CN112587502A - 一种红细胞膜包覆的MOFs纳米药物载体及其制备方法与应用 - Google Patents

一种红细胞膜包覆的MOFs纳米药物载体及其制备方法与应用 Download PDF

Info

Publication number
CN112587502A
CN112587502A CN202011441191.7A CN202011441191A CN112587502A CN 112587502 A CN112587502 A CN 112587502A CN 202011441191 A CN202011441191 A CN 202011441191A CN 112587502 A CN112587502 A CN 112587502A
Authority
CN
China
Prior art keywords
mofs
drug carrier
nanoparticles
erythrocyte membrane
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011441191.7A
Other languages
English (en)
Other versions
CN112587502B (zh
Inventor
邢更妹
王志杰
李娟�
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of High Energy Physics of CAS
Original Assignee
Institute of High Energy Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of High Energy Physics of CAS filed Critical Institute of High Energy Physics of CAS
Priority to CN202011441191.7A priority Critical patent/CN112587502B/zh
Publication of CN112587502A publication Critical patent/CN112587502A/zh
Application granted granted Critical
Publication of CN112587502B publication Critical patent/CN112587502B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/5176Compounds of unknown constitution, e.g. material from plants or animals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/22Boron compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/0019Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules
    • A61K49/0021Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules the fluorescent group being a small organic molecule
    • A61K49/0036Porphyrins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/5123Organic compounds, e.g. fats, sugars
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5192Processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0641Erythrocytes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2509/00Methods for the dissociation of cells, e.g. specific use of enzymes

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • Immunology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Optics & Photonics (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Hematology (AREA)
  • Nanotechnology (AREA)
  • Zoology (AREA)
  • Cell Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Botany (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Food Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

本发明公开了一种红细胞膜包覆的MOFs纳米药物载体及其制备方法与应用,该MOFs纳米药物载体包括MOFs纳米粒子、红细胞膜,所述MOFs纳米粒子的孔隙上装载有硼酸,所述MOFs纳米粒子外部包裹红细胞膜,该MOFs纳米药物载体采用水热法合成,反应条件温和,合成效率高,且粒径均匀,单一分散性好,载药量高,具有良好荧光成像能力和高的生物相容性,可作为抗肿瘤药物载体。

Description

一种红细胞膜包覆的MOFs纳米药物载体及其制备方法与应用
技术领域
本发明属于化学与生物医学领域,具体涉及一种红细胞膜包覆的MOFs纳米药物载体及其制备方法与应用。
背景技术
虽然癌症的治疗方法在不断进步,但依于抗癌药物的治疗仍然是当前临床癌症诊疗的主要手段,目前,由于许多药物的活性成分在生理状况下不稳定、溶解度低、毒副作用大,导致现在许多抗癌药物的药效以及治疗效果不如预期,而且还会对正常组织造成不可逆的伤害。因此许多抗癌药物并不适合直接给药方式,需要利用合适的药物载体在各组织和细胞进行药物传递,从而达到减少给药次数,优化疗程,减少药物副作用以及降低病人痛苦,增加病人依从性的效果。在肿瘤及癌症治疗中,硼酸及其衍生物发挥重要作用,但因为硼酸具有水溶性差、毒性高、靶向性差的特点,当前的含硼药物不适合直接给药方式,需要利用合适的药物载体进行药物传递,实现药物在癌症部位的释放,从而达到高效治疗的效果。另外,硼酸在水中的溶解性与温度正相关,这使脂质体、微乳液、固体脂质纳米粒等热稳定性差的纳米载体对硼酸的装载效率低下,因此,需设计、构建合适的药物载体材料。由于纳米材料在肿瘤部位具有高渗透长滞留(EPR)效应,许多纳米药物载体已经成功应用于临床,纳米载药技术已成为当前药物发展的重要方向之一。
近几十年来新兴的金属一有机框架材料(MOFs)具有载药量高、生物相容性好,易于化学修饰等特点,符合理想药物载体材料的要求。另外,卟啉类化合物素有“生命色素”之称,具有生物安全性高、肿瘤组织亲和性好、易有效清除以及低副作用等特点,同时其具有独特的光学性质,活跃于癌症的光动力治疗研究领域,卟啉MOFs在生物医疗领域的应用也引起大家的广泛关注。目前,虽然关于卟啉MOFs作为药物载体的研究表明这些材料已经处于临床前期水平,但在药物运载的应用领域,传统MOFs依旧存在不足,如:(1)MOFs材料的毒性评价存在争议,单单选用生物亲和的金属和有机配体不能完全保证材料一定安全;(2)靶向性与功能性不足,对于药物载体而言,除了具有药物装载的能力之外,对病变组织的靶向性和诊断能力是实现诊疗一体化的关键,有助于合理制定治疗方案。
发明内容
本发明的目的在于提供一种红细胞膜包覆的MOFs纳米药物载体及其制备方法与应用,该MOFs纳米药物载体采用水热法合成,反应条件温和,合成效率高,且粒径均匀,单一分散性好,其稳定性好,载药量高,具有高的生物相容性及良好的荧光成像能力,可用于制备抗肿瘤药物载体。
本发明为了实现上述目的,采用的技术解决方案是:
一种红细胞膜包覆的MOFs纳米药物载体,包括MOFs纳米粒子、红细胞膜,所述MOFs纳米粒子的孔隙上装载有硼酸,所述MOFs纳米粒子外部包裹红细胞膜。
优选的,所述MOFs纳米粒子的粒径为102±0.3nm。
优选的,包裹红细胞膜的MOFs纳米粒子的粒径为116±0.3nm。
上述一种红细胞膜包覆的MOFs纳米药物载体的制备方法,包括以下步骤:
(1)制备卟啉锆基MOFs纳米粒子:将5,10,15,20-四(4-羧基苯基)卟啉、八水合氯化氧锆和苯甲酸经超声溶解于DMF溶液中,然后将反应溶液加热至80~100℃,并搅拌5~8h,反应完成后冷却至室温,并离心处理,收集棕色纳米颗粒,再用DMF溶液洗涤至少2次,即得到卟啉锆基MOFs纳米粒子;
(2)装载硼酸药物载体:首先将硼酸溶解于沸水中,然后将卟啉锆基MOFs纳米粒子加入沸水中并超声混匀,将混合物在黑暗中回流,反应结束后趁热离心,弃掉上清,再用沸水洗涤离心至少2次,得到装载有硼酸的卟啉锆基MOFs纳米粒子;
(3)提取自体红细胞膜;
(4)包覆红细胞膜:将装载有硼酸的卟啉锆基MOFs纳米粒子溶于PBS配制成MOFs纳米粒子溶液,将红细胞膜溶液与MOFs纳米粒子溶液混合,并用水相多孔滤头挤出至少15次,将得到的混合溶液经冷冻干燥,即得到红细胞膜包覆的载有硼酸的卟啉锆基MOFs纳米粒子。
优选的,所述步骤(3)提取红细胞膜的步骤为:利用大鼠心脏血液,将其离心,吸取上层清液、中间白细胞和血小板层,将下层血细胞用等渗PBS吹散混匀,再重复离心洗涤,将沉淀得到的红细胞用低渗Tris-HCl缓冲液稀释,放置于冰箱内,并每隔3h离心换液一次,至上清液无明显红色后,再用低渗Tris-HCl缓冲液离心洗涤,至下层沉淀为粉红色,上层清液无色透明,即得到纯净的红细胞膜碎片。
优选的,所述步骤(1)中5,10,15,20-四(4-羧基苯基)卟啉、八水合氯化氧锆和苯甲酸的质量比为1:3:28,所述步骤(2)中硼酸与卟啉锆基MOFs纳米粒子的质量比为400:1。
优选的,所述步骤(4)中MOFs纳米粒子溶液与红细胞膜溶液的浓度均为1mg/mL。
本发明的另一目的是提供一种红细胞膜包覆的MOFs纳米药物载体在制备抗肿瘤药物载体中的应用。
优选的,所述应用包括在高温环境中装载药物。
优选的,所述应用包括荧光成像与药物追踪。
本发明的有益效果是:
(1)该红细胞膜包覆的MOFs纳米药物载体采用水热法合成,制备方法简单,反应条件温和,合成效率高,成本低,有利于大规模生成,且粒径均匀,包覆红细胞膜后粒径为116±0.3nm,单一分散性好;
(2)具有良好热稳定性,在沸水环境中仍可以保持结构稳定,能够在高温环境中装载药物,且载药量高,硼酸装载率达到45wt%;
(3)具有荧光成像能力,可以对药物的体内过程及代谢进行追踪,且能靶向作用于肿瘤细胞。
(4)表面包覆有自体红细胞膜,提高了免疫逃逸性,提高了生物相容性,避免了副作用的发生。
附图说明
图1是卟啉锆基MOFs纳米粒子的TEM图;
图2是外部包裹有红细胞膜的卟啉锆基MOFs纳米粒子的TEM图;
图3是红细胞膜包裹前后的水合粒径分布变化图;
图4是经过步骤(1)、(2)、(4)后的Zeta电位变化图;
图5是MOFs纳米粒子装载硼酸前后的紫外吸收光谱图;
图6是MOFs纳米粒子装载硼酸前后的红外吸收光谱图;
图7是MOFs纳米粒子装载硼酸前后的SEM图;
图8是MOFs纳米粒子的荧光光谱图;
图9是包裹红细胞膜MOFs纳米粒子、未包裹红细胞膜的MOFs纳米粒子与人脐静脉内皮细胞共培养的CLSM检测图;
图10是包裹红细胞膜与未包裹红细胞膜的MOFs纳米粒子的溶血率对比图;
图11是包裹红细胞膜与未包裹红细胞膜的MOFs纳米粒子的溶血试验照片;
图12是包裹红细胞膜的MOFs纳米粒子与人脐静脉内皮细胞、脑胶质瘤细胞共培养的CLSM图。
具体实施方式
本发明提供了一种红细胞膜包覆的MOFs纳米药物载体及其制备方法与应用,为使本发明的目的、技术方案及效果更加清楚、明确,以下结合附图对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
实施例1
本实施例是以大鼠为研究对象,对红细胞膜包覆的MOFs纳米药物载体及其制备方法与应用进行说明。
一种红细胞膜包覆的MOFs纳米药物载体,包括MOFs纳米粒子、红细胞膜,MOFs纳米粒子的孔隙上装载有硼酸,MOFs纳米粒子外部包裹红细胞膜,该MOFs纳米粒子的粒径为102±0.3nm,包裹红细胞膜后,包裹红细胞膜的MOFs纳米粒子的粒径为116±0.3nm,该MOFs纳米粒子用于制备抗肿瘤药物载体,具有良好的荧光成像能力,可用于荧光成像与药物追踪,可作为荧光信号对肿瘤进行诊断,且能在高温环境中装载药物,载药量高。
上述一种红细胞包覆的MOFs纳米药物载体的制备方法,包括以下步骤:
(1)制备卟啉锆基MOFs纳米粒子:将5,10,15,20-四(4-羧基苯基)卟啉(100mg)、八水合氯化氧锆(300mg)和苯甲酸(2.8g)经超声溶解于DMF溶液(100mL)中,然后将反应溶液加热至90℃,轻轻搅拌6h,反应完成后冷却至室温,离心处理(离心速度10000rpm,离心时间20min)收集到棕色纳米颗粒(50mg),然后用DMF洗涤3次,即得到卟啉锆基MOFs纳米粒子;
(2)装载硼酸药物载体:称取4g硼酸溶解于10mL沸水中,然后再称取10mg铁卟啉锆基MOFs加入沸水中并超声混匀,将混合物在黑暗中回流24h,趁热离心(离心速度5000rpm,离心时间10min),弃掉上清,再用5mL沸水洗涤离心3次,得到深棕色的装载有硼酸的卟啉锆基MOFs纳米粒子,并避光保存;
(3)提取自体红细胞膜:本实施例以提取大鼠心脏血液红细胞膜为例进行说明,取大鼠心脏血液4mL,在4℃离心(离心速度3000rpm,离心时间20min),小心吸取上层清液、中间白细胞和血小板层,将下层血细胞层用等渗PBS吹散混匀,再重复离心洗涤3次,将沉淀得到的红细胞用低渗Tris-HCl缓冲液(10Mm Tris-HCl,1mM EDTA,pH=7.4)按1:50的比例稀释,放置于4℃冰箱内,每3小时离心换液一次(离心速度10000rpm,离心时间15min),至上清液无明显红色后,用1mL低渗Tris-HCl缓冲液离心洗涤(离心速度800rpm,离心时间10min),至下层沉淀为粉红色,上层清液无色透明后,则得到纯净的红细胞膜碎片;
(4)包覆红细胞膜:将装载有硼酸的卟啉锆基MOFs纳米粒子溶于PBS配制成1mg/mL的MOFs纳米粒子溶液,将红细胞膜溶液(1mg/mL)与MOFs纳米粒子溶液使用水相多孔滤头共挤出15次以上,滤头直径为400nm,然后将得到的混合溶液经冷冻干燥,即得到红细胞膜包覆的载药卟啉锆基MOFs纳米粒子。
对通过上述步骤(1)、(2)、(4)分别得到的卟啉锆基MOFs纳米粒子、装载有硼酸的卟啉锆基MOFs纳米粒子及红细胞膜包覆的载药卟啉锆基MOFs纳米粒子进行相关检测分析,并通过相关试验验证其性能,结果如下:
1.MOFs纳米粒子的粒径及红细胞膜是否包覆于MOFs纳米粒子表面
将红细胞膜包裹前后的载硼酸卟啉锆基MOFs纳米粒子用电镜进行观察,即将步骤(2)及步骤(4)的产物进行观察,图1为不同放大倍数观察的载硼酸卟啉锆基MOFs纳米粒子的TEM图,图2是不同放大倍数观察的外部包裹有红细胞膜的载硼酸卟啉锆基MOFs纳米粒子的TEM图,从图1中可以看出,载硼酸卟啉锆基MOFs纳米粒子粒径均匀,粒径在102nm左右,从图2中可以看出,载硼酸卟啉锆基MOFs纳米粒子表面包覆有红细胞膜,其粒径在116nm左右,包裹红细胞膜后,载硼酸卟啉锆基MOFs纳米粒子的粒径增加了红细胞膜的厚度。
通过布鲁克海文NanoDLS高灵敏粒度分析仪检测红细胞膜包裹前后的载硼酸卟啉锆基MOFs纳米粒子的水合粒径分布变化,分别将未包膜及包膜MOFs纳米粒子溶于PBS(Ph=7)溶液中进行检测,溶液浓度为1mg/mL,如图3所示为红细胞膜包裹前后的载硼酸卟啉锆基MOFs纳米粒子的水合粒径分布变化图,分从图3可以看出,红细胞膜包裹后,粒径增加了约14nm,这与红细胞膜的厚度一致,说明红细胞膜成功包裹于MOFs纳米粒子表面。
采用zeta电位分析仪对步骤(1)、(2)、(4)所得的产物进行zeta电位分析,图4是经过步骤(1)、(2)、(4)后的Zeta电位变化图,经步骤(1)制备的卟啉锆基MOFs纳米粒子的表面电位为负电荷,经步骤(2)装载硼酸后,表面电位变为正电菏,说明硼酸的引入使表面电位改变,经步骤(4)红细胞膜包裹后,表面电位变为负电荷,这是因为红细胞膜表面带有负电,说明了MOFs纳米粒子表面被红细胞膜覆盖。
2.检测硼酸是否成功装载于MOFs纳米粒子的孔隙中
通过紫外光谱分析仪对装载硼酸前后的MOFs纳米粒子进行紫外分析,如图5所示为MOFs纳米粒子装载硼酸前后的紫外吸收光谱图,从图5可以看出,装载硼酸前后,紫外光谱上的卟啉环的吸收峰发生了红移,代表有基态电子供体-受体的相互作用,说明硼酸装载进MOFs纳米粒子的孔隙之中。
通过红外光谱分析仪对硼酸、卟啉锆基MOFs纳米粒子及载有硼酸的卟啉锆基MOFs纳米粒子进行红外分析,如图6所示为MOFs纳米粒子装载硼酸前后的红外吸收光谱图,从图6可以看出,装载硼酸的MOFs材料在2360cm-1处出现了硼酸的特征峰,并在1450cm-1处出现了硼酸与MOFs材料的叠加峰,说明同时存在硼酸与MOFs两种物质。
3.MOFs纳米粒子的稳定性及载药量检测
通过扫描电镜检测分析在高温沸水中装载硼酸前后的MOFs纳米粒子的结构,如图6所示为MOFs纳米粒子装载硼酸前后的SEM图,从图6可以看出,在沸水中装载硼酸前后,MOFs纳米粒子的结构未发生明显变化,并通过ICP-AES检测装载硼酸后的MOFs纳米粒子中的硼酸含量,硼酸装载率达到45wt%,远高于一般纳米载体的载药量。
4.MOFs纳米粒子的荧光性能检测
通过荧光光谱仪分析红细胞膜包覆的载药卟啉锆基MOFs纳米粒子的荧光性能,如图8所示为MOFs纳米粒子的荧光光谱图,从图8中可以看出,MOFs纳米粒子在380-450nm处激发,发射波长为600-700nm,具有大的斯托克位移,位移大表示能量损失少,荧光效率高,抗荧光干扰效果好,具有良好的荧光成像能力,可用于荧光成像与药物追踪,可作为荧光信号对肿瘤进行诊断。
5.MOFs纳米粒子的免疫逃逸性及毒性检测
分别将包裹红细胞膜MOFs纳米粒子、未包裹红细胞膜的MOFs纳米粒子与人脐静脉内皮细胞(HUVECs)共培养3h,并用激光共聚焦显微镜(CLSM)观察,其中HUVECs用Hoechst33342染色,对照组未添加MOFs纳米粒子,包膜MOFs与未包膜MOFs组中MOFs浓度一样,如图9所示为包裹红细胞膜MOFs纳米粒子、未包裹红细胞膜的MOFs纳米粒子与人脐静脉内皮细胞(HUVECs)共培养的CLSM检测图,从图9中可以看出,红细胞包裹的MOFs纳米粒子在HUVECs中的含量明显少于未包膜,证明其具有免疫逃逸性,可以避免被网状内皮系统包裹清除。并通过溶血实验评估了该MOFs纳米粒子的毒性,如图10所示为包裹红细胞膜与未包裹红细胞膜的MOFs纳米粒子的溶血率对比图,横坐标为MOFs纳米粒子的浓度,纵坐标为溶血率,从图10中可以看出,未包膜的溶血率明显高于包膜的溶血率;图11为包裹红细胞膜与未包裹红细胞膜的MOFs纳米粒子的溶血试验照片,从图11中可以看出,在MOFs纳米粒子浓度为200mg/L时,包裹红细胞膜的试验样品仍未发生明显的溶血现象,而未包裹红细胞膜的,在100mg/L的浓度时就发生溶血,说明红细胞膜的包裹明显降低了MOFs纳米粒子的毒性。
6.MOFs纳米粒子靶向富集于肿瘤细胞
分别将相同浓度的包裹红细胞膜的MOFs纳米粒子与人脐静脉内皮细胞(HUVECs)、脑胶质瘤细胞(U87-MG)共培养,并用激光共聚焦显微镜(CLSM)观察,如图12所示为包裹红细胞膜的MOFs纳米粒子与人脐静脉内皮细胞(HUVECs)、脑胶质瘤细胞(U87-MG)共培养的CLSM图,从图12中可以看出,包膜的MOFs纳米粒子靶向富集于U87-MG,而在HUVECs中的含量明显较少,进一步证明包膜MOFs纳米粒子具有免疫逃逸性,可以避免被网状内皮系统包裹清除,从而保证大部分MOFs纳米粒子可以靶向作用于肿瘤细胞。
本发明中未述及的部分,采用或借鉴已有技术即可实现。
当然,上述说明并非是对本发明的限制,本发明也并不仅限于上述举例,本技术领域的技术人员在本发明的实质范围内所做出的改型、添加或替换,也应属于本发明的保护范围。

Claims (10)

1.一种红细胞膜包覆的MOFs纳米药物载体,其特征在于,包括MOFs纳米粒子、红细胞膜,所述MOFs纳米粒子的孔隙上装载有硼酸,所述MOFs纳米粒子外部包裹红细胞膜。
2.根据权利要求1所述的一种红细胞膜包覆的MOFs纳米药物载体,其特征在于,所述MOFs纳米粒子的粒径为102±0.3nm。
3.根据权利要求2所述的一种红细胞膜包覆的MOFs纳米药物载体,其特征在于,包裹红细胞膜的MOFs纳米粒子的粒径为116±0.3nm。
4.根据权利要求1-3任一项所述的一种红细胞膜包覆的MOFs纳米药物载体的制备方法,其特征在于,包括以下步骤:
(1)制备卟啉锆基MOFs纳米粒子:将5,10,15,20-四(4-羧基苯基)卟啉、八水合氯化氧锆和苯甲酸经超声溶解于DMF溶液中,然后将反应溶液加热至80~100℃,并搅拌5~8h,反应完成后冷却至室温,并离心处理,收集棕色纳米颗粒,再用DMF溶液洗涤至少2次,即得到卟啉锆基MOFs纳米粒子;
(2)装载硼酸药物载体:首先将硼酸溶解于沸水中,然后将卟啉锆基MOFs纳米粒子加入沸水中并超声混匀,将混合物在黑暗中回流,反应结束后趁热离心,弃掉上清,再用沸水洗涤离心至少2次,得到装载有硼酸的卟啉锆基MOFs纳米粒子;
(3)提取自体红细胞膜;
(4)包覆红细胞膜:将装载有硼酸的卟啉锆基MOFs纳米粒子溶于PBS配制成MOFs纳米粒子溶液,将红细胞膜溶液与MOFs纳米粒子溶液混合,并用水相多孔滤头挤出至少15次,将得到的混合溶液经冷冻干燥,即得到红细胞膜包覆的载有硼酸的卟啉锆基MOFs纳米粒子。
5.根据权利要求4所述的一种红细胞膜包覆的MOFs纳米药物载体的制备方法,其特征在于,所述步骤(3)提取红细胞膜的步骤为:利用大鼠心脏血液,将其离心,吸取上层清液、中间白细胞和血小板层,将下层血细胞用等渗PBS吹散混匀,再重复离心洗涤,将沉淀得到的红细胞用低渗Tris-HCl缓冲液稀释,放置于冰箱内,并每隔3h离心换液一次,至上清液无明显红色后,再用低渗Tris-HCl缓冲液离心洗涤,至下层沉淀为粉红色,上层清液无色透明,即得到纯净的红细胞膜碎片。
6.根据权利要求4所述的一种红细胞膜包覆的MOFs纳米药物载体的制备方法,其特征在于,所述步骤(1)中5,10,15,20-四(4-羧基苯基)卟啉、八水合氯化氧锆和苯甲酸的质量比为1:3:28,所述步骤(2)中硼酸与卟啉锆基MOFs纳米粒子的质量比为400:1。
7.根据权利要求4所述的一种红细胞膜包覆的MOFs纳米药物载体的制备方法,其特征在于,所述步骤(4)中MOFs纳米粒子溶液与红细胞膜溶液的浓度均为1mg/mL。
8.根据权利要求1-3任一项所述的一种红细胞膜包覆的MOFs纳米药物载体在制备抗肿瘤药物载体中的应用。
9.根据权利要求8所述的一种红细胞膜包覆的MOFs纳米药物载体在制备抗肿瘤药物载体中的应用,其特征在于,所述的应用包括在高温环境中装载药物。
10.根据权利要求8所述的一种红细胞膜包覆的MOFs纳米药物载体在制备抗肿瘤药物载体中的应用,其特征在于,所述的应用包括荧光成像与药物追踪。
CN202011441191.7A 2020-12-08 2020-12-08 一种红细胞膜包覆的MOFs纳米药物载体及其制备方法与应用 Active CN112587502B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011441191.7A CN112587502B (zh) 2020-12-08 2020-12-08 一种红细胞膜包覆的MOFs纳米药物载体及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011441191.7A CN112587502B (zh) 2020-12-08 2020-12-08 一种红细胞膜包覆的MOFs纳米药物载体及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN112587502A true CN112587502A (zh) 2021-04-02
CN112587502B CN112587502B (zh) 2021-09-28

Family

ID=75191993

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011441191.7A Active CN112587502B (zh) 2020-12-08 2020-12-08 一种红细胞膜包覆的MOFs纳米药物载体及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN112587502B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113117079A (zh) * 2021-04-13 2021-07-16 浙江大学 一种具有声动力联合饥饿疗法抗肿瘤功能的卟啉基金属有机框架纳米载体及其制备方法
CN114099466A (zh) * 2021-11-24 2022-03-01 国家纳米科学中心 一种仿生细胞膜-内核纳米粒子及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180274013A1 (en) * 2015-09-23 2018-09-27 Nanyang Technological University Metal-organic framework nanosheet
CN111450252A (zh) * 2020-03-25 2020-07-28 暨南大学 一种用于靶向堵塞肿瘤血管的药物及其制备方法与应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180274013A1 (en) * 2015-09-23 2018-09-27 Nanyang Technological University Metal-organic framework nanosheet
CN111450252A (zh) * 2020-03-25 2020-07-28 暨南大学 一种用于靶向堵塞肿瘤血管的药物及其制备方法与应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
WEI ZHANG等: "In Situ Fluorescence Imaging of the Levels of Glycosylation and Phosphorylation by a MOF-Based Nanoprobe in Depressed Mice", 《ANALYTICAL CHEMISTRY》 *
李婷等: "金属有机骨架材料载运抗肿瘤药物的研究进展", 《化学试剂》 *
赖欣宜等: "纳米金属有机框架材料在药物递送领域的应用", 《化学进展》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113117079A (zh) * 2021-04-13 2021-07-16 浙江大学 一种具有声动力联合饥饿疗法抗肿瘤功能的卟啉基金属有机框架纳米载体及其制备方法
CN114099466A (zh) * 2021-11-24 2022-03-01 国家纳米科学中心 一种仿生细胞膜-内核纳米粒子及其制备方法和应用

Also Published As

Publication number Publication date
CN112587502B (zh) 2021-09-28

Similar Documents

Publication Publication Date Title
Ma et al. Metal–organic frameworks towards bio-medical applications
CN112587502B (zh) 一种红细胞膜包覆的MOFs纳米药物载体及其制备方法与应用
CN111265533A (zh) 一种基于脂质膜和金属有机框架的核壳纳米颗粒的制备方法
KR101043407B1 (ko) 암 표적성이 우수한 단백질 복합체 및 이의 제조방법
Li et al. α-Lipoic acid stabilized DTX/IR780 micelles for photoacoustic/fluorescence imaging guided photothermal therapy/chemotherapy of breast cancer
CN111956801B (zh) 光控释放co和阿霉素的纳米药物系统及其制备和应用
Liu et al. Responsive functionalized MoSe2 nanosystem for highly efficient synergistic therapy of breast cancer
CN110408047B (zh) 纳米配位聚合物及其制备方法和应用
CN112999153B (zh) 载化疗药物/光敏剂的纳米胶束及其制备方法和应用
Zhang et al. Highly stable and long‐circulating metal‐organic frameworks nanoprobes for sensitive tumor detection in vivo
CN106074451B (zh) 含碳纳米笼的还原刺激响应药物载体及制备方法和应用
CN110559454B (zh) 一种用于诊疗阿尔兹海默症的纳米复合药物
CN102861334B (zh) 肿瘤信号响应的主动治疗纳米光动力药物载体及制法
Zhao et al. Design and synthesis of cancer-cell-membrane-camouflaged hemoporfin-Cu9S8 nanoagents for homotypic tumor-targeted photothermal-sonodynamic therapy
Song et al. Biomimetic magnetofluorescent ferritin nanoclusters for magnetic resonance and fluorescence-dual modal imaging and targeted tumor therapy
CN111632032A (zh) 一种天然小分子共组装纳米药物传输系统及其制备方法与应用
CN112587661B (zh) 一种载有硼酸的金属卟啉锆基MOFs材料及其制备方法与应用
CN111450265B (zh) 一种负载金药复合物的靶向pH敏感性聚合物囊泡及其制备方法
CN112791061A (zh) 一种具有靶向长循环的多级仿生纳米药物载体的制备方法
CN115192708B (zh) 负载抗肿瘤药物的纳米复合材料、纳米载药体系及制备与应用
CN108888773B (zh) 自组装球形药物纳米制剂及其制备方法与用途
CN113616806B (zh) 一种铂-艾考糊精-聚己内酯大分子化合物、纳米载药系统及其应用
Oh et al. Thermally induced silane dehydrocoupling on porous silicon nanoparticles for ultra-long-acting drug release
CN112870377B (zh) 用于肿瘤光热和光动力协同治疗的复合纳米粒及制备方法
Gan et al. Drug delivery system for the extended-release of larotrectinib based on a biocompatible Fe-based metal-organic framework: synthesis, characterization, in vitro release properties and antitumor evaluation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant