CN109364974A - 一种负载钯钴合金的介孔氮化碳纳米材料的制备方法 - Google Patents

一种负载钯钴合金的介孔氮化碳纳米材料的制备方法 Download PDF

Info

Publication number
CN109364974A
CN109364974A CN201811359096.5A CN201811359096A CN109364974A CN 109364974 A CN109364974 A CN 109364974A CN 201811359096 A CN201811359096 A CN 201811359096A CN 109364974 A CN109364974 A CN 109364974A
Authority
CN
China
Prior art keywords
alloy
mesoporous
nano material
carbon nano
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811359096.5A
Other languages
English (en)
Inventor
许晖
刘津媛
黄济华
李华明
吉海燕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN201811359096.5A priority Critical patent/CN109364974A/zh
Publication of CN109364974A publication Critical patent/CN109364974A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • C01B2203/107Platinum catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • Composite Materials (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Manufacturing & Machinery (AREA)
  • Catalysts (AREA)

Abstract

本发明属于光催化剂制备技术领域,特别涉及一种负载钯钴合金的介孔氮化碳纳米材料的制备方法。采用浸渍法,将制备得到的介孔氮化碳在乙醇溶液中分散均匀,与分散于己烷溶液待用的钯钴合金混合均匀,并搅拌2‑5h,离心,用去离子水和无水乙醇清洗,70℃干燥7‑8h,经研磨得到负载钯钴合金的介孔氮化碳纳米材料。本发明首次将量子点级别的钯钴合金纳米材料引入介孔氮化碳,可以有效地降低贵金属助催化剂的制备成本,同时两者之间的协同作用可以提升光催化制氢性能。

Description

一种负载钯钴合金的介孔氮化碳纳米材料的制备方法
技术领域
本发明属于光催化剂制备技术领域,特别涉及一种负载钯钴合金的介孔氮化碳纳米材料的制备方法,用于光催化分解水制氢。
背景技术
随着工业技术的革新,机械自动化给人们带来高效生产的同时也带来了巨大的能源需求,因此探寻可持续、绿色、高效的新能源成为人类解决环境污染和能源问题最有效的方式。太阳能转化光催化技术,即在光照条件下,利用光催化剂进行氧化还原反应,将太阳能转化为电能或化学能,被誉为21世纪理想的新能源开发技术。
研究发现,氮化碳(g-C3N4)具有良好的可见光响应和化学稳定性,且来源广泛,价格低廉,因此成为光催化领域的研究热点。但是,g-C3N4的比表面积较小,光生载流子易于复合,大大限制了其实际应用。为提升g-C3N4的光催化活性,科研工作者从调控形貌结构方面出发,提出利用模板法合成mpg-C3N4,从体相结构转变为介孔结构,使得g-C3N4的比表面积明显增大,可见光响应显著增强,在光催化反应过程中可以暴露更多的活性位点,促进了电子空穴对的分离,从而大幅度提升g-C3N4的光催化活性。
除了形貌结构调控可以提升g-C3N4的光催化活性以外,还可以通过引入助催化剂来提升g-C3N4的光催化性能。目前,常见的助催化剂有金属(如Pt、Fe、Ru等),金属氧化物(如WO3、IrO2、RuO2等),金属硫化物等(如MoS2、NiS、WS2等)。谢毅等发现单原子Pt作为助催化剂能大幅度提升g-C3N4的光催化产氢的性能。王心晨等提出在g-C3N4纳米片上负载CoP和Pt作为双重助催化剂,实现了光催化全解水性能的提升。然而,成本高、储量少的问题限制了Pt的进一步推广应用。后来,人们通过研究发现,铂系元素Pd有着与Pt类似的光催化性能,且储量多、价格便宜,是作为助催化剂的理想元素。更有文献指出可以在Pd的基础上引入过渡元素(如Fe、Co、Ni等),制备得到的钯基合金纳米材料不仅可以提升光催化产氢性能,而且进一步减少了贵金属的用量,减少了制备成本。
由此可见,本发明首次将量子点级别的钯钴合金纳米材料引入介孔氮化碳,可以有效地降低贵金属助催化剂的制备成本,同时两者之间的协同作用可以提升光催化制氢性能。因此,设计制备一种负载钯基合金的介孔氮化碳纳米材料对于介孔氮化碳在光催化制氢领域有着重要意义。
发明内容
本发明的目的是提供一种负载钯钴合金的介孔氮化碳纳米材料的制备方法及其应用。本发明的制备方法成本较低,制备得到的材料具有优良的光催化产氢性能。
本发明采用的具体技术方案如下:
一种负载钯钴合金的介孔氮化碳纳米材料的制备方法,包括如下步骤:
(1)将油胺和十八烯超声混合均匀,加入硼烷-叔丁基胺,并使硼烷-叔丁基胺在油胺十八烯混合溶液中均匀分散,然后加热至100-150℃。
(2)将乙酰丙酮钯和乙酰丙酮钴分别分散于油胺中,超声均匀后注入到步骤(1)中得到的混合溶液中,100-150℃条件下反应1-3h。
(3)待步骤(2)中反应后的溶液自然冷却至室温,加入丙酮进行离心,得到钯钴合金产物;将钯钴合金产物分散于己烷和无水乙醇的混合溶液中,用无水乙醇离心3次,得到钯钴合金纳米颗粒,并再次均匀分散于己烷溶液中备用。
(4)以硅溶胶HS-40为模板,加入单氰胺混合均匀,在室温下机械搅拌3-4h,70℃干燥箱反应30-60min,转移至坩埚,在氩气氛围中550℃煅烧4h,升温速率为2.3℃/min,得到的产物经研磨后加入到氟化氢铵溶液中,搅拌12-24h,过滤,用去离子水清洗数次,60℃真空干燥7-8h得到介孔氮化碳。
(5)采用浸渍法,将制备得到的介孔氮化碳在乙醇溶液中分散均匀,与步骤(3)中得到的分散于己烷溶液待用的钯钴合金混合均匀,并搅拌2-5h,离心,用去离子水和无水乙醇清洗,70℃干燥7-8h,经研磨得到负载钯钴合金的介孔氮化碳纳米材料。
上述制备步骤(1)中,油胺和十八烯的体积比为3:7,硼烷-叔丁基胺与油胺的质量体积比为0.15-0.25g:3mL。
上述制备步骤(2)中,通过调控乙酰丙酮钯和乙酰丙酮钴的物质的量之比改变钯钴合金的组成。如乙酰丙酮钯和乙酰丙酮钴的物质的量分别为0.45mmol和0.11mmol时,由此可得到Co70Pd30;当乙酰丙酮钴和乙酰丙酮钯分别为0.25mmol和0.11mmol时,产物为Co55Pd45;当两者的物质的量均为0.3mmol时,得到的产物为Co30Pd70
上述制备步骤(4)中,氟化氢铵的摩尔浓度为4M。
上述制备步骤(5)中,介孔氮化碳与钯钴合金的己烷溶液的质量体积比为0.2-1g:0.25-4mL;钯钴合金的己烷溶液的浓度为0.3wt%。
与现有技术相比,本发明将特定配比的油胺、十八烯、硼烷-叔丁基胺、乙酰丙酮钴和乙酰丙酮钯配制成混合溶液进行反应,得到的钯钴纳米颗粒采用浸渍法与介孔氮化碳进行复合,得到了一种负载钯钴合金纳米颗粒的介孔氮化碳复合材料。所述方法制备的复合材料,钯钴合金纳米颗粒尺寸为3-4nm,实现了量子点级别的钯钴合金纳米颗粒在介孔氮化碳表面及孔道的均匀分散,使得钯钴合金纳米颗粒不易团聚。其次,由于钯钴合金良好的分散和独特的电导性,负载钯钴合金的介孔氮化碳复合材料的光催化制氢性能有了大幅度的提高。除此之外,所述的制备方法可以通过调节乙酰丙酮钴和乙酰丙酮钯的物质的量之比实现对钯钴合金组分的调控。
附图说明
图1(a)为本发明制备的钯钴合金纳米颗粒TEM图;图1(b)为本发明制备的负载钯钴合金的介孔氮化碳纳米材料TEM图。
图2为本发明制备得到的CoPd纳米合金的XRD图片。
图3为本发明制备的负载钯钴合金的介孔氮化碳纳米材料的光催化产氢活性图。
具体实施方式
下面结合附图,对本发明实施例进行详细的阐述。
实施例1
称取3mL油胺和7mL十八烯,待上述溶液混合均匀加入0.2g硼烷叔丁胺,加热至100℃。称取0.45mmol和0.11mmol的乙酰丙酮钴和乙酰丙酮钯分别加入两份3mL的油胺中,超声均匀后注入含有硼烷叔丁胺的油胺十八烯混合溶液中,在100℃保持2h,冷却至室温后用丙酮离心,产物加入己烷和无水乙醇混合溶液中,用无水乙醇离心清洗3次,得到的Co70Pd30分散在己烷中备用。
称取20g硅溶胶HS-40,加入10g单氰胺混合均匀,室温下机械搅拌3-4h,70℃烘箱反应30-60min,转移至坩埚,氩气氛围中550℃煅烧4h,升温速率为2.3℃/min,经研磨,加入到100mL氟化氢铵溶液中,搅拌12-24h,过滤后用去离子水清洗3次,60℃真空干燥7-8h得到的mpg-C3N4
称取0.5g的mpg-C3N4溶于30mL的乙醇溶液中,加入2mL的Co70Pd30溶液,搅拌3h,离心,用去离子水和无水乙醇分别清洗3次,70℃干燥7h得到Co70Pd30/mpg-C3N4
图1(a)为实施例1中制备得到的Co70Pd30纳米颗粒的TEM图,从图中可以明显的看到制备的Co70Pd30纳米颗粒大小均一,平均粒径在3-4nm之间。
图1(b)为实施例1中制备得到的负载钯钴合金的介孔氮化碳的TEM图,从图中可以看出Co70Pd30纳米颗粒成功负载在了介孔氮化碳的表面及其孔道。值得注意的是,图中较多Co70Pd30颗粒堆积在一起是由于介孔氮化碳的孔道结构堆叠导致,并非发生了团聚现象。
图2为实施例1中制备得到的Co70Pd30纳米颗粒的XRD图,通过与现有的文献对比参考,从图中可以确认是Co70Pd30的XRD衍射峰,这与图1(a)中HRTEM中测量得到的晶格间距d=0.22nm是一致的。
图3为实施例1中制备得到的负载钯钴合金的介孔氮化碳的光催化产氢活性图,通过与纯的介孔氮化碳对比,发现负载了Co70Pd30合金纳米颗粒后,介孔氮化碳的光催化制氢活性得到大幅度提升,5小时产氢达259μmol。
对比例2
称取3mL油胺和7mL十八烯,待上述溶液混合均匀加入0.2g硼烷叔丁胺,加热至100℃。称取0.11mmol的乙酰丙酮钯加入3mL的油胺中,超声均匀后注入含有硼烷叔丁胺的油胺十八烯混合溶液,在100℃保持2h,冷却至室温后用丙酮离心,产物加入己烷和无水乙醇混合溶液中,用无水乙醇离心清洗3次,得到的Pd纳米颗粒分散在己烷中备用。
称取20g硅溶胶HS-40,加入10g单氰胺混合均匀,室温下机械搅拌3-4h,70℃烘箱反应30-60min,转移至坩埚,氩气氛围中550℃煅烧4h,升温速率为2.3℃/min,经研磨,加入到100mL氟化氢铵溶液中,搅拌12-24h,过滤后用去离子水清洗3次,60℃真空干燥7-8h得到的mpg-C3N4
称取0.5g的mpg-C3N4溶于30mL的乙醇溶液中,加入2mL的Pd己烷溶液(浓度为0.3wt%),搅拌3h,离心,用去离子水和无水乙醇分别清洗3次,70℃干燥7h得到Pd/mpg-C3N4
图3为对比例2中制备得到的负载钯的介孔氮化碳的光催化产氢活性图。从图中可以看出,相比介孔氮化碳单体,不加入乙酰丙酮钴制备的单一Pd/mpg-C3N4同样具有产氢效果,但是光催化产氢性能明显不如负载钯钴合金的介孔氮化碳,一方面验证了本发明方法对于负载单一金属的可行性,另一方面说明负载合金纳米颗粒对于介孔氮化碳光催化制氢性能的提升具有重要意义。
对比例3
称取20g硅溶胶HS-40,加入10g单氰胺混合均匀,室温下机械搅拌3-4h,70℃烘箱反应30-60min,转移至坩埚,氩气氛围中550℃煅烧4h,升温速率为2.3℃/min,经研磨,加入到100mL氟化氢铵溶液中,搅拌12-24h,过滤后用去离子水清洗数次,60℃真空干燥7-8h得到的mpg-C3N4作为空白对比例。
对比例4
乙酰丙酮钴和乙酰丙酮钯分别为0.25mmol和0.11mmol,产物为Co55Pd45;其他同实施例1。5小时产氢190μmol。
对比例5
乙酰丙酮钴和乙酰丙酮钯均为0.3mmol时,得到的产物为Co30Pd70,其他同实施例1。5小时产氢215μmol。
就光催化产氢性能而言,Co70Pd30>Co30Pd70>Co55Pd45,因此调控乙酰丙酮钯和乙酰丙酮钴的物质的量之比改变钯钴合金的组成,会影响到光催化产氢性能。

Claims (7)

1.一种负载钯钴合金的介孔氮化碳纳米材料的制备方法,所述负载钯钴合金的介孔氮化碳纳米材料,钯钴合金纳米颗粒尺寸为3-4nm,钯钴合金纳米颗粒在介孔氮化碳表面及孔道的均匀分散,使得钯钴合金纳米颗粒不易团聚,其特征在于,具体步骤如下:
(1)将油胺和十八烯超声混合均匀,加入硼烷-叔丁基胺,并使硼烷-叔丁基胺在油胺十八烯混合溶液中均匀分散,然后加热至100-150℃;
(2)将乙酰丙酮钯和乙酰丙酮钴分别分散于油胺中,超声均匀后注入到步骤(1)中得到的混合溶液中,100-150℃条件下反应1-3h;
(3)待步骤(2)中反应后的溶液自然冷却至室温,加入丙酮进行离心,得到钯钴合金产物;将钯钴合金产物分散于己烷和无水乙醇的混合溶液中,用无水乙醇离心3次,得到钯钴合金纳米颗粒,并再次均匀分散于己烷溶液中备用;
(4)以硅溶胶HS-40为模板,加入单氰胺混合均匀,在室温下机械搅拌3-4h,70℃干燥箱反应30-60min,转移至坩埚,在氩气氛围中550℃煅烧4h,升温速率为2.3℃/min,得到的产物经研磨后加入到氟化氢铵溶液中,搅拌12-24h,过滤,用去离子水清洗数次,60℃真空干燥7-8h得到介孔氮化碳;
(5)采用浸渍法,将制备得到的介孔氮化碳在乙醇溶液中分散均匀,与步骤(3)中得到的分散于己烷溶液待用的钯钴合金混合均匀,并搅拌2-5h,离心,用去离子水和无水乙醇清洗,70℃干燥7-8h,经研磨得到负载钯钴合金的介孔氮化碳纳米材料。
2.如权利要求1所述的一种负载钯钴合金的介孔氮化碳纳米材料的制备方法,其特征在于,步骤(1)中,油胺和十八烯的体积比为3:7,硼烷-叔丁基胺与油胺的质量体积比为0.15-0.25g:3mL。
3.如权利要求1所述的一种负载钯钴合金的介孔氮化碳纳米材料的制备方法,其特征在于,步骤(2)中,通过调控乙酰丙酮钯和乙酰丙酮钴的物质的量之比改变钯钴合金的组成,进而能够改变制备得到的负载钯钴合金的介孔氮化碳纳米材料的光催化制氢活性;钯钴合金为Co70Pd30、Co55Pd45或Co30Pd70
4.如权利要求3所述的一种负载钯钴合金的介孔氮化碳纳米材料的制备方法,其特征在于,钯钴合金为Co70Pd30
5.如权利要求1所述的一种负载钯钴合金的介孔氮化碳纳米材料的制备方法,其特征在于,步骤(4)中,氟化氢铵的摩尔浓度为4M。
6.如权利要求1所述的一种负载钯钴合金的介孔氮化碳纳米材料的制备方法,其特征在于,步骤(5)中,介孔氮化碳与钯钴合金的己烷溶液的质量体积比为0.2-1g:0.25-4mL;钯钴合金的己烷溶液的浓度为0.3wt%。
7.如权利要求1-5任一所述制备方法制备的负载钯钴合金的介孔氮化碳纳米材料的用途,其特征在于,用作光催化制氢。
CN201811359096.5A 2018-11-15 2018-11-15 一种负载钯钴合金的介孔氮化碳纳米材料的制备方法 Pending CN109364974A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811359096.5A CN109364974A (zh) 2018-11-15 2018-11-15 一种负载钯钴合金的介孔氮化碳纳米材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811359096.5A CN109364974A (zh) 2018-11-15 2018-11-15 一种负载钯钴合金的介孔氮化碳纳米材料的制备方法

Publications (1)

Publication Number Publication Date
CN109364974A true CN109364974A (zh) 2019-02-22

Family

ID=65389327

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811359096.5A Pending CN109364974A (zh) 2018-11-15 2018-11-15 一种负载钯钴合金的介孔氮化碳纳米材料的制备方法

Country Status (1)

Country Link
CN (1) CN109364974A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110026224A (zh) * 2019-05-08 2019-07-19 苏州十一方生物科技有限公司 一种四氧化三钴修饰介孔氮化碳纳米复合材料的制备方法
CN110433841A (zh) * 2019-07-22 2019-11-12 盐城工学院 一种Ag-Pt双金属负载的含有氮空位氮化碳纳米片复合光催化剂的制备方法
CN111036270A (zh) * 2019-12-20 2020-04-21 佛山科学技术学院 一种复合光催化材料及其制备方法
CN111545198A (zh) * 2020-05-15 2020-08-18 江南大学 一种用于二氧化碳加氢制甲烷的催化剂及其制备与应用
CN112121836A (zh) * 2020-09-22 2020-12-25 上海纳米技术及应用国家工程研究中心有限公司 钯钴/氮化碳复合材料的制备方法及其产品和应用
CN113198490A (zh) * 2021-05-26 2021-08-03 华东理工大学 一种用于甲烷低温燃烧的负载钯钴合金催化剂及其制备方法
CN113443663A (zh) * 2021-07-19 2021-09-28 黑龙江工程学院 一种氧化钴/二硒化钴异质结构负载碳三氮四复合材料的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104525239A (zh) * 2015-01-09 2015-04-22 江苏大学 一种金钯合金/氮化碳复合纳米材料及其制备方法和用途
CN105032449A (zh) * 2015-07-11 2015-11-11 哈尔滨工业大学 一种多元梯度金属基纳米颗粒催化剂及其制备方法
CN107349901A (zh) * 2017-08-04 2017-11-17 广东工业大学 一种介孔氮化碳吸附材料及其制备方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104525239A (zh) * 2015-01-09 2015-04-22 江苏大学 一种金钯合金/氮化碳复合纳米材料及其制备方法和用途
CN105032449A (zh) * 2015-07-11 2015-11-11 哈尔滨工业大学 一种多元梯度金属基纳米颗粒催化剂及其制备方法
CN107349901A (zh) * 2017-08-04 2017-11-17 广东工业大学 一种介孔氮化碳吸附材料及其制备方法和应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
HAMZA KAHRI, ET AL: "Enhanced catalytic activity of monodispersed AgPd alloy nanoparticles assembled on mesoporous graphitic carbon nitride for the hydrolytic dehydrogenation of ammonia borane under sunlight", 《NANO RESEARCH》 *
HAYDAR GÖKSU, ET AL: "CoPd alloy nanoparticles catalyzed tandem ammonia boranedehydrogenation and reduction of aromatic nitro, nitrileand carbonyl compounds", 《APPLIED CATALYSIS A: GENERAL》 *
KÜBRA GÜNGÖRMEZ,ET AL: "Composition-controlled catalysis of reduced graphene oxidesupported CuPd alloy nanoparticles in the hydrolyticdehydrogenation of ammonia borane", 《APPLIED CATALYSIS A: GENERAL》 *
NESIBE SEDANUR CIFTCI,ET AL: "Monodisperse nickele-palladium alloy nanoparticles supported on reduced graphene oxide as highly efficient catalysts for the hydrolytic dehydrogenation of ammonia borane", 《INTERNATIONAL JOURNAL OF HYDROGEN ENERGY》 *
SHAOJUN GUO,ET AL: "FePt Nanoparticles Assembled on Graphene as Enhanced Catalyst for Oxygen Reduction Reaction", 《J. AM. CHEM. SOC.》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110026224A (zh) * 2019-05-08 2019-07-19 苏州十一方生物科技有限公司 一种四氧化三钴修饰介孔氮化碳纳米复合材料的制备方法
CN110433841A (zh) * 2019-07-22 2019-11-12 盐城工学院 一种Ag-Pt双金属负载的含有氮空位氮化碳纳米片复合光催化剂的制备方法
CN110433841B (zh) * 2019-07-22 2022-01-25 盐城工学院 一种Ag-Pt双金属负载的含有氮空位氮化碳纳米片复合光催化剂的制备方法
CN111036270A (zh) * 2019-12-20 2020-04-21 佛山科学技术学院 一种复合光催化材料及其制备方法
CN111036270B (zh) * 2019-12-20 2022-11-01 佛山科学技术学院 一种复合光催化材料及其制备方法
CN111545198A (zh) * 2020-05-15 2020-08-18 江南大学 一种用于二氧化碳加氢制甲烷的催化剂及其制备与应用
CN112121836A (zh) * 2020-09-22 2020-12-25 上海纳米技术及应用国家工程研究中心有限公司 钯钴/氮化碳复合材料的制备方法及其产品和应用
CN113198490A (zh) * 2021-05-26 2021-08-03 华东理工大学 一种用于甲烷低温燃烧的负载钯钴合金催化剂及其制备方法
CN113443663A (zh) * 2021-07-19 2021-09-28 黑龙江工程学院 一种氧化钴/二硒化钴异质结构负载碳三氮四复合材料的制备方法

Similar Documents

Publication Publication Date Title
CN109364974A (zh) 一种负载钯钴合金的介孔氮化碳纳米材料的制备方法
Wang et al. Monoclinic β-AgVO3 coupled with CdS formed a 1D/1D p–n heterojunction for efficient photocatalytic hydrogen evolution
Ye et al. The high photocatalytic efficiency and stability of LaNiO 3/gC 3 N 4 heterojunction nanocomposites for photocatalytic water splitting to hydrogen
CN104815651B (zh) 一种贵金属/二氧化钛纳米复合物的制备方法
CN108126695A (zh) 一种功能化碳纳米管负载钯纳米催化剂及其制备和应用
CN108786792B (zh) 一种金属/半导体复合光催化剂及其制备与应用
CN110578069B (zh) 一种金属及合金纳米晶的制备方法
CN109126784B (zh) 一种可见光-近红外光响应的金属纳米粒子/二氧化硅复合光催化剂
CN102068991B (zh) 一种高分散负载型纳米金属Ni催化剂及其制备方法
CN111359652A (zh) 一种氮化碳基镍金双金属负载型催化剂及其制备方法
CN103551146A (zh) 一种贵金属-二氧化钛纳米复合粒子的制备方法
CN116550357A (zh) 一种g-C3N4纳米片光催化剂的制备方法及应用
CN108855173A (zh) 一种光电催化分解水产氢的方法及其中使用的等离子体催化剂和制法
CN102553576A (zh) 用于硝基苯加氢反应合成苯胺催化剂的制备方法
CN107413361B (zh) 利用水热法制备非贵金属碳化钨光催化剂的方法
Xing et al. Anchoring Bi2S3 quantum dots on flower-like TiO2 nanostructures to boost photoredox coupling of H2 evolution and oxidative organic transformation
CN104549263A (zh) 一种Pd/铌酸纳米片催化剂及其制备方法和应用
CN114345324A (zh) 生物质碳基金属单原子复合催化剂、制备方法及其应用
CN111389398B (zh) 分级中空二氧化硅限域氧化亚铜可见光催化剂的制备方法
Keshipour et al. Nitrogen‐doped electrocatalysts, and photocatalyst in water splitting: effects, and doping protocols
CN109395719A (zh) 一种在多壁碳纳米管表面可控负载贵金属纳米材料的方法
CN108607546B (zh) 二氧化钛-碳复合载体负载铂的电催化剂及其制备方法
CN104624191A (zh) 一种CoO/C催化剂及其制备方法
CN113070063B (zh) 负载金属的三氧化钨基纳米异质结材料的原位合成方法
CN104362353B (zh) 一种直接甲醇燃料电池活性材料的制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190222