CN110180571A - 一种AuCu/g-C3N4复合纳米材料的制备方法 - Google Patents

一种AuCu/g-C3N4复合纳米材料的制备方法 Download PDF

Info

Publication number
CN110180571A
CN110180571A CN201910366254.8A CN201910366254A CN110180571A CN 110180571 A CN110180571 A CN 110180571A CN 201910366254 A CN201910366254 A CN 201910366254A CN 110180571 A CN110180571 A CN 110180571A
Authority
CN
China
Prior art keywords
aucu
preparation
composite nano
solution
triethanolamine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910366254.8A
Other languages
English (en)
Inventor
韩长存
刘志锋
童正夫
蔡齐军
马重昊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hubei University of Technology
Original Assignee
Hubei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hubei University of Technology filed Critical Hubei University of Technology
Publication of CN110180571A publication Critical patent/CN110180571A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种AuCu/g‑C3N4复合纳米材料的制备方法,属于材料制备技术领域。本发明通过光还原的方法在g‑C3N4纳米片上原位生长AuCu二元合金,得到具有高催化活性的AuCu/g‑C3N4纳米复合材料。首先配制g‑C3N4纳米片,然后将得到的g‑C3N4纳米片均匀分散到三乙醇胺、氯金酸、氯化铜的混合溶液中,然后将该混合液转移到真空器皿中,在1‑3KPa保持一定的时间,在搅拌条件下经过全光谱光照射,即能可控制备不同AuCu纳米颗粒负载的AuCu/g‑C3N4异质结纳米复合材料,且本发明提供的制备方法简单易操作,具有实际的可行性,制备的AuCu/g‑C3N4异质结纳米复合材料成本低,光催化分解水性能良好。

Description

一种AuCu/g-C3N4复合纳米材料的制备方法
技术领域
本发明属于材料制备技术领域,具体涉及一种AuCu/g-C3N4复合纳米材料的制备方法。
背景技术
当今世界,能源和环境问题引起了全世界的关注,石油、煤炭等不可再生能源终将枯竭和环境污染日益恶化。而利用太阳能分解水制氢和降解有机物光催化研究是针对此问题最活跃的领域。其中设计高活性和高量子效率的光催化剂成为核心的科学问题。
近年来,人们在光催化剂研究上取得了显著进展,相继开发了改性TiO2、CdS、TaON等多种新型可见光催化剂。最近,新型“metal-free”光催化剂的开发和利用成为研究的亮点, 2009 年,王心晨等在“metal-free”光催化剂分解水方面取得了重要进展,他们首次以石墨层状结构的有机聚合物 g-C3N4作为光催化剂,在可见光下实现了分解水的反应。
贵金属催化剂广泛应用于能源、环保、食品加工等重要化工领域。如何提升贵金属利用率,同时维持高的催化剂活性、选择性和长的使用寿命一直是贵金属催化剂研制的核心问题。双金属纳米材料,由于两种金属的协同作用,出现了新的物理和化学属性,从而具有很多新的应用,其中研究最多的就是其催化性能。李亚栋课题组调研了双金属纳米材料合成与属性的最新进展,从各种结构双金属的可控合成入手,讨论了表面结构、组成、尺寸和形貌对其催化性能的影响,并对双金属纳米材料的研究前景进行了展望。厦门大学郑南峰教授课题组在铂纳米复合催化剂的制备、表征及催化反应的过程机理方面的研究取得了重要进展,相关研究成果于2014年5月2日在《科学》杂志上发表 (Science, 2014, 344,495-499)。研究表明,这种新型催化剂中的Pt利用率比核壳型Pt/FeNi(OH)x纳米颗粒提高了1.4-1.8倍,能在室温下实现CO的100%转化,持续工作1个月不衰减。所研制的催化剂还可用于富氢条件下CO的选择性氧化、富氧条件下少量H2的清除。
g-C3N4半导体作为一种高效的半导体光催化材,因其无金属、廉价、稳定,而能开成前景绿色环保型的光催化材料。
发明内容
针对现有技术存在的不足,本发明的目的在于提供一种AuCu/g-C3N4复合纳米片材料的制备方法,本发明利用AuCu纳米晶体结构性能可调,AuCu合金元素之间产生“协同效应”,使其光生电荷界面定向转移的驱动力具有可调变性,所制备的AuCu/g-C3N4复合纳米材料既可以增加对可见光的吸收,又可以增强光生载流子的分离和运输效率,从而制备出高效的光催化复合纳米材料。
发明人经过大量试验和不懈努力,最终获得了一种AuCu/g-C3N4复合纳米材料的制备方法,该方法包括如下步骤:
(1)将三聚氰胺、氯化铵、去离子水混合搅拌烘干后,以1-4℃/min的升温速率升高到500-600℃,并保温1-6h,冷却后把黄色粉末在球磨机中球磨0.5-3h,即可得到g-C3N4纳米片;
所述三聚氰胺、氯化铵、水的质量比为1:2:1;
(2)将三乙醇胺、氯金酸溶液、氯化铜溶液放置于去离子水中,并在常温常压下搅拌0.5-2h,即得到三乙醇胺、氯金酸溶液、氯化铜溶液的混合溶液;
所述三乙醇胺、氯金酸、氯化铜、水的体积比为10:0.5-3:0.5-3:90;
(3)将步骤(1)的0.05g-0.1g g-C3N4纳米片分散到步骤(2)的混合溶液中,并转移到真空反应器中,在搅拌条件下经过全光谱光照射0.5-2h,即可控制备不同AuCu纳米颗粒负载的AuCu/g-C3N4异质结纳米复合材料;
所述g-C3N4纳米片与三乙醇胺、氯金酸溶液、氯化铜溶液的混合溶液的体积为100ml;
优选地,如上所述的一种AuCu/g-C3N4复合纳米片材料的制备方法,所述步骤(2)中氯金酸的浓度为1mM,氯化铜的浓度为2mM。
优选地,如上所述的一种AuCu/g-C3N4复合纳米片材料的制备方法,所述步骤(3)中真空反应器的真空压强为1-3KPa,保持30-120 min。
本发明的作用机理是:AuCu/g-C3N4复合纳米材料,相对于单一Au和Cu纳米晶,AuCu二元合金纳米晶表面原子发生重排,两种合金元素之间产生“协同效应”,使其光生电荷界面定向转移的驱动力具有可调变性。光生电子可以快速转移到二元合金上,减少了光生电子和空穴的复合。因此AuCu/g-C3N4复合纳米材料可进一步提高载流子的分流效率和光催化活性。与现有技术相比,本发明的有益效果是:
(1)本发明所获得的AuCu/g-C3N4复合纳米材料,在同种测试条件下,光催化产氢效率较Au/g-C3N4纳米片提高200%。
(2)本发明提供的制备方法简单易操作,具有实际的可行性,且制备的AuCu/g-C3N4复合纳米材料光催化分解水性能良好。
附图说明
图1是本发明实施例1制备的AuCu/g-C3N4复合纳米材料透射电子显微镜图。
具体实施方式
下面的实施例可以使本专业技术人员更全面的理解本发明,但不以任何方式限制本发明。
实施例1
一种AuCu/g-C3N4复合纳米材料的制备方法,该方法包括如下步骤:
(1)将5g三聚氰胺、10g氯化铵、5ml去离子水混合搅拌烘干后,以4℃/min的升温速率升高到550℃,并保温4h,冷却后把黄色粉末在球磨机中球磨1h,即可得到g-C3N4纳米片。
(2)将10ml三乙醇胺、1ml氯金酸(1mM)溶液、3ml氯化铜(2mM)溶液放置于100ml去离子水中,并在常温常压下搅拌1h。
(3)将0.1g的g-C3N4纳米片转移到步骤(2)所配置的溶液中,然后将混合物转移到真空反应器中,并在搅拌的状态下,抽真空0.5h,然后经过300W功率的全光谱氙灯照射0.5h,得到AuCu/g-C3N4复合纳米材料,其透射电子显微镜图如图1所示。
实施例2
一种AuCu/g-C3N4复合纳米材料的制备方法,该方法包括如下步骤:
(1)将2g三聚氰胺、10g氯化铵、5ml去离子水混合搅拌烘干后,以4℃/min的升温速率升高到550℃,并保温4h,冷却后把黄色粉末在球磨机中球磨1h,即可得到g-C3N4纳米片。
(2)将10ml三乙醇胺、0.5ml氯金酸(1mM)溶液、5ml氯化铜(2mM)溶液放置于100ml去离子水中,并在常温常压下搅拌1h。
(3)将0.05g的g-C3N4纳米片转移到步骤(2)所配置的溶液中,然后将混合物转移到真空反应器中,并在搅拌的状态下,抽真空1 h,然后经过300 W功率的全光谱氙灯照射1 h,得到AuCu/g-C3N4复合纳米材料。
本发明所获得的AuCu/g-C3N4复合纳米材料,在同种测试条件下,光催化产氢效率较Au/g-C3N4纳米片提高200%,达到了1280umol/g-1·h-1
具体的测试条件,50mg催化剂放置在100ml水溶液中,含有10ml三乙醇胺,0.5ml氯金酸溶液,0.5ml氯化铜溶液,在模拟太阳光照射下前,抽真空0.5h,反应过程中保持反应体系维持在4℃,产生的气体采用气相色谱原位检测。
以上述依据本发明的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (3)

1.一种AuCu/g-C3N4复合纳米材料的制备方法,其特征在于:该方法包括如下步骤:
(1)将三聚氰胺、氯化铵、去离子水混合搅拌烘干后,以1-4℃/min的升温速率升高到500-600℃,并保温1-6h,冷却后把黄色粉末在球磨机中球磨0.5-3h,即可得到g-C3N4纳米片;
所述三聚氰胺、氯化铵、水的质量比1:2:1;
(2)将三乙醇胺、氯金酸溶液、氯化铜溶液放置于去离子水中,并在常温常压下搅拌0.5-2h,即得到三乙醇胺、氯金酸溶液、氯化铜溶液的混合溶液;
所述三乙醇胺、氯金酸、氯化铜、水的体积比为10:0.5-3:0.5-3:90;
(3)将0.05g-0.1g的g-C3N4纳米片分散到步骤(2)的混合溶液中,并转移到真空反应器中,在搅拌条件下经过全光谱光照射0.5-2h,即制备出不同AuCu纳米颗粒负载的AuCu/g-C3N4异质结纳米复合材料;
所述g-C3N4纳米片与三乙醇胺、氯金酸溶液、氯化铜溶液的混合溶液的体积为100ml。
2.如权利要求1所述的一种AuCu/g-C3N4复合纳米材料的制备方法,其特征在于:所述步骤(2)中氯金酸的浓度为1mM,氯化铜的浓度为2mM。
3.如权利要求1所述的一种AuCu/g-C3N4复合纳米材料的制备方法,其特征在于:所述步骤(3)中真空反应器的真空压强设置为1-3KPa,保持30-120 min。
CN201910366254.8A 2018-09-30 2019-05-05 一种AuCu/g-C3N4复合纳米材料的制备方法 Pending CN110180571A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811157507 2018-09-30
CN2018111575072 2018-09-30

Publications (1)

Publication Number Publication Date
CN110180571A true CN110180571A (zh) 2019-08-30

Family

ID=67715627

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910366254.8A Pending CN110180571A (zh) 2018-09-30 2019-05-05 一种AuCu/g-C3N4复合纳米材料的制备方法

Country Status (1)

Country Link
CN (1) CN110180571A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110665528A (zh) * 2019-10-06 2020-01-10 湖北工业大学 一种2D/2D g-C3N4/ZnIn2S4异质结复合光催化剂的制备方法
CN111036270A (zh) * 2019-12-20 2020-04-21 佛山科学技术学院 一种复合光催化材料及其制备方法
CN112892597A (zh) * 2021-01-22 2021-06-04 安徽大学 一种负载型团簇催化剂及其制备和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104888832A (zh) * 2015-05-15 2015-09-09 武汉理工大学 一种金属/金属氧化物/g-C3N4复合光催化材料及其制备方法
WO2016020759A1 (en) * 2014-08-04 2016-02-11 King Abdullah University Of Science And Technology Catalytic structures and methods of generating hydrogen gas
CN107128875A (zh) * 2016-05-31 2017-09-05 浙江理工大学 一种制氢催化体系、包含所述催化体系的制氢体系及其用途
CN107175115A (zh) * 2017-06-26 2017-09-19 中国科学院合肥物质科学研究院 一种空间电荷分离型复合光催化剂的制备方法和应用
CN107385468A (zh) * 2017-05-15 2017-11-24 浙江理工大学 一种金铜双生结构的电解水催化材料

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016020759A1 (en) * 2014-08-04 2016-02-11 King Abdullah University Of Science And Technology Catalytic structures and methods of generating hydrogen gas
CN104888832A (zh) * 2015-05-15 2015-09-09 武汉理工大学 一种金属/金属氧化物/g-C3N4复合光催化材料及其制备方法
CN107128875A (zh) * 2016-05-31 2017-09-05 浙江理工大学 一种制氢催化体系、包含所述催化体系的制氢体系及其用途
CN107385468A (zh) * 2017-05-15 2017-11-24 浙江理工大学 一种金铜双生结构的电解水催化材料
CN107175115A (zh) * 2017-06-26 2017-09-19 中国科学院合肥物质科学研究院 一种空间电荷分离型复合光催化剂的制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
尤欢 等: "AuPd/g-C3N4复合光催化剂可控制备及其光催化分解水产氢性能研究", 《聊城大学学报(自然科学版)》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110665528A (zh) * 2019-10-06 2020-01-10 湖北工业大学 一种2D/2D g-C3N4/ZnIn2S4异质结复合光催化剂的制备方法
CN111036270A (zh) * 2019-12-20 2020-04-21 佛山科学技术学院 一种复合光催化材料及其制备方法
CN111036270B (zh) * 2019-12-20 2022-11-01 佛山科学技术学院 一种复合光催化材料及其制备方法
CN112892597A (zh) * 2021-01-22 2021-06-04 安徽大学 一种负载型团簇催化剂及其制备和应用
CN112892597B (zh) * 2021-01-22 2023-02-28 安徽大学 一种负载型团簇催化剂及其制备和应用

Similar Documents

Publication Publication Date Title
Wang et al. Inorganic metal‐oxide photocatalyst for H2O2 production
Guo et al. Progress on simultaneous photocatalytic degradation of pollutants and production of clean energy: A review
Xie et al. Recent advances in Cu-based nanocomposite photocatalysts for CO2 conversion to solar fuels
Liang et al. Single unit cell bismuth tungstate layers realizing robust solar CO2 reduction to methanol
Li et al. Preparation of highly photocatalytic active nano-size TiO2–Cu2O particle composites with a novel electrochemical method
Wang et al. Photocatalytic reduction of CO2 to methane over PtOx-loaded ultrathin Bi2WO6 nanosheets
Feng et al. The role of photo in oxygen evolution reaction: a review
CN110773213B (zh) 一维硫化镉/二维碳化钛复合光催化剂及其制备方法与应用
CN109046424B (zh) 一种高效产氢的UiO-66-NH2/TiO2/Ti3C2复合光催化剂及其制备方法
Zhang et al. Cu (OH) 2-modified TiO2 nanotube arrays for efficient photocatalytic hydrogen production
CN110180571A (zh) 一种AuCu/g-C3N4复合纳米材料的制备方法
CN107159176B (zh) 一种基于镍纳米颗粒助催化剂的光催化体系的构建方法
Wang et al. Application of ion beam technology in (photo) electrocatalytic materials for renewable energy
CN105214656A (zh) 金纳米团簇-金纳米粒子-二氧化钛复合光催化剂及应用
WO2016030753A1 (en) Photocatalytic hydrogen production from water over catalysts having p-n juncations and plasmonic materials
Liu et al. Synergistic effect of single-atom Cu and hierarchical polyhedron-like Ta3N5/CdIn2S4 S-scheme heterojunction for boosting photocatalytic NH3 synthesis
CN105214711A (zh) 一种制备Ag/g-C3N4催化剂的方法
Wang et al. Z-scheme Cu2O/Bi/BiVO4 nanocomposite photocatalysts: synthesis, characterization, and application for CO2 photoreduction
Tang et al. A novel S-scheme heterojunction in spent battery-derived ZnFe2O4/g-C3N4 photocatalyst for enhancing peroxymonosulfate activation and visible light degradation of organic pollutant
CN108940340A (zh) 一种g-C3N4/Ni2P复合材料的制备方法
CN108330506A (zh) 纳米铜合金/氮掺杂类石墨烯复合催化剂及其制备方法
Yang et al. Nanointerface engineering Z-scheme CuBiOS@ CuBi2O4 heterojunction with OS interpenetration for enhancing photocatalytic hydrogen peroxide generation and accelerating chromium (VI) reduction
Umer et al. Self-doped Ti3+ mediated TiO2/In2O3/SWCNTs heterojunction composite under acidic/basic heat medium for boosting visible light induced H2 evolution
Bai et al. Hydrophilic regulated photocatalytic converting phenol selectively over S-scheme CuWO4/TiO2
CN110116015B (zh) 完全分解水的光催化剂及其制备方法和应用、光催化完全分解水的反应方法和催化混合液

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190830