived nanocomposite for highly efficient flame retardant for cotton fabric
Lian et al. A novel bio-based PAbz@ PBA maize structure for improving fire protection, toxic gas suppression and mechanical performance of intumescent flame-retardant epoxy coatings
CN113121882A (zh) 一种功能化氧化石墨烯-次磷酸铝阻燃剂及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22955528

Country of ref document: EP

Kind code of ref document: A1