CN110665528A - 一种2D/2D g-C3N4/ZnIn2S4异质结复合光催化剂的制备方法 - Google Patents

一种2D/2D g-C3N4/ZnIn2S4异质结复合光催化剂的制备方法 Download PDF

Info

Publication number
CN110665528A
CN110665528A CN201910956086.8A CN201910956086A CN110665528A CN 110665528 A CN110665528 A CN 110665528A CN 201910956086 A CN201910956086 A CN 201910956086A CN 110665528 A CN110665528 A CN 110665528A
Authority
CN
China
Prior art keywords
znin
ultrathin
preparation
prepared
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910956086.8A
Other languages
English (en)
Inventor
韩长存
方国针
童正夫
刘志锋
苏鹏飞
周倩
吴凌颖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hubei University of Technology
Original Assignee
Hubei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hubei University of Technology filed Critical Hubei University of Technology
Priority to CN201910956086.8A priority Critical patent/CN110665528A/zh
Publication of CN110665528A publication Critical patent/CN110665528A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1076Copper or zinc-based catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)

Abstract

本发明公开一种2D/2D g‑C3N4/ZnIn2S4异质结复合光催化剂的制备方法。首先采用柠檬酸钠对ZnIn2S4光催化剂进行改性,寻找最佳的使用量。然后对g‑C3N4光催化剂进一步优化。通过在g‑C3N4纳米片表面原位生长一层ZnIn2S4纳米片,制备了2D/2D g‑C3N4/ZnIn2S4复合光催化剂。本发明制备方法简单,原材料易得,反应条件适中。所制备的g‑C3N4/ZnIn2S4二维复合光催化材料具有高效光催化产氢活性,产氢速率达到了3.4mmol/h/g,比单一的g‑C3N4产氢速率提高了180%。

Description

一种2D/2D g-C3N4/ZnIn2S4异质结复合光催化剂的制备方法
技术领域
本发明属于材料制备技术领域,具体涉及一种2D/2D g-C3N4/ZnIn2S4异质结复合光催化剂的制备方法。
背景技术
能源与环境,一直是备受瞩目的全球性问题。煤、石油等传统化石能源是目前全球消耗的主要能源。但一方面由于气候变化、自然灾害和一些社会原因导致能源生产增长缓慢;另一方面,人口的迅速增长以及世界经济的持续发展,特别是新兴经济体的迅速增长,导致能源消耗剧增。石油的消耗速度是自然生产石油速度的10万倍,现有的化石能源储存量已经跟不上世界经济发展的脚步。更严重的问题是,化石能源的大量消耗所引起的空气污染、水体污染、全球变暖等环境问题,直接威胁着人类的生存。因此开发绿色、安全的新能源迫在眉睫。
光催化技术就是以太阳光或模拟光源为能量来源,半导光受光能激发,作为催化剂,催化化学反应的完成,即半导体光催化材料在太阳光的激发下完成特定的氧化还原反应。根据固体能带理论,半导体的能带是不连续的,其能带分为导带(CB)和价带(VB),价带上充满电子,导带上是空的,导带底部和价带顶部之间被称为带隙或禁带宽度(Eg)。当入射光的能量大于等于带隙能量时,价带的电子(e-)吸收入射光能量,跃迁到导带,同时在价带上产生相同数量的空穴(h+),形成电子-空穴对。导带上的电子具有较强的还原性,可以作为还原剂,进行还原反应;价带上的空穴具有较强的氧化性,作为氧化剂,进行氧化反应。被吸收的能量通过激发电子跃迁被储藏在半导体中,之后,通过一系列化学反应转化成化学能。
g-C3N4在分解水方面的应用上被认为是一种理想材料,因为它具有以下优点:⑴能量带隙约为2.7eV,它的吸收光谱大约在460nm的可见光范围内,能有效利用太阳光,而且2.7eV的带隙能量足够使电子发生受激跃迁。g-C3N4的价带和导带位置的电位都在水的氧化还原电位之上,因此,光生电子被充分还原,将水还原成H2,光生空穴具有足够的氧化还原能力氧化水放出O2。g-C3N4的化学稳定性很好,在600℃下都能保证其结构的稳定。g-C3N4具有特定的微观结构,表面有一定的缺陷,缺陷位的原子可作为反应的活性位点或者金属的附着位点。而且g-C3N4这种材料成本低廉,绿色环保,可以光催化完全分解水。但是,纯g-C3N4还是存在一定的不足,它的光生载流子的复合率高,因而限制了它的光催化活性,因此,有必要对g-C3N4进行一定的改性。
ZnIn2S4具有以下优点:(1)ZnIn2S4具有典型的层状结构,因此,能有效增大比表面积,提高催化反应的效率。(2)ZnIn2S4具有优异的电学性能和光学性能,在分解水制氢中的优势明显。(3)ZnIn2S4具有较强的可见光捕获能力,能够充分利用光源。但是,ZnIn2S4吸收可见光产生的光生电子和光生空穴极易复合,致使其光催化量子效率较低。因此,纯ZnIn2S4作为分解水产氢的光催化剂还是有一定局限性的。
ZnIn2S4具有与g-C3N4匹配的带隙结构,使得制备g-C3N4/ZnIn2S4复合异质结光催化剂成为可能。利用水热法制备的ZnIn2S4/g-C3N4纳米复合材料,在g-C3N4纳米片上生长一层ZnIn2S4纳米片,提高电荷分离和迁移效率,使其具有高的光催化析氢性能。
所制备的g-C3N4/ZnIn2S4异质结就是两种不同的半导体在其相互接触的界面形成的区域。由于两种半导体中各自的费米能级电势不同,于是,在两种半导体之间的载流子就会发生移动。由于内建电场的作用异质结内部的载流子便形成了定向移动,光生电子和空穴分别向相反的方向移动,从而在很大程度上降低了载流子的复合率,同时,异质结结构还能增强光催化剂的稳定性,扩大吸光光谱范围,在很大程度上体高了光催化的效率。
本发明通过对两种纳米片材料分别改性,制备出高效的具有可见光活性的复合光催化剂。
发明内容
本发明的目的是针对上述现状,旨在提供制备一种高效光催化材料的方法;此方法简单易操作、安全可靠。
实现本发明目的的技术方案是:一种2D/2D g-C3N4/ZnIn2S4异质结复合光催化剂的制备方法,其特征在于,包括如下步骤:
步骤1:g-C3N4超薄纳米片的制备
(1.1)将2-10g三聚氰胺加入到100ml的坩埚中,然后在此坩埚中加入5-20g氯化铵,然后加入5-20ml水,用玻璃棒搅拌均匀,放入到60℃烘箱中烘干;
(1.2)将步骤(1.1)中的带盖坩埚放入箱式马弗炉中,以2-20℃/min的升温速率,加热到500-600℃,冷却后,在球磨机中带水球磨30-60min,然后洗涤烘干;
(1.3)将步骤(1.2)所制备的样品,放入500-700℃的管式炉中继续加热2-4小时,升温速率为2-10℃/min,所通气体为高纯氩气,气体流速为0.1-2L/min;样品冷却后,即为所得到的g-C3N4超薄纳米片;
步骤2:制备g-C3N4/ZnIn2S4超薄纳米片
(2.1)在50ml的烧杯中分别放入10-30ml去离子水、0.1-0.5g Zn(NO3)2·6H2O、0.2-0.8g In(NO3)3·4.5H2O和步骤(1.3)中所制备的g-C3N4超薄纳米片,搅拌10-30min后,超声5-10min,继续搅拌;
(2.2)在步骤(2.1)所搅拌的溶液中,加入0.1-1g柠檬酸钠,室温下继续搅拌10-30min;搅拌的溶液中加入0.2-0.8g硫代乙酰胺,室温下继续搅拌10-30min;将所制备溶液转移到50ml不锈钢反应釜中,在160-180℃中加热2-24小时;洗涤烘干后得到g-C3N4/ZnIn2S4超薄纳米片。
进一步的,所述步骤(2.1)中加入的步骤(1.3)中所制备的g-C3N4超薄纳米片用量为0.01g-0.2g。
本发明的作用机理:2D g-C3N4纳米薄片、2D ZnIn2S4纳米叶片和2D/2D异质结界面的协同作用,有助于异质结体系中形成独特的高速电荷转移纳米通道。这些2D/2D异质结内部的高速电荷转移纳米通道大大缩短了电荷迁移距离和转移时间,显著提高了电荷传输和分离效率。同时,催化剂本身的尺寸也会影响催化活性,将复合催化剂设计成纳米级,可以减少电子和空穴的复合几率,同时增大比表面积,有利于分解水反应的进行。
与现有技术相比,本发明的有益效果是:
1、所获得g-C3N4/ZnIn2S4异质结复合光催化剂,光催化产氢活性比单一的g-C3N4光催化剂提高了180%。
2、本发明所制备g-C3N4/ZnIn2S4异质结复合光催化剂方法简单易操作,具有实际的可行性,且制备的g-C3N4/ZnIn2S4光催化材料成本低,无污染。
附图说明
图1是本发明的g-C3N4/ZnIn2S4复合材料的扫描电镜图。
具体实施方式
为了更好地理解本发明,下面结合实施例进一步阐明本发明的内容,但本发明的内容不仅仅局限于下面的实施例。本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样在本申请所列权利要求书限定范围之内。
实施例1
步骤1:g-C3N4超薄纳米片的制备
(1.1)将2g三聚氰胺加入到100ml的坩埚中,然后在此坩埚中加入10g氯化铵,然后加入10ml水,用玻璃棒搅拌均匀,放入到60℃烘箱中烘干。
(1.2)将步骤(1.1)中的带盖坩埚放入箱式马弗炉中,以4℃/min的升温速率,加热到550℃,冷却后,在球磨机中带水球磨30min,然后洗涤烘干。
(1.3)将步骤(1.2)所制备的样品,放入620℃的管式炉中继续加热2小时,升温速率为5℃/min,所通气氛为高纯氩气,气体流速为0.1L/min;样品冷却后,即为所得到的g-C3N4超薄纳米片。
步骤2:制备g-C3N4/ZnIn2S4超薄纳米片
(2.1)在50ml的烧杯中分别放入30ml去离子水、0.3g Zn(NO3)2·6H2O、0.76g In(NO3)3·4.5H2O和0.01g的步骤(1.3)中所制备的g-C3N4超薄纳米片,搅拌30min后,超声10min,继续搅拌。
(2.2)在步骤(2.1)所搅拌的溶液中,加入0.1g柠檬酸钠,室温下继续搅拌30min;搅拌的溶液中加入0.6g硫代乙酰胺,室温下继续搅拌30min;将所制备溶液转移到50ml不锈钢反应釜中,在180℃中加热4小时;洗涤烘干后得到了g-C3N4/ZnIn2S4超薄纳米片。
实施例2
步骤1:g-C3N4超薄纳米片的制备
(1.1)将5g三聚氰胺加入到100ml的坩埚中,然后在此坩埚中加入10g氯化铵,然后加入5ml水,用玻璃棒搅拌均匀,放入到60℃烘箱中烘干。
(1.2)将步骤(1.1)中的带盖坩埚放入箱式马弗炉中,以5℃/min的升温速率,加热到550℃,冷却后,在球磨机中带水球磨60min,然后洗涤烘干。
(1.3)将步骤(1.2)所制备的样品,放入650℃的管式炉中继续加热4小时,升温速率为10℃/min,所通气氛为高纯氩气,气体流速为0.1L/min;样品冷却后,即为所得到的g-C3N4超薄纳米片。
步骤2:制备g-C3N4/ZnIn2S4超薄纳米片
(2.1)在50ml的烧杯中分别放入30ml去离子水、0.3g Zn(NO3)2·6H2O、0.76g In(NO3)3·4.5H2O和0.02g的步骤(1.3)中所制备的g-C3N4超薄纳米片,搅拌30min后,超声5min,继续搅拌。
(2.2)在步骤(2.1)所搅拌的溶液中,加入0.2g柠檬酸钠,室温下继续搅拌10-30min;搅拌的溶液中加入0.6g硫代乙酰胺,室温下继续搅拌30min;将所制备溶液转移到50ml不锈钢反应釜中,在160℃中加热24小时;洗涤烘干后得到了g-C3N4/ZnIn2S4超薄纳米片。
实施例3
步骤1:g-C3N4超薄纳米片的制备
(1.1)将2g三聚氰胺加入到100ml的坩埚中,然后在此坩埚中加入20g氯化铵,然后加入5ml水,用玻璃棒搅拌均匀,放入到60℃烘箱中烘干。
(1.2)将步骤(1.1)中的带盖坩埚放入箱式马弗炉中,以4℃/min的升温速率,加热到550℃,冷却后,在球磨机中带水球磨60min,然后洗涤烘干。
(1.3)将步骤(1.2)所制备的样品,放入620℃的管式炉中继续加热4小时,升温速率为5℃/min,所通气氛为高纯氩气,气体流速为0.1L/min;样品冷却后,即为所得到的g-C3N4超薄纳米片。
步骤2:制备g-C3N4/ZnIn2S4超薄纳米片
(2.1)在50ml的烧杯中分别放入30ml去离子水、0.3g Zn(NO3)2·6H2O、0.76g In(NO3)3·4.5H2O和0.01g的步骤(1.3)中所制备的g-C3N4超薄纳米片,搅拌30min后,超声10min,继续搅拌。
(2.2)在步骤(2.1)所搅拌的溶液中,加入0.3g柠檬酸钠,室温下继续搅拌10-30min;搅拌的溶液中加入0.6g硫代乙酰胺,室温下继续搅拌10-30min;将所制备溶液转移到50ml不锈钢反应釜中,在180℃中加热24小时;洗涤烘干后得到了g-C3N4/ZnIn2S4超薄纳米片。
本发明公开的2D/2D g-C3N4/ZnIn2S4异质结复合光催化剂的制备方法,首先采用柠檬酸钠对ZnIn2S4光催化剂进行改性,寻找最佳的使用量。然后对g-C3N4光催化剂进一步优化。通过在g-C3N4纳米片表面原位生长一层ZnIn2S4纳米片,制备了2D/2D g-C3N4/ZnIn2S4复合光催化剂。本发明制备方法简单,原材料易得,反应条件适中。所制备的g-C3N4/ZnIn2S4二维复合光催化材料对具有高效光催化产氢活性,产氢速率达到了3.4mmol/h/g,比单一的g-C3N4产氢速率提高了180%。
最后应当说明的是,以上内容仅用以说明本发明的技术方案,而非对本发明保护范围的限制,本领域的普通技术人员对本发明的技术方案进行的简单修改或者等同替换,均不脱离本发明技术方案的实质和范围。

Claims (2)

1.一种2D/2D g-C3N4/ZnIn2S4异质结复合光催化剂的制备方法,其特征在于,包括如下步骤:
步骤1:g-C3N4超薄纳米片的制备
(1.1)将2-10g三聚氰胺加入到100ml的坩埚中,然后在此坩埚中加入5-20g氯化铵,然后加入5-20ml水,用玻璃棒搅拌均匀,放入到60℃烘箱中烘干;
(1.2)将步骤(1.1)中的带盖坩埚放入箱式马弗炉中,以2-20℃/min的升温速率,加热到500-600℃,冷却后,在球磨机中带水球磨30-60min,然后洗涤烘干;
(1.3)将步骤(1.2)所制备的样品,放入500-700℃的管式炉中继续加热2-4小时,升温速率为2-10℃/min,所通气体为高纯氩气,气体流速为0.1-2L/min;样品冷却后,即为所得到的g-C3N4超薄纳米片;
步骤2:制备g-C3N4/ZnIn2S4超薄纳米片
(2.1)在50ml的烧杯中分别放入10-30ml去离子水、0.1-0.5g Zn(NO3)2·6H2O、0.2-0.8g In(NO3)3·4.5H2O和步骤(1.3)中所制备的g-C3N4超薄纳米片,搅拌10-30min后,超声5-10min,继续搅拌;
(2.2)在步骤(2.1)所搅拌的溶液中,加入0.1-1g柠檬酸钠,室温下继续搅拌10-30min;搅拌的溶液中加入0.2-0.8g硫代乙酰胺,室温下继续搅拌10-30min;将所制备溶液转移到50ml不锈钢反应釜中,在160-180℃中加热2-24小时;洗涤烘干后得到g-C3N4/ZnIn2S4超薄纳米片。
2.如权利1所述的一种2D/2D g-C3N4/ZnIn2S4异质结复合光催化剂的制备方法,其特征在于:所述步骤(2.1)中加入的步骤(1.3)中所制备的g-C3N4超薄纳米片用量为0.01g-0.2g。
CN201910956086.8A 2019-10-06 2019-10-06 一种2D/2D g-C3N4/ZnIn2S4异质结复合光催化剂的制备方法 Pending CN110665528A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910956086.8A CN110665528A (zh) 2019-10-06 2019-10-06 一种2D/2D g-C3N4/ZnIn2S4异质结复合光催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910956086.8A CN110665528A (zh) 2019-10-06 2019-10-06 一种2D/2D g-C3N4/ZnIn2S4异质结复合光催化剂的制备方法

Publications (1)

Publication Number Publication Date
CN110665528A true CN110665528A (zh) 2020-01-10

Family

ID=69081249

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910956086.8A Pending CN110665528A (zh) 2019-10-06 2019-10-06 一种2D/2D g-C3N4/ZnIn2S4异质结复合光催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN110665528A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111545235A (zh) * 2020-04-23 2020-08-18 宁德师范学院 一种2D/2Dg-C3N4CoAl-LDH产氢异质结材料及其制备方法与应用
CN112221532A (zh) * 2020-11-16 2021-01-15 福州大学 一种硫铟锌/石墨相氮化碳分级中空异质结的制备方法及应用
CN112973732A (zh) * 2021-02-25 2021-06-18 西安交通大学 一种In2O3/Zn0.8Cd0.2S光催化纳米反应器的制备方法
CN114736179A (zh) * 2022-05-01 2022-07-12 重庆工商大学 ZnIn2S4纳米片光催化C-H活化和CO2还原
CN115672361A (zh) * 2022-10-28 2023-02-03 西安交通大学 一种2D/2D结构的CuInP2S6基异质结光催化剂及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104525238A (zh) * 2015-01-09 2015-04-22 江苏大学 一种氮化碳/硫铟锌复合纳米材料及其制备方法和用途
CN107159288A (zh) * 2017-04-18 2017-09-15 江苏大学 一种氮化碳基复合纳米材料的制备方法及用途
CN109046428A (zh) * 2018-08-22 2018-12-21 广州大学 一种介孔类石墨相氮化碳及其制备方法和应用
CN110180571A (zh) * 2018-09-30 2019-08-30 湖北工业大学 一种AuCu/g-C3N4复合纳米材料的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104525238A (zh) * 2015-01-09 2015-04-22 江苏大学 一种氮化碳/硫铟锌复合纳米材料及其制备方法和用途
CN107159288A (zh) * 2017-04-18 2017-09-15 江苏大学 一种氮化碳基复合纳米材料的制备方法及用途
CN109046428A (zh) * 2018-08-22 2018-12-21 广州大学 一种介孔类石墨相氮化碳及其制备方法和应用
CN110180571A (zh) * 2018-09-30 2019-08-30 湖北工业大学 一种AuCu/g-C3N4复合纳米材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BO LIN等: "Preparation of 2D/2D g-C3N4 nanosheet@ZnIn2S4 nanoleaf heterojunctions with well-designed high-speed charge transfer nanochannels towards highefficiency photocatalytic hydrogen evolution", 《APPLIED CATALYSIS B: ENVIRONMENTAL》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111545235A (zh) * 2020-04-23 2020-08-18 宁德师范学院 一种2D/2Dg-C3N4CoAl-LDH产氢异质结材料及其制备方法与应用
CN112221532A (zh) * 2020-11-16 2021-01-15 福州大学 一种硫铟锌/石墨相氮化碳分级中空异质结的制备方法及应用
CN112973732A (zh) * 2021-02-25 2021-06-18 西安交通大学 一种In2O3/Zn0.8Cd0.2S光催化纳米反应器的制备方法
CN114736179A (zh) * 2022-05-01 2022-07-12 重庆工商大学 ZnIn2S4纳米片光催化C-H活化和CO2还原
CN115672361A (zh) * 2022-10-28 2023-02-03 西安交通大学 一种2D/2D结构的CuInP2S6基异质结光催化剂及其制备方法

Similar Documents

Publication Publication Date Title
CN110665528A (zh) 一种2D/2D g-C3N4/ZnIn2S4异质结复合光催化剂的制备方法
Mei et al. Step-scheme porous g-C3N4/Zn0. 2Cd0. 8S-DETA composites for efficient and stable photocatalytic H2 production
Guo et al. Synthesis of Z-scheme α-Fe2O3/g-C3N4 composite with enhanced visible-light photocatalytic reduction of CO2 to CH3OH
CN107349937B (zh) 一种石墨烯基双金属硫化物纳米复合光催化剂的制备方法
CN103990485B (zh) 氮化碳纳米粒子修饰钒酸铋复合光催化剂及其制备方法
Wang et al. Fabrication of noble-metal-free CdS nanorods-carbon layer-cobalt phosphide multiple heterojunctions for efficient and robust photocatalyst hydrogen evolution under visible light irradiation
CN110237834B (zh) 一种碳量子点/氧化锌可见光催化剂的制备方法
CN111389442A (zh) 负载于泡沫镍表面的p-n异质结复合材料及其制备方法与应用
CN111437824B (zh) 3D层状微花结构CoWO4@Bi2WO6 Z型异质结复合催化剂及其制备方法和应用
CN104549526A (zh) 一种金属氧化物/Cu2O/聚吡咯三层结构纳米空心球及其制备方法和用途
CN105771948A (zh) 具有高光催化制氢性能的双壳二氧化钛催化剂及其制备方法
CN105618098A (zh) 一种掺氮二硫化钼载铂光催化剂及其制备方法
CN112958116B (zh) 一种Bi2O2.33-CdS复合光催化剂及其制备工艺
CN112495401A (zh) 一种Mo掺杂MoO3@ZnIn2S4 Z体系光催化剂及其制备方法与应用
CN102489318B (zh) 多孔纳米p-CuS/n-CdS复合半导体光催化剂的制备方法
CN103395822B (zh) 一种氧化亚铜微米空心球及其合成方法、应用方法
CN107308973B (zh) 一种碱式磷酸钴纳米针复合lton光催化剂及其制备方法和应用
CN112316969A (zh) 一种N掺杂TiO2中空微球-BiOBr的光催化降解材料及制备方法
CN103920513A (zh) Ti3+:TiO2/TiF3复合半导体光催化剂及其制备方法
Yuan et al. Synergistically enhanced photothermal catalytic CO2 reduction by spatially separated oxygen and sulphur dual vacancy regulated redox half-reactions
CN112569950B (zh) 具有八面体结构的磁性四氧化三铁-氧化锌复合光催化剂的制备及其产品和应用
CN113856702A (zh) 一种硫化镉纳米棒/硫化亚铜纳米壳异质结构光催化剂及制备方法与应用
CN110386626A (zh) 一种氧化亚钴薄片、其制备方法和其在可见光催化全分解水中的应用
CN113101946B (zh) 一种NiMoO4基Z-型异质结光催化剂及制备与应用
CN113403180B (zh) 一种太阳能热化学循环制氢的甲烷化系统及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200110

RJ01 Rejection of invention patent application after publication