CN108940340A - 一种g-C3N4/Ni2P复合材料的制备方法 - Google Patents

一种g-C3N4/Ni2P复合材料的制备方法 Download PDF

Info

Publication number
CN108940340A
CN108940340A CN201810770875.8A CN201810770875A CN108940340A CN 108940340 A CN108940340 A CN 108940340A CN 201810770875 A CN201810770875 A CN 201810770875A CN 108940340 A CN108940340 A CN 108940340A
Authority
CN
China
Prior art keywords
preparation
warming
parts
constant temperature
rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201810770875.8A
Other languages
English (en)
Inventor
不公告发明人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qidong Green Green Engineering Co Ltd
Original Assignee
Qidong Green Green Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qidong Green Green Engineering Co Ltd filed Critical Qidong Green Green Engineering Co Ltd
Priority to CN201810770875.8A priority Critical patent/CN108940340A/zh
Publication of CN108940340A publication Critical patent/CN108940340A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种g‑C3N4/Ni2P复合材料的制备方法,步骤如下:将硫脲放入坩埚中,煅烧3‑4h,取出产物研磨,继续在空气下,煅烧3‑4h,得到g‑C3N4;将Ni(NO3)2·6H2O溶于水中,加入柠檬酸钠,搅拌,滴加NaOH并搅拌后得到悬浮液,离心、干燥,得到Ni(OH)2;将NaH2PO2与Ni(OH)2混合,研磨,放入瓷舟中,在氩气下煅烧1.5‑2.5h,降至室温,离心清洗,得到Ni2P;将上述所得的g‑C3N4和Ni2P混匀,研磨,放入瓷舟中,在氩气下煅烧1.5‑2.5h,降温即得。该方法简便、快捷、易操作,制备的g‑C3N4/Ni2P复合材料具有优异的光催化产氢性能。

Description

一种g-C3N4/Ni2P复合材料的制备方法
技术领域
本发明涉及一种g-C3N4/Ni2P复合材料的制备方法。
背景技术
随着全球能源危机和化石燃料燃烧带来的环境污染日益严重,发展可再生、清洁能源是减少环境污染的有效措施之一。氢气是一种清洁的、高效的可再生能源,利用太阳光制备氢气具有广阔的前景。为了转换光能为清洁的氢能,在过去的几十年里,模拟的人工光合作用引起了极大的兴趣。许多科学家致力于研究上述问题,但是仍然存在相当多的限制性因素,例如缺少高效的光催化剂和具有优异稳定性的助催化剂。近来,类石墨烯碳氮化合物(g-C3N4)作为一种不含金属的、聚合的光催化剂,由丰度高的元素组成,在广泛pH溶液(pH=1~14)中具有高的热稳定性和化学稳定性,已经作为一种新系列光催化剂被高度重视。g-C3N4具有2.7eV合适的带隙和理想的带边缘,适用于太阳光分解水产氢或者产氧以及降解污染物。然而,由于g-C3N4产生的光生载流子具有高的复合速率,导致其效率仍然是有限的。为了改变g-C3N4的活性,提出了许多方法,例如控制其结构和形貌、与其他半导体或者助催化剂进行耦合等,通过这些方法g-C3N4基光催化剂展示出了优异的光催化活性。
本质上来看,实现载流子分离和载流子快速的传输需要及时有效的将光敏材料的光生载流子转移到其表面反应活性位上。采用助催化剂与g-C3N4复合是一种可满足此种需要的方法。对光催化析氢反应最好的助催化剂一般是一些贵金属(例如Pt),但是它昂贵的价格限制了它的实际应用。因此,寻找新的丰度高的非贵金属催化剂与g-C3N4进行复合是非常值得去研究的。最近,过渡金属磷化物(TMPs)被用作电催化剂和光催化剂,并在酸性或者碱性溶液中显示出了优异的产氢能力。将CoP作为助催化剂和CdS纳米棒结合用于光催化产氢也展示出了优异的光催化性能,其产氢速率可以达到114μmol·h-1·mg-1。TMPs作为析氢反应的催化剂具有非昂贵和地球丰度高的优点,同时和其他析氢反应催化剂相比还展示出优异的性能和稳定性。
因此,使g-C3N4和优异的助催化剂磷化物结合在一起,获得的复合催化剂可能会产生协同效应而具有优异光催化产氢性能的催化剂。
发明内容
本发明的目的在于提供一种g-C3N4/Ni2P复合材料的制备方法。
本发明通过下面技术方案实现:
一种g-C3N4/Ni2P复合材料的制备方法,包括如下步骤:将10-20份硫脲放入坩埚中,在静态空气氛围下,以4℃/min的速率升温至520-540℃恒温煅烧3-4h,自然降温至室温后,取出产物充分研磨,继续在空气氛围下,以4℃/min的速率升温至480-490℃恒温煅烧3-4h,自然降至室温后取出,得到纳米片状的g-C3N4;将25-35份Ni(NO3)2·6H2O溶于90-100份水中,加入10-20份柠檬酸钠,搅拌25-35min,缓慢滴加NaOH并充分搅拌后得到Ni(OH)2绿色悬浮液,对悬浮液进行多次离心、干燥,得到固体粉末Ni(OH)2;将20-30份NaH2PO2与15-25份Ni(OH)2混合,研磨充分后,放入瓷舟中,在氩气氛围下以4℃/min的速率升温至285-295℃恒温煅烧1.5-2.5h,待自然降至室温后取出,将产物用去离子水和乙醇多次离心清洗,得到Ni2P纳米颗粒;将上述所得的g-C3N4纳米片和Ni2P纳米颗粒以质量比为10:3混合均匀,充分研磨后,将固体混合物放入瓷舟中,在氩气氛围下以4℃/min的升温速率升温至270-290℃恒温煅烧1.5-2.5h,自然降温室温后取出,即得;各原料均为重量份。
优选地,所述的制备方法中,以4℃/min的速率升温至530℃恒温煅烧3.5h。
优选地,所述的制备方法中,以4℃/min的速率升温至485℃恒温煅烧3.5h。
优选地,所述的制备方法中,搅拌30min。
优选地,所述的制备方法中,在氩气氛围下以4℃/min的速率升温至290℃恒温煅烧2h。
优选地,所述的制备方法中,在氩气氛围下以4℃/min的升温速率升温至280℃恒温煅烧2h。
本发明技术效果:
该方法简便、快捷、易操作,制备的g-C3N4/Ni2P复合材料具有优异的光催化产氢性能,具有巨大的市场前景。
具体实施方式
下面结合实施例具体介绍本发明的实质性内容。
实施例1
一种g-C3N4/Ni2P复合材料的制备方法,包括如下步骤:将15份硫脲放入坩埚中,在静态空气氛围下,以4℃/min的速率升温至530℃恒温煅烧3.5h,自然降温至室温后,取出产物充分研磨,继续在空气氛围下,以4℃/min的速率升温至485℃恒温煅烧3.5h,自然降至室温后取出,得到纳米片状的g-C3N4;将30份Ni(NO3)2·6H2O溶于95份水中,加入15份柠檬酸钠,搅拌30min,缓慢滴加NaOH并充分搅拌后得到Ni(OH)2绿色悬浮液,对悬浮液进行多次离心、干燥,得到固体粉末Ni(OH)2;将25份NaH2PO2与20份Ni(OH)2混合,研磨充分后,放入瓷舟中,在氩气氛围下以4℃/min的速率升温至290℃恒温煅烧2h,待自然降至室温后取出,将产物用去离子水和乙醇多次离心清洗,得到Ni2P纳米颗粒;将上述所得的g-C3N4纳米片和Ni2P纳米颗粒以质量比为10:3混合均匀,充分研磨后,将固体混合物放入瓷舟中,在氩气氛围下以4℃/min的升温速率升温至280℃恒温煅烧2h,自然降温室温后取出,即得;各原料均为重量份。
实施例2
一种g-C3N4/Ni2P复合材料的制备方法,包括如下步骤:将10份硫脲放入坩埚中,在静态空气氛围下,以4℃/min的速率升温至520℃恒温煅烧3h,自然降温至室温后,取出产物充分研磨,继续在空气氛围下,以4℃/min的速率升温至480℃恒温煅烧3h,自然降至室温后取出,得到纳米片状的g-C3N4;将25份Ni(NO3)2·6H2O溶于90份水中,加入10份柠檬酸钠,搅拌25min,缓慢滴加NaOH并充分搅拌后得到Ni(OH)2绿色悬浮液,对悬浮液进行多次离心、干燥,得到固体粉末Ni(OH)2;将20份NaH2PO2与15份Ni(OH)2混合,研磨充分后,放入瓷舟中,在氩气氛围下以4℃/min的速率升温至285℃恒温煅烧1.5h,待自然降至室温后取出,将产物用去离子水和乙醇多次离心清洗,得到Ni2P纳米颗粒;将上述所得的g-C3N4纳米片和Ni2P纳米颗粒以质量比为10:3混合均匀,充分研磨后,将固体混合物放入瓷舟中,在氩气氛围下以4℃/min的升温速率升温至270℃恒温煅烧1.5h,自然降温室温后取出,即得;各原料均为重量份。
实施例3
一种g-C3N4/Ni2P复合材料的制备方法,包括如下步骤:将20份硫脲放入坩埚中,在静态空气氛围下,以4℃/min的速率升温至540℃恒温煅烧4h,自然降温至室温后,取出产物充分研磨,继续在空气氛围下,以4℃/min的速率升温至490℃恒温煅烧4h,自然降至室温后取出,得到纳米片状的g-C3N4;将35份Ni(NO3)2·6H2O溶于100份水中,加入20份柠檬酸钠,搅拌35min,缓慢滴加NaOH并充分搅拌后得到Ni(OH)2绿色悬浮液,对悬浮液进行多次离心、干燥,得到固体粉末Ni(OH)2;将30份NaH2PO2与25份Ni(OH)2混合,研磨充分后,放入瓷舟中,在氩气氛围下以4℃/min的速率升温至295℃恒温煅烧2.5h,待自然降至室温后取出,将产物用去离子水和乙醇多次离心清洗,得到Ni2P纳米颗粒;将上述所得的g-C3N4纳米片和Ni2P纳米颗粒以质量比为10:3混合均匀,充分研磨后,将固体混合物放入瓷舟中,在氩气氛围下以4℃/min的升温速率升温至290℃恒温煅烧2.5h,自然降温室温后取出,即得;各原料均为重量份。
该方法简便、快捷、易操作,制备的g-C3N4/Ni2P复合材料具有优异的光催化产氢性能,具有巨大的市场前景。

Claims (6)

1.一种g-C3N4/Ni2P复合材料的制备方法,其特征在于包括如下步骤:将10-20份硫脲放入坩埚中,在静态空气氛围下,以4℃/min的速率升温至520-540℃恒温煅烧3-4h,自然降温至室温后,取出产物充分研磨,继续在空气氛围下,以4℃/min的速率升温至480-490℃恒温煅烧3-4h,自然降至室温后取出,得到纳米片状的g-C3N4;将25-35份Ni(NO3)2·6H2O溶于90-100份水中,加入10-20份柠檬酸钠,搅拌25-35min,缓慢滴加NaOH并充分搅拌后得到Ni(OH)2绿色悬浮液,对悬浮液进行多次离心、干燥,得到固体粉末Ni(OH)2;将20-30份NaH2PO2与15-25份Ni(OH)2混合,研磨充分后,放入瓷舟中,在氩气氛围下以4℃/min的速率升温至285-295℃恒温煅烧1.5-2.5h,待自然降至室温后取出,将产物用去离子水和乙醇多次离心清洗,得到Ni2P纳米颗粒;将上述所得的g-C3N4纳米片和Ni2P纳米颗粒以质量比为10:3混合均匀,充分研磨后,将固体混合物放入瓷舟中,在氩气氛围下以4℃/min的升温速率升温至270-290℃恒温煅烧1.5-2.5h,自然降温室温后取出,即得;各原料均为重量份。
2.根据权利要求1所述的制备方法,其特征在于:以4℃/min的速率升温至530℃恒温煅烧3.5h。
3.根据权利要求1所述的制备方法,其特征在于:以4℃/min的速率升温至485℃恒温煅烧3.5h。
4.根据权利要求1所述的制备方法,其特征在于:搅拌30min。
5.根据权利要求1所述的制备方法,其特征在于:在氩气氛围下以4℃/min的速率升温至290℃恒温煅烧2h。
6.根据权利要求1所述的制备方法,其特征在于:在氩气氛围下以4℃/min的升温速率升温至280℃恒温煅烧2h。
CN201810770875.8A 2018-07-13 2018-07-13 一种g-C3N4/Ni2P复合材料的制备方法 Withdrawn CN108940340A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810770875.8A CN108940340A (zh) 2018-07-13 2018-07-13 一种g-C3N4/Ni2P复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810770875.8A CN108940340A (zh) 2018-07-13 2018-07-13 一种g-C3N4/Ni2P复合材料的制备方法

Publications (1)

Publication Number Publication Date
CN108940340A true CN108940340A (zh) 2018-12-07

Family

ID=64483061

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810770875.8A Withdrawn CN108940340A (zh) 2018-07-13 2018-07-13 一种g-C3N4/Ni2P复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN108940340A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110560104A (zh) * 2019-08-26 2019-12-13 江苏大学 一种Ni2P/NiCo-LDH复合光催化材料的制备方法与应用
CN110605137A (zh) * 2019-09-20 2019-12-24 湖北大学 一种CdS基复合光催化剂的制备方法及其在水裂解产氢方面的应用
CN113117718A (zh) * 2021-03-29 2021-07-16 安徽建筑大学 一种NiCoP-g-C3N4/CdS复合光催化剂、制备方法及其应用
CN114130411A (zh) * 2020-09-03 2022-03-04 陕西科技大学 一种V-Ni2P/g-C3N4光催化剂及其制备方法和应用
CN114588925A (zh) * 2022-03-21 2022-06-07 福州大学 一种无贵金属负载的磷化镍/氮化碳可见光催化剂及其制备方法
CN115178288A (zh) * 2022-08-01 2022-10-14 陕西科技大学 一种Ni-Ni2P/g-C3N4光催化剂及其制备方法
WO2024036756A1 (zh) * 2022-08-19 2024-02-22 台州学院 多功能磷镍掺杂石墨状氮化碳纳米片、其制备方法及abs材料

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110560104A (zh) * 2019-08-26 2019-12-13 江苏大学 一种Ni2P/NiCo-LDH复合光催化材料的制备方法与应用
CN110560104B (zh) * 2019-08-26 2022-01-11 江苏大学 一种Ni2P/NiCo-LDH复合光催化材料的制备方法与应用
CN110605137B (zh) * 2019-09-20 2023-02-21 湖北大学 一种CdS基复合光催化剂的制备方法及其在水裂解产氢方面的应用
CN110605137A (zh) * 2019-09-20 2019-12-24 湖北大学 一种CdS基复合光催化剂的制备方法及其在水裂解产氢方面的应用
US11618011B2 (en) 2020-09-03 2023-04-04 Shaanxi University Of Science & Technology V-Ni2P/g-C3N4 photocatalyst and its preparation method and application thereof
CN114130411A (zh) * 2020-09-03 2022-03-04 陕西科技大学 一种V-Ni2P/g-C3N4光催化剂及其制备方法和应用
CN114130411B (zh) * 2020-09-03 2023-12-08 陕西科技大学 一种V-Ni2P/g-C3N4光催化剂及其制备方法和应用
CN113117718B (zh) * 2021-03-29 2023-03-14 安徽建筑大学 一种NiCoP-g-C3N4/CdS复合光催化剂、制备方法及其应用
CN113117718A (zh) * 2021-03-29 2021-07-16 安徽建筑大学 一种NiCoP-g-C3N4/CdS复合光催化剂、制备方法及其应用
CN114588925A (zh) * 2022-03-21 2022-06-07 福州大学 一种无贵金属负载的磷化镍/氮化碳可见光催化剂及其制备方法
CN115178288A (zh) * 2022-08-01 2022-10-14 陕西科技大学 一种Ni-Ni2P/g-C3N4光催化剂及其制备方法
CN115178288B (zh) * 2022-08-01 2024-01-30 陕西科技大学 一种Ni-Ni2P/g-C3N4光催化剂及其制备方法
WO2024036756A1 (zh) * 2022-08-19 2024-02-22 台州学院 多功能磷镍掺杂石墨状氮化碳纳米片、其制备方法及abs材料

Similar Documents

Publication Publication Date Title
CN108940340A (zh) 一种g-C3N4/Ni2P复合材料的制备方法
Yuan et al. Cadmium sulfide-based nanomaterials for photocatalytic hydrogen production
Xing et al. Recent advances in the improvement of g-C3N4 based photocatalytic materials
CN108355696B (zh) 黑磷/g-C3N4复合可见光光催化材料及其制备方法和应用
CN104941674B (zh) 一种活性炭上负载磷化钴的催化剂及其制备方法和应用
CN101157044B (zh) Ni掺杂Cd0.1Zn0.9S微米球光催化剂及制备方法
Liu et al. In situ fabrication of a 2D Ni2P/red phosphorus heterojunction for efficient photocatalytic H2 evolution
CN109248694B (zh) 一种非贵金属硫铟铜/硫铟锌复合光催化剂的制备方法及其应用
CN106111174A (zh) g‑C3N4/高岭石复合光催化剂及其制备方法
CN110385146B (zh) 一种Ni0.85Se/PDA/g-C3N4复合光催化剂及其应用
CN105854881B (zh) 可见光型介孔氧化亚铜/还原石墨烯复合催化剂的制备方法
CN111437824B (zh) 3D层状微花结构CoWO4@Bi2WO6 Z型异质结复合催化剂及其制备方法和应用
CN112427045A (zh) 一种水热法合成的具有Z型异质结CdS/g-C3N4复合光催化剂材料的制备方法
CN103878011A (zh) 合成GaN:ZnO固溶体光催化剂的方法
CN103638950A (zh) 一种CuS纳米片光催化材料及制备方法
CN112871186A (zh) 二硒化镍/硫铟锌复合光催化剂及其制备方法和应用
CN110280276A (zh) 负载型光催化剂NiSe2/CdS的制备方法及其应用
CN110013862A (zh) 一种羟基氧化铁/硫化镉纳米带直接Z-scheme光催化剂及其制备方法
CN109225265A (zh) 一种全固态z型异质结光催化剂的制备方法
CN107335456B (zh) 一种碳掺杂修饰石墨相氮化碳光催化剂及其制备方法
CN110180571A (zh) 一种AuCu/g-C3N4复合纳米材料的制备方法
CN107349951B (zh) 一种CuO/g-C3N4毛细血管状纳米复合物的制备方法
CN112047372A (zh) 一种CuO多孔纳米片、其制备方法及其在热催化和光热催化方面的应用
CN116196944A (zh) 一种生物质氮掺杂碳量子点耦合超薄BiOBr纳米片复合材料光催化剂的制备方法及应用
CN101337188B (zh) 太阳光分解水制氢高效催化剂(MIn)xCd2(1-x)S2的水热制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20181207

WW01 Invention patent application withdrawn after publication