CN111036270A - 一种复合光催化材料及其制备方法 - Google Patents
一种复合光催化材料及其制备方法 Download PDFInfo
- Publication number
- CN111036270A CN111036270A CN201911328220.6A CN201911328220A CN111036270A CN 111036270 A CN111036270 A CN 111036270A CN 201911328220 A CN201911328220 A CN 201911328220A CN 111036270 A CN111036270 A CN 111036270A
- Authority
- CN
- China
- Prior art keywords
- auni
- photocatalytic material
- composite photocatalytic
- nano
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000001699 photocatalysis Effects 0.000 title claims abstract description 50
- 239000000463 material Substances 0.000 title claims abstract description 49
- 239000002131 composite material Substances 0.000 title claims abstract description 33
- 238000002360 preparation method Methods 0.000 title claims description 17
- 229910002711 AuNi Inorganic materials 0.000 claims abstract description 56
- 238000004519 manufacturing process Methods 0.000 claims abstract description 25
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 22
- 239000000956 alloy Substances 0.000 claims abstract description 22
- 239000002105 nanoparticle Substances 0.000 claims abstract description 12
- 239000002245 particle Substances 0.000 claims abstract description 9
- 238000000926 separation method Methods 0.000 claims abstract description 7
- 238000000034 method Methods 0.000 claims description 15
- 239000000843 powder Substances 0.000 claims description 11
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 claims description 10
- 238000001035 drying Methods 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 8
- 150000003839 salts Chemical class 0.000 claims description 8
- 238000001816 cooling Methods 0.000 claims description 7
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 claims description 6
- QGLWBTPVKHMVHM-KTKRTIGZSA-N (z)-octadec-9-en-1-amine Chemical compound CCCCCCCC\C=C/CCCCCCCCN QGLWBTPVKHMVHM-KTKRTIGZSA-N 0.000 claims description 6
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 claims description 6
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 claims description 6
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 claims description 6
- 239000005642 Oleic acid Substances 0.000 claims description 6
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 claims description 6
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 claims description 6
- 230000008569 process Effects 0.000 claims description 6
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Natural products NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 5
- YWYZEGXAUVWDED-UHFFFAOYSA-N triammonium citrate Chemical compound [NH4+].[NH4+].[NH4+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O YWYZEGXAUVWDED-UHFFFAOYSA-N 0.000 claims description 5
- 229910004042 HAuCl4 Inorganic materials 0.000 claims description 4
- 238000006243 chemical reaction Methods 0.000 claims description 4
- CUJRVFIICFDLGR-UHFFFAOYSA-N acetylacetonate Chemical compound CC(=O)[CH-]C(C)=O CUJRVFIICFDLGR-UHFFFAOYSA-N 0.000 claims description 3
- 239000011261 inert gas Substances 0.000 claims description 3
- 239000002904 solvent Substances 0.000 claims description 3
- 238000003756 stirring Methods 0.000 claims description 3
- 229910003803 Gold(III) chloride Inorganic materials 0.000 claims description 2
- 229910020252 KAuCl4 Inorganic materials 0.000 claims description 2
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 claims description 2
- 229910052737 gold Inorganic materials 0.000 claims description 2
- 239000011259 mixed solution Substances 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 claims description 2
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 claims description 2
- 238000000197 pyrolysis Methods 0.000 claims description 2
- 239000011541 reaction mixture Substances 0.000 claims 1
- 238000001132 ultrasonic dispersion Methods 0.000 claims 1
- 239000001257 hydrogen Substances 0.000 abstract description 36
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 36
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 35
- 230000000694 effects Effects 0.000 abstract description 23
- 229910000510 noble metal Inorganic materials 0.000 abstract description 10
- 229910052751 metal Inorganic materials 0.000 abstract description 6
- 239000002184 metal Substances 0.000 abstract description 6
- 238000006555 catalytic reaction Methods 0.000 abstract description 5
- 230000031700 light absorption Effects 0.000 abstract description 5
- 238000010521 absorption reaction Methods 0.000 abstract description 3
- 239000006185 dispersion Substances 0.000 abstract description 3
- 238000005275 alloying Methods 0.000 abstract description 2
- 230000001105 regulatory effect Effects 0.000 abstract description 2
- 230000027756 respiratory electron transport chain Effects 0.000 abstract description 2
- 230000002195 synergetic effect Effects 0.000 abstract description 2
- 238000011068 loading method Methods 0.000 description 12
- 230000006872 improvement Effects 0.000 description 11
- 239000012498 ultrapure water Substances 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 230000003197 catalytic effect Effects 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 238000007872 degassing Methods 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 238000005286 illumination Methods 0.000 description 3
- 238000006303 photolysis reaction Methods 0.000 description 3
- 230000015843 photosynthesis, light reaction Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000003426 co-catalyst Substances 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 238000003912 environmental pollution Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 238000010812 external standard method Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000011941 photocatalyst Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 239000008213 purified water Substances 0.000 description 2
- 238000002407 reforming Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titanium dioxide Inorganic materials O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- 229910052724 xenon Inorganic materials 0.000 description 2
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 2
- 229910002915 BiVO4 Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- XZMCDFZZKTWFGF-UHFFFAOYSA-N Cyanamide Chemical compound NC#N XZMCDFZZKTWFGF-UHFFFAOYSA-N 0.000 description 1
- 206010070834 Sensitisation Diseases 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- JBANFLSTOJPTFW-UHFFFAOYSA-N azane;boron Chemical compound [B].N JBANFLSTOJPTFW-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- BERDEBHAJNAUOM-UHFFFAOYSA-N copper(I) oxide Inorganic materials [Cu]O[Cu] BERDEBHAJNAUOM-UHFFFAOYSA-N 0.000 description 1
- KRFJLUBVMFXRPN-UHFFFAOYSA-N cuprous oxide Chemical group [O-2].[Cu+].[Cu+] KRFJLUBVMFXRPN-UHFFFAOYSA-N 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 230000004298 light response Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002082 metal nanoparticle Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000007146 photocatalysis Methods 0.000 description 1
- 238000006862 quantum yield reaction Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000013341 scale-up Methods 0.000 description 1
- 230000008313 sensitization Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 150000004763 sulfides Chemical class 0.000 description 1
- CCEKAJIANROZEO-UHFFFAOYSA-N sulfluramid Chemical group CCNS(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F CCEKAJIANROZEO-UHFFFAOYSA-N 0.000 description 1
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 1
- 238000012719 thermal polymerization Methods 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910021524 transition metal nanoparticle Inorganic materials 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/24—Nitrogen compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/39—Photocatalytic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/391—Physical properties of the active metal ingredient
- B01J35/393—Metal or metal oxide crystallite size
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/04—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
- C01B3/042—Decomposition of water
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/10—Catalysts for performing the hydrogen forming reactions
- C01B2203/1041—Composition of the catalyst
- C01B2203/1047—Group VIII metal catalysts
- C01B2203/1052—Nickel or cobalt catalysts
- C01B2203/1058—Nickel catalysts
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
- Y02P20/133—Renewable energy sources, e.g. sunlight
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Combustion & Propulsion (AREA)
- Inorganic Chemistry (AREA)
- Catalysts (AREA)
Abstract
本发公开了一种AuNi/g‑C3N4复合光催化材料及其制备方法,通过制备高比表面g‑C3N4片层材料,复合具有LSPR效应的AuNi纳米合金颗粒作为可见光吸收增强中心及产氢活性中心,利用AuNi合金化降低贵金属Au的用量及调控其LSPR吸收波长和热电子转移效率,并利用组分协同效应提高金属Ni纳米颗粒分散度和析氢活性,从而实现AuNi/g‑C3N4复合光催化材料电子空穴高效分离和可见光催化高效产氢,这样,既有效降低了贵金属Au的用量,同时提高了Au纳米颗粒LSPR效应的利用效率和金属Ni的析氢活性。
Description
技术领域
本发明属于复合光催化材料制备技术领域,具体涉及一种AuNi/g-C3N4复合光催化材料及其制备方法。
背景技术
H2具有燃烧热值高和清洁无污染等优点,被认为是21世纪最具前景的二次替代能源。高效利用H2作为家庭燃料和车辆动力源,可以大幅降低CO2和NOx的排放,实现大气环境质量的改善和经济发展的低碳化。然而,目前H2的来源大都依赖于化石燃料重整制氢或化石燃料-电能-氢过程,源头上依然未能解决环境污染和能源危机问题。因此,可以利用太阳能和水资源,通过光催化制氢过程将太阳能转化为氢能是构建清洁可持续能源体系,从根源上解决能源危机和环境污染的理想途径。
光催化制氢主要是以半导体材料作为催化剂,利用光照条件下半导体中价带电子受激向导带跃迁产生的光生电子还原H+结合生成H2,利用光生空穴氧化水生成O2。自20世纪70年代日本科学家Fujishima和Honda发现TiO2光电极上的光解水产氢现象后,光解水制氢便引发了世界各国科学家的广泛关注和研究。虽然TiO2具有成本较低、无毒及化学稳定性好等优点,但是TiO2能带较宽,需要紫外光激发,能量利用率较低。
目前,研究较多的可见光响应催化剂有Cu2O、BiVO4、CdS、Fe2O3和g-C3N4等,其中石墨化g-C3N4片层材料具有制备过程简单﹑成本较低﹑稳定性好﹑能带结构匹配等优点,是较为理想的可见光催化材料。2009年,Wang等首次报道了利用氰胺热聚合制备的g-C3N4作为光解水的可见光催化剂,在可见光照下,H2产生速率为106μmol g-1h-1。虽然当时报道的量子产率较低,但是g-C3N4无毒,制备方法简单,稳定性好展现了其作为光催化材料的优良特性,一经报道便引起了光催化领域的极大关注。然而g-C3N4带隙约为2.7eV,其可见光响应范围在460nm以下,制约其可见光吸收和光催化产氢性能。
提高g-C3N4片层材料可见光吸收性能的主要途径有杂原子掺杂,缺陷引入和表面等离子体敏化。近年来,基于表面等离子体共振效应(LSPR)复合光催化材料的设计与制备,光催化性能及LSPR作用机制的研究已然成为目前催化研究中的热点。Au等金属纳米颗粒LSPR激发会产生如下效应:1)可见及近红外光的捕获及聚集;2)电子空穴分离效应;3)局域电磁场增强效应。利用Au的LSPR效应不仅可以提高g-C3N4光催化材料的可见-近红外光吸收性能,而且可以显著提高光生电子空穴分离效率和光催化产氢活性。但是,在推进Au/g-C3N4复合光催化材料规模化应用过程中,贵金属Au的用量大,成本太高。
通常对于单一组分g-C3N4光催化材料,其光生电子-空穴复合较快,需要沉积Pt作为产氢共催化剂以提高电子空穴分离效率和光催化产氢活性。但是Pt价格昂贵且储量稀少,限制其在光催化过程中的规模化应用。目前,研究用于替代Pt的非贵金属共催化剂主要有过渡金属络合物,过渡金属纳米颗粒,过渡金属氧化物,硫化物和磷化物等,其中过渡金属Ni及其化合物由于化学性能稳定、元素含量丰富、成本低廉且具有类贵金属析氢特性而备受关注。金属Ni纳米颗粒可以替代贵金属Pt作为产氢共催化剂,然而金属Ni纳米颗粒存在析氢过电势较高和表面析氢动力学较慢等问题,使得Ni/g-C3N4复合光催化材料光催化产氢活性依然较低。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明提出一种AuNi/g-C3N4复合光催化材料及其制备方法,通过制备高比表面的g-C3N4片层材料,复合具有LSPR效应的AuNi纳米合金颗粒作为可见光吸收增强中心及产氢活性中心,能够在有效降低贵金属Au的用量的同时实现AuNi/g-C3N4复合光催化材料的电子空穴高效分离和可见光催化高效产氢。
为了克服上述技术问题,本发明采用的技术方案如下:
一种AuNi/g-C3N4复合光催化材料的制备方法,包括如下步骤:
a)隔绝空气热解硫脲和柠檬酸铵,得到g-C3N4粉末;
b)向油胺和油酸的混合溶液中加入Au盐和Ni盐,通入惰性气体,升温至150-250℃,恒温反应60-120min,自然冷却至室温,经离心分离,得到AuNi纳米合金颗粒;
c)向溶剂中加入g-C3N4粉末,超声分散,加入AuNi纳米合金颗粒,搅拌,经干燥即得AuNi/g-C3N4复合光催化材料。
其中,所述g-C3N4为高比表面多孔材料,其比表面积为100-150m2·g-1。所述惰性气体选自氮气、氩气或氦气中的一种;所述溶剂为高纯水,甲醇和乙醇中的一种,优选高纯水;步骤c)中干燥温度为60-100℃,干燥时长为8-15h。
作为上述方案的进一步改进,所述硫脲和柠檬酸铵的质量比为(20-50):1。
作为上述方案的进一步改进,步骤a)热解制备g-C3N4过程中的升温速率为2-5℃/min,热解温度为500-600℃,热解时长为1-5h。
作为上述方案的进一步改进,所述Au盐选自HAuCl4、AuCl3和KAuCl4中的一种。
作为上述方案的进一步改进,所述Ni盐选自Ni(NO3)2、NiSO4、NiCl2或Ni(acac)2中的一种。
作为上述方案的进一步改进,所述AuNi纳米颗粒的粒径为5-12nm。
作为上述方案的进一步改进,所述油酸和油胺的体积比为1:(20-50)。
作为上述方案的进一步改进,所述Au和Ni的原子为(1-16):4。
作为上述方案的进一步改进,所述AuNi纳米合金与g-C3N4的质量比为1:(10-100)。
一种AuNi/g-C3N4复合光催化材料,是根据上述的制备方法制得。
本发明的有益效果:本发明提出了一种AuNi/g-C3N4复合光催化材料及其制备方法,通过制备高比表面g-C3N4片层材料,复合具有LSPR效应的AuNi纳米合金颗粒作为可见光吸收增强中心及产氢活性中心,利用AuNi合金化降低贵金属Au的用量及调控其LSPR吸收波长和热电子转移效率,并利用组分协同效应提高金属Ni纳米颗粒分散度和析氢活性,从而实现AuNi/g-C3N4复合光催化材料电子空穴高效分离和可见光催化高效产氢,这样,既有效降低了贵金属Au的用量,同时提高了Au纳米颗粒LSPR效应的利用效率和金属Ni的析氢活性。
附图说明
图1为实施例3-6所得的不同载量(AuNi纳米合金的载量分别为1wt%、2wt%、3wt%和4wt%)的AuNi/g-C3N4光催化材料成品1-4及对比样品1和2(Au/g-C3N4和Ni/g-C3N4)的可见光催化产氢活性曲线;
图2为实施例5的载量为3wt%的AuNi/g-C3N4-3.0复合光催化材料成品3的循环稳定性曲线。
具体实施方式
下面结合实施例对本发明进行具体描述,以便于所属技术领域的人员对本发明的理解。有必要在此特别指出的是,实施例只是用于对本发明做进一步说明,不能理解为对本发明保护范围的限制,所属领域技术熟练人员,根据上述发明内容对本发明所作出的非本质性的改进和调整,应仍属于本发明的保护范围。同时,下述所提及的原料未详细说明的,均为市售产品;未详细提及的工艺步骤或提取方法为均为本领域技术人员所知晓的工艺步骤或提取方法。
实施例1
高比表面多孔g-C3N4的制备
将20g硫脲和0.5g柠檬酸铵加入研钵中,研细混合后放入50mL坩埚中,盖上盖子,放入马弗炉中,以2℃/min升温速率升温至550℃,恒温4h,然后自然冷却至室温。取出研细,得到高比表面多孔的g-C3N4黄色粉末。
实施例2
AuNi纳米合金的制备
在三口烧瓶中依次加入油酸和油胺0.3mL和12mL,然后加入HAuCl4 165mg和Ni(acac)2 104mg,通入氩气作保护气,磁力搅拌分散。然后缓慢升温至220℃,恒温反应60min后自然冷却。待自然冷却至室温后过滤,用纯净水和乙醇交叉洗涤3-5次,所得AuNi纳米合金用高纯水分散,装入棕色瓶中,备用。
实施例3
AuNi/g-C3N4复合光催化材料的制备
向实施例1制得的g-C3N4中称取0.495g粉末于烧杯中,加入25mL高纯水,再加入实施例2制得的AuNi纳米合金2mL(5mg),充分搅拌至水分挥发干燥。置于80℃烘箱中干燥10h,得到AuNi纳米合金载量为1wt%的复合光催化材料成品1,记为AuNi/g-C3N4-1.0。
实施例4
AuNi/g-C3N4复合光催化材料的制备
向实施例1制得的g-C3N4中称取0.490g粉末于烧杯中,加入25mL高纯水,再加入实施例2制得的AuNi纳米合金4mL(10mg),充分搅拌至水分挥发干燥。然后置于80℃烘箱中干燥10h,得到AuNi纳米合金载量为2wt%的复合光催化材料成品2,记为AuNi/g-C3N4-2.0。
实施例5
AuNi/g-C3N4复合光催化材料的制备
向实施例1制得的g-C3N4中称取0.485g粉末于烧杯中,加入25mL高纯水,再加入实施例2制得的AuNi纳米合金6mL(15mg),充分搅拌至水分挥发干燥。然后置于80℃烘箱中干燥10h,得到AuNi纳米合金载量为3wt%的复合光催化材料成品3,记为AuNi/g-C3N4-3.0。
实施例6
AuNi/g-C3N4复合光催化材料的制备
向实施例1制得的g-C3N4中称取0.480g粉末于烧杯中,加入25mL高纯水,再加入实施例2制得的AuNi纳米合金8mL(20mg),充分搅拌至水分挥发干燥。然后置于80℃烘箱中干燥10h,得到AuNi纳米合金载量4wt%的复合光催化材料成品4,记为AuNi/g-C3N4-4.0。
对比例1
在三口烧瓶中依次加入油酸和油胺0.3mL和12mL,然后加入HAuCl4 165mg,通入氩气作保护气,磁力搅拌分散。然后缓慢升温至220℃,恒温反应60min后自然冷却。待自然冷却至室温后过滤,用纯净水和乙醇交叉洗涤3-5次,所得Au纳米颗粒用高纯水分散,装入棕色瓶中。
向实施例1制得的g-C3N4中称取0.485g粉末于烧杯中,加入25mL高纯水,再加入上述制得的Au纳米颗粒6mL(15mg),充分搅拌至水分挥发干燥。然后置于80℃烘箱中干燥10h,得到Au纳米颗粒载量为3wt%的复合光催化材料Au/g-C3N4,记为对比样品1。
对比例2
向实施例1制得的g-C3N4中称取0.485g粉末于烧杯中,加入25mL高纯水,再加入Ni(NO3)2 75mg,缓慢滴加氨硼烷还原溶液10mL(0.1mmol/L),室温下反应60min后过滤,洗涤3-5次后置于80℃烘箱中干燥10h,得到Ni纳米颗粒载量为3wt%的复合光催化材料Ni/g-C3N4,记为对比样品2。
实施例7
催化材料可见光催化产氢活性评价
分别称取100mg的AuNi/g-C3N4复合光催化材料成品1-4和对照样品1和2(Au/g-C3N4和Ni/g-C3N4)于光催化反应器中,量取80mL高纯水和20mL三乙醇胺于光催化反应器中,冷凝恒温8℃,抽真空除气30min。然后利用300W氙灯光源光照,光源距离液面15cm,加400nm滤光片滤掉紫外部分。反应每间隔1h,色谱自动在线取样进行分析,产H2量采取外标法定量计算,产氢量采用μmol表达,产氢速率采用μmol.g-1.h-1表达。
如图1所示,图1为实施例3-6所得的不同载量(AuNi纳米合金的载量分别为1wt%、2wt%、3wt%和4wt%)的AuNi/g-C3N4光催化材料成品1-4及对比样品1和2(Au/g-C3N4和Ni/g-C3N4)的可见光催化产氢活性曲线,从图1可以看出,AuNi/g-C3N4光催化材料可见光催化产氢活性较纯相的Au/g-C3N4和Ni/g-C3N4有显著提升。AuNi纳米合金载量对复合催化光催化活性影响呈火山型曲线关系,AuNi纳米合金载量为3wt%时的活性最高,达到1.67mmol/g.h。
实施例8
催化材料可见光催化产氢稳定性评价
称取100mg实施例5制得的AuNi/g-C3N4-3.0光催化材料成品3于光催化反应器中,量取80mL高纯水和20mL三乙醇胺于光催化反应器中,冷凝恒温8℃,抽真空除气30min。然后利用300W氙灯光源光照,光源距离液面15cm,加400nm滤光片滤掉紫外部分。反应每间隔1h,色谱自动在线取样进行分析,产H2量采取外标法定量计算,产氢量采用μmol表达,产氢速率采用μmol.g-1.h-1表达。测试完成一个循环后,抽真空除气,重复上述步骤评价其活性,经过多次循环考察其稳定性。
如图2所示,图2为实施例5中AuNi纳米合金载量为3wt%的AuNi/g-C3N4-3.0复合光催化材料的循环稳定性曲线,从图2可以看出,经过4次循环后,该催化材料的活性没有发生明显下降,稳定性较高。
对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下还可以做出若干简单推演或替换,而不必经过创造性的劳动。因此,本领域技术人员根据本发明的揭示,对本发明做出的简单改进都应该在本发明的保护范围之内。上述实施例为本发明的优选实施例,凡与本发明类似的工艺及所作的等效变化,均应属于本发明的保护范畴。
Claims (10)
1.一种AuNi/g-C3N4复合光催化材料的制备方法,其特征在于,包括如下步骤:
a)隔绝空气热解硫脲和柠檬酸铵,得到g-C3N4粉末;
b)向油胺和油酸的混合溶液中加入Au盐和Ni盐,通入惰性气体,升温至150-250℃,恒温反应60-120min,自然冷却至室温,经离心分离,得到AuNi纳米合金颗粒;
c)向溶剂中加入g-C3N4粉末和AuNi纳米合金颗粒,超声分散,搅拌,经干燥即得AuNi/g-C3N4复合光催化材料。
2.根据权利要求1所述的制备方法,其特征在于,所述硫脲和柠檬酸铵的质量比为(20-50):1。
3.根据权利要求1所述的制备方法,其特征在于,步骤a)热解制备g-C3N4过程中的升温速率为2-5℃/min,热解温度为500-600℃,热解时长为1-5h。
4.根据权利要求1所述的制备方法,其特征在于,所述Au盐选自HAuCl4、AuCl3和KAuCl4中的一种。
5.根据权利要求1所述的制备方法,其特征在于,所述Ni盐选自Ni(NO3)2、NiSO4、NiCl2或Ni(acac)2中的一种。
6.根据权利要求1所述的制备方法,其特征在于,所述AuNi纳米颗粒的粒径为5-12nm。
7.根据权利要求1所述的制备方法,其特征在于,所述油酸和油胺的体积比为1:(20-50)。
8.根据权利要求1所述的制备方法,其特征在于,所述Au和Ni的原子为(1-16):4。
9.根据权利要求1所述的制备方法,其特征在于,所述AuNi纳米合金与g-C3N4的质量比为1:(10-100)。
10.一种AuNi/g-C3N4复合光催化材料,其特征在于,是根据权利要求1-9任意项所述的制备方法制得。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911328220.6A CN111036270B (zh) | 2019-12-20 | 2019-12-20 | 一种复合光催化材料及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911328220.6A CN111036270B (zh) | 2019-12-20 | 2019-12-20 | 一种复合光催化材料及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111036270A true CN111036270A (zh) | 2020-04-21 |
CN111036270B CN111036270B (zh) | 2022-11-01 |
Family
ID=70238179
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911328220.6A Active CN111036270B (zh) | 2019-12-20 | 2019-12-20 | 一种复合光催化材料及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111036270B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111359652A (zh) * | 2020-04-29 | 2020-07-03 | 中国计量大学 | 一种氮化碳基镍金双金属负载型催化剂及其制备方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8207081B1 (en) * | 2008-11-08 | 2012-06-26 | University Of Central Florida Research Foundation, Inc. | Nanocomposite for photocatalytic Hydrogen production and method for its preparation |
CN105268463A (zh) * | 2015-10-26 | 2016-01-27 | 中国科学院上海硅酸盐研究所 | 一种氮掺杂碳/氮化碳光催化剂材料及其一步合成方法 |
CN106521551A (zh) * | 2016-11-01 | 2017-03-22 | 电子科技大学 | 一种用于硼烷氨制氢的NiAu纳米催化剂的制备方法 |
CN108246314A (zh) * | 2018-03-15 | 2018-07-06 | 上海泰坦科技股份有限公司 | 一种镍金纳米催化剂的制备方法 |
CN109364974A (zh) * | 2018-11-15 | 2019-02-22 | 江苏大学 | 一种负载钯钴合金的介孔氮化碳纳米材料的制备方法 |
CN110180571A (zh) * | 2018-09-30 | 2019-08-30 | 湖北工业大学 | 一种AuCu/g-C3N4复合纳米材料的制备方法 |
-
2019
- 2019-12-20 CN CN201911328220.6A patent/CN111036270B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8207081B1 (en) * | 2008-11-08 | 2012-06-26 | University Of Central Florida Research Foundation, Inc. | Nanocomposite for photocatalytic Hydrogen production and method for its preparation |
CN105268463A (zh) * | 2015-10-26 | 2016-01-27 | 中国科学院上海硅酸盐研究所 | 一种氮掺杂碳/氮化碳光催化剂材料及其一步合成方法 |
CN106521551A (zh) * | 2016-11-01 | 2017-03-22 | 电子科技大学 | 一种用于硼烷氨制氢的NiAu纳米催化剂的制备方法 |
CN108246314A (zh) * | 2018-03-15 | 2018-07-06 | 上海泰坦科技股份有限公司 | 一种镍金纳米催化剂的制备方法 |
CN110180571A (zh) * | 2018-09-30 | 2019-08-30 | 湖北工业大学 | 一种AuCu/g-C3N4复合纳米材料的制备方法 |
CN109364974A (zh) * | 2018-11-15 | 2019-02-22 | 江苏大学 | 一种负载钯钴合金的介孔氮化碳纳米材料的制备方法 |
Non-Patent Citations (1)
Title |
---|
HAIFENG LV ET AL.: "A New Core/Shell NiAu/Au Nanoparticle Catalyst with Pt-like Activity for Hydrogen Evolution Reaction", 《COMMUNICATION》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111359652A (zh) * | 2020-04-29 | 2020-07-03 | 中国计量大学 | 一种氮化碳基镍金双金属负载型催化剂及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN111036270B (zh) | 2022-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109876843B (zh) | 铜合金修饰二氧化钛/氮化碳异质结光催化剂及制备方法 | |
CN108745382B (zh) | 一种NiCd双非贵金属修饰的CdS可见光催化剂的制备方法及其应用 | |
CN104923264B (zh) | 一种贵金属修饰的CdS纳米棒光催化剂的制备方法和应用 | |
CN108927178B (zh) | 一种金属有机框架材料原位硫化法制备NiS/CdS复合催化剂的方法及应用 | |
CN107649150A (zh) | 一种富含硫空位的Cd/CdS异质结可见光催化剂的制备方法及其应用 | |
CN105833885B (zh) | 非贵金属MoS2修饰的CdS纳米棒光催化剂及其制备方法和应用 | |
CN108607593B (zh) | 硫化镉纳米粒子修饰的五氧化二铌纳米棒/氮掺杂石墨烯复合光催化剂与应用 | |
CN110624550B (zh) | 一种原位碳包覆的铜镍合金纳米颗粒光催化剂及其制备方法和应用 | |
CN109174144B (zh) | Ni3C@Ni核壳助催化剂和Ni3C@Ni/光催化剂复合材料及其制备方法与应用 | |
CN108671955B (zh) | 一种光解水产氢复合催化剂及其制备方法 | |
CN113058617B (zh) | 一种光催化剂及其制备方法和应用 | |
CN113680372B (zh) | 一种石墨相氮化碳纳米片的热辅助制备方法及应用 | |
He et al. | In-situ nanoarchitectonics of noble-metal-free g-C3N4@ C-Ni/Ni2P cocatalyst with core-shell structure for efficient photocatalytic H2 evolution | |
CN114471639A (zh) | 过渡金属元素掺杂及具有硫空位的硫化镉负载过渡金属磷化物光催化材料及其制备方法 | |
CN106268902A (zh) | 一种g‑C3N4量子点、Ag量子点敏化BiVO4光催化剂的制备方法 | |
CN107497468A (zh) | 一种氢氧化镍修饰的石墨相氮化碳复合光催化剂的制备方法及其应用 | |
CN110339852B (zh) | 一种CoO@氮硫共掺杂碳材料/CdS复合光催化材料、制备方法及其应用 | |
CN112892607A (zh) | 一种稳定的光催化分解水制氢的三元复合材料及其制备方法 | |
Yao et al. | A novel hierarchical CdS-DETA@ CoP composite as highly stable photocatalyst for efficient H2 evolution from water splitting under visible light irradiation | |
CN115999614A (zh) | 一种紫外-可见-近红外光响应的二氧化碳还原光催化剂 | |
CN113289659B (zh) | 磺酸基官能团改性氮化碳光催化材料的制备方法及应用 | |
CN111036270B (zh) | 一种复合光催化材料及其制备方法 | |
CN104801318A (zh) | 一种光催化剂、制备方法及其在制取氢气中的应用 | |
CN111036269B (zh) | 一种复合光催化剂及其制备方法 | |
Xu et al. | Efficient Visible Light Hydrogen Evolution Catalyst Composed of Non-noble Metal Nitride (Ni3N) Cocatalyst and Zn0. 5Cd0. 5S Solid Solution |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP03 | Change of name, title or address | ||
CP03 | Change of name, title or address |
Address after: 528000 No. 18, Jiangwan Road, Chancheng District, Guangdong, Foshan Patentee after: Foshan University Country or region after: China Address before: 528000 No. 18, Jiangwan Road, Chancheng District, Guangdong, Foshan Patentee before: FOSHAN University Country or region before: China |