CN112553585B - 一种聚甲基丙烯酸甲酯基底介质增透膜及其制备方法 - Google Patents

一种聚甲基丙烯酸甲酯基底介质增透膜及其制备方法 Download PDF

Info

Publication number
CN112553585B
CN112553585B CN202011408757.6A CN202011408757A CN112553585B CN 112553585 B CN112553585 B CN 112553585B CN 202011408757 A CN202011408757 A CN 202011408757A CN 112553585 B CN112553585 B CN 112553585B
Authority
CN
China
Prior art keywords
layer
film
antireflection film
refractive index
polymethyl methacrylate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011408757.6A
Other languages
English (en)
Other versions
CN112553585A (zh
Inventor
谢雨江
原清海
林兆文
王奔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Mifeng Laser Technology Co ltd
Original Assignee
Shanghai Mifeng Laser Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Mifeng Laser Technology Co ltd filed Critical Shanghai Mifeng Laser Technology Co ltd
Priority to CN202011408757.6A priority Critical patent/CN112553585B/zh
Publication of CN112553585A publication Critical patent/CN112553585A/zh
Application granted granted Critical
Publication of CN112553585B publication Critical patent/CN112553585B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/221Ion beam deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明提供了一种聚甲基丙烯酸甲酯基底介质增透膜及其制备方法,该增透膜的膜系结构为:Sub/M/H/L/A;其中,Sub为PMMA基底层,M为Al2O3过渡层,H为Ta2O5高折射率膜层,L为SiO2低折射率膜层,A为空气层。该制备方法中利用磁控溅射方式制备PMMA基底上的过渡层,使过渡层实现了基底与后续功能层的稳定连接,同时利用电子束蒸发、离子束辅助方式制备功能层,极大地改善了后续功能层的应力状态,有效的解决了PMMA基底与膜层热膨胀系数差异导致的脱膜、机械强度低等问题。本发明制备的PMMA基底增透膜能够在940nm波段获得极高的透过率,具有可操作性强、制备工艺重复性好、产品质量优良等优点,可广泛应用于光电系统等领域。

Description

一种聚甲基丙烯酸甲酯基底介质增透膜及其制备方法
技术领域
本公开涉及光学薄膜技术领域,尤其涉及一种聚甲基丙烯酸甲酯基底介质增透膜及其制备方法。
背景技术
聚甲基丙烯酸甲酯(PMMA),俗称有机玻璃,具有优异的光学性能(光透射率为92-95%)、耐候和耐化学腐蚀性,电绝缘性和生物相容性良好,易于成型加工,相对密度小,力学强度大于珪酸盐无机玻璃。PMMA可作为取景器、菲涅耳透镜应用于投影仪、VR等光学系统,由于其优异的物化性能也广泛应用于光盘、光导纤维、航空、航海、建筑及日常生活等方面。
尽管PMMA在可见光波段没有吸收系数,但是菲涅耳反射效应的存在,经过PMMA基底的光线会得到削弱,降低系统的能量利用效率及稳定性,因此对于PMMA基底增透膜的研制具有重要意义。目前对于PMMA镀膜主要采用凝胶-溶胶法化学镀膜的工艺,但是由于凝胶-溶胶法的边缘效应,难以保证膜层的均匀性,且无法完成高精度增透膜制备。
PMMA基底耐热性不足、热形变较大的特性对薄膜的力学和光学性质带来诸多负面影响,包括薄膜与基底之间的应力不平衡,机械牢固低,膜层龟裂等,给电子束蒸发技术的制备工艺带来巨大的挑战。
发明内容
有鉴于此,本发明的目的是针对PMMA基底耐热性不高(热形变温度为95℃),线性膨胀系数较大(8.3×10-5/K)的缺点,公开了一种聚甲基丙烯酸甲酯基底介质增透膜及其制备方法,通过优化膜层设计与制备工艺,将电子束蒸发、离子束辅助技术(IAD)与磁控溅射技术(MS)相结合,在PMMA基底上镀制高精度介质增透膜,设计了过渡层与功能层相结合的膜系结构,该膜系结构具有增加PMMA基底透过率的光学性能,有效解决了PMMA基底特性带来的镀膜难点。
为了解决上述问题,本发明提供如下技术方案:
一种聚甲基丙烯酸甲酯基底介质增透膜的制备方法,包括如下步骤:
S1、采用磁控溅射方式制备Al2O3过渡层;其中,当真空度达到8×10-5Pa时,通入保护气体,预溅射3-10min后再通入反应气体纯氧,待靶面电压与电流稳定后,进行Al2O3过渡层溅射,溅射完成后取出镜片进行清洗;
S2、采用电子束蒸发、离子束辅助方式镀制Ta2O5高折射率膜层;其中,真空室内的保护气体流量为8sccm,氧气流量为32sccm,电压为450V,电流为370mA,镀制速率为0.36-0.38nm/s;
S3、采用电子束蒸发、离子束辅助方式镀制SiO2低折射率膜层;其中,真空室内的保护气体流量为5sccm,氧气流量为30sccm,电压为420V,电流为500mA,镀制速率为0.52-0.55nm/s;
S4、将镀制结束后的样品在真空室内缓慢梯度降温至40±2℃,并保持4小时。
进一步地,在进行S1之前,先将PMMA基底放入去离子水中用超声波清洗,清洗后采用干燥空气吹干,再进行Al2O3过渡层的镀制。
进一步地,S1中,在Al2O3过渡层镀制结束后,取出镜片,先采用去离子水加洗涤剂擦洗,再用去离子水冲洗干净,最后采用78%纯度的乙醇和22%纯度的乙醚的混合溶液进行擦拭清洗。
进一步地,在进行去离子水加洗涤剂擦洗时,去离子水与洗涤剂的质量比为19:1。
进一步地,所述乙醇和乙醚的混合溶液中,乙醇的质量百分数为80-85%,乙醚的质量百分数为15-20%。
采用酒精可去除光学元件清洁后的残留油污,乙醚可使滞留镜片上的酒精迅速挥发。
进一步地,S1中,保护气体流量为40sccm,靶基距为55mm。
进一步地,所述保护气体为高纯氩气。
本发明还提供一种如上述的制备方法制备得到的聚甲基丙烯酸甲酯基底介质增透膜,该增透膜的膜系结构为:
Sub/M/H/L/A;其中,Sub为PMMA基底层,M为Al2O3过渡层,H为Ta2O5高折射率膜层,L为SiO2低折射率膜层,A为空气层。
进一步地,该增透膜中,Al2O3过渡层、Ta2O5高折射率膜层、SiO2低折射率膜层的物理厚度范围依次为:165-168nm、60-63nm、180-183nm。
进一步地,该增透膜中,Al2O3过渡层、Ta2O5高折射率膜层、SiO2低折射率膜层的物理厚度依次为:166nm、63nm、182nm。
在本发明的上述制备方法中,S2和S3中均使用离子束辅助,是为了增加薄膜在PMMA基底过渡层上的附着力,同时改善薄膜与PMMA的应力。并且,在S2中,Ta2O5高折射率膜层的镀制速率优选为0.38nm/s,对于PMMA基底上薄膜的生长,沉积速率都会影响其应力,使薄膜在镀制后容易发生龟裂,通过实验对比,得到上述最优的沉积速率。在镀制完成后,S4中缓慢退火是为了减小成膜以后的热应力,防止薄膜龟裂。
本发明为解决PMMA基底与膜层附着力差导致的脱模、化学稳定性弱、机械强度低等问题,创造性的得到了PMMA基底介质增透膜的最优制备方法,选取了适合PMMA基底特点的膜料,并在膜系结构设计中给予了过渡层设计,利用磁控溅射技术(MS)制备过渡层以增强膜层与PMMA基底附着力,使过渡层实现了基底与后续功能层的稳定连接,利用电子束蒸发、离子束辅助(IAD)技术制备后续膜层,极大地改善了后续功能层的应力状态,实现了薄膜的光学特性。
在膜系结构中,Ta2O5薄膜具有较高的折射率和较低的吸收,且具有较宽的光谱透过范围(300nm-10um),作为高折射率膜层材料。SiO2作为一种理想的光学材料,其硬度高、耐腐蚀,作为低折射率膜层材料。Al2O3材料具有较低的折射率和低消光系数,同时具备优良的光学性能与机械性能作为过渡层材料。
在制备过程中,采用磁控溅射制备过渡层,磁控溅射产生的入射粒子具有更高的能量,形成更加致密,少孔的薄膜,从而增强薄膜的附着力,这些性质使得过渡层更好的连接PMMA基底与后续功能层。
并且,在制备过程中,采用电子束蒸发、离子束辅助方式镀制功能层H层和L层。电子束蒸发沉积速率快、制备简便的特定非常适合后续膜层较厚的功能层制备,同时离子束辅助可以调节应力后续膜层应力,避免膜层因水汽的吸附使光谱发生漂移。离子束的参数存在着临界的离子能量,本发明参数通过实验验证使吸收量、应力值、折射率取得最优值。对于PMMA基底容易热形变的制备难点,采用基底不加温度,但是辅助能量需较常规基底材料偏高,使薄膜与PMMA基底附着力与应力得到极大改善。
本发明的聚甲基丙烯酸甲酯基底介质增透膜及其制备方法,其有益效果在于:
(1)本发明的制备方法制得的PMMA基底增透膜的薄膜附着力强,可以有效的克服传统PMMA基底加热容易龟裂,薄膜附着力差的缺陷。
(2)本发明制得的PMMA基底薄膜透射率高,应力较小,可以在光学系统中正常稳定使用。
(3)本发明的制备方法简单易行,费用低廉,重复性好,在整个镀制过程中这些方法实用性极强,仅需镀膜机中的设备即可完成,不需添加外部设备。
具体实施方式
下面对本公开实施例进行详细描述。
以下通过特定的具体实例说明本公开的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本公开的其他优点与功效。显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。本公开还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本公开的精神下进行各种修饰或改变。需说明的是,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
要说明的是,下文描述在所附权利要求书的范围内的实施例的各种方面。应显而易见,本文中所描述的方面可体现于广泛多种形式中,且本文中所描述的任何特定结构及/或功能仅为说明性的。基于本公开,所属领域的技术人员应了解,本文中所描述的一个方面可与任何其它方面独立地实施,且可以各种方式组合这些方面中的两者或两者以上。举例来说,可使用本文中所阐述的任何数目个方面来实施设备及/或实践方法。另外,可使用除了本文中所阐述的方面中的一或多者之外的其它结构及/或功能性实施此设备及/或实践此方法。
另外,在以下描述中,提供具体细节是为了便于透彻理解实例。然而,所属领域的技术人员将理解,可在没有这些特定细节的情况下实践所述方面。
本公开实施例提供一种聚甲基丙烯酸甲酯基底介质增透膜的制备方法,包括:
以PMMA基底作为基板,首先将其放入去离子水中用超声波清洗7分钟,取出后用干燥空气吹干,然后放入磁控溅射镀膜设备中的工件架上,开始抽气,本底真空为8×10-5Pa时通入高纯Ar(99.998%),将高纯Al靶在纯Ar条件下溅射3min,除去Al靶材表面杂质,再通入反应气体纯氧(99.995%),靶面电压与电流充分稳定后,再开启靶挡板进行室温溅射。磁控溅射制备Al2O3薄膜,Ar流量40sccm(标准毫升每分钟),靶基距为55mm。将溅射靶功率调至预定功率(射频溅射时开匹配器),设定溅射所需时间,设置完毕接通电源进行溅射,溅射完成后,关闭流量计与气路阀,降低分子泵转速,当分子泵转速低于20000转时,关闭电磁阀,关闭机械泵。将氮气通入反应真空腔,直至大气压强后取出样品。
将镀制过渡层Al2O3的PMMA基底采用去离子水加洗涤剂擦洗,然后用去离子水冲洗干净并用干燥氮气吹干,再用乙醇和乙醚的混合溶液(配比78%:22%),长丝脱脂棉,由内而外顺时针擦拭,最后采用电子束蒸发、离子束辅助方式镀制功能层H层和L层,H层Ta2O5蒸发速率为0.38nm/s,氩气流量为8sccm,氧气流量为32sccm,电压为450V,电流为370mA;L层SiO2蒸发速率为0.52nm/s,氩气流量为5sccm,氧气流量为30sccm,电压为420V,电流为500mA。镀膜过程中,膜层厚度与速率均用石英晶振片监控。镀制结束后,温度降至40℃并保持该温度4小时,最后缓慢降温老火4小时后取出样品。
采用上述方法镀制得到的该聚甲基丙烯酸甲酯基底介质增透膜样品,该镀制样品PMMA基底尺寸为15*15*3mm,其膜系结构为Sub/M/H/L/A。其中Sub代表PMMA基底,M为Al2O3过渡层,H为Ta2O5高折射率膜层,L为SiO2低折射率膜层,各薄膜物理厚度分别为166nm、63nm、182nm,采用的镀膜设备为光驰镀膜机OTFC-1300和国产射频磁控溅射镀膜机。
将镀制的上述样品用分光光度计测试,在940nm处具有宽带透射率大于98%,在940nm处透射率大于98.5%,光谱性能完全满足光学系统中的使用需求。
本发明制备的PMMA基底增透膜,其光谱特性完全符合使用要求,能够在940nm波段获得极高的透过率,具有可操作性强、制备工艺重复性好、产品质量优良等优点,并且膜层质量可靠,性能稳定,可以应用于前景广阔的取景器、VR、光导纤维等光电系统领域,具有很强的实用价值。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。

Claims (7)

1.一种聚甲基丙烯酸甲酯基底介质增透膜的制备方法,其特征在于,包括如下步骤:
S1、采用磁控溅射方式制备Al2O3过渡层;其中,当真空度达到8×10-5Pa时,通入保护气体,预溅射3-10min后再通入反应气体纯氧,待靶面电压与电流稳定后,进行Al2O3过渡层溅射,溅射完成后取出镜片进行清洗;
S2、采用电子束蒸发、离子束辅助方式镀制Ta2O5高折射率膜层;其中,真空室内的保护气体流量为8sccm,氧气流量为32sccm,电压为450V,电流为370mA,镀制速率为0.36-0.38nm/s;
S3、采用电子束蒸发、离子束辅助方式镀制SiO2低折射率膜层;其中,真空室内的保护气体流量为5sccm,氧气流量为30sccm,电压为420V,电流为500mA,镀制速率为0.52-0.55nm/s;
S4、将镀制结束后的样品在真空室内缓慢梯度降温至40±2℃,并保持4小时;
该增透膜的膜系结构为:
Sub/M/H/L/A;其中,Sub为PMMA基底层,M为Al2O3过渡层,H为Ta2O5高折射率膜层,L为SiO2低折射率膜层,A为空气层;
该增透膜中,Al2O3过渡层、Ta2O5高折射率膜层、SiO2低折射率膜层的物理厚度范围依次为:165-168nm、60-63nm、180-183nm。
2.根据权利要求1所述的聚甲基丙烯酸甲酯基底介质增透膜的制备方法,其特征在于,在进行S1之前,先将PMMA基底放入去离子水中用超声波清洗,清洗后采用干燥空气吹干,再进行Al2O3过渡层的镀制。
3.根据权利要求1或2所述的聚甲基丙烯酸甲酯基底介质增透膜的制备方法,其特征在于,S1中,在Al2O3过渡层镀制结束后,取出镜片,先采用去离子水加洗涤剂擦洗,再用去离子水冲洗干净,最后采用78%纯度的乙醇和22%纯度的乙醚的混合溶液进行擦拭清洗。
4.根据权利要求3所述的聚甲基丙烯酸甲酯基底介质增透膜的制备方法,其特征在于,在进行去离子水加洗涤剂擦洗时,去离子水与洗涤剂的质量比为19:1。
5.根据权利要求1所述的聚甲基丙烯酸甲酯基底介质增透膜的制备方法,其特征在于,S1中,保护气体流量为40sccm,靶基距为55mm。
6.根据权利要求5所述的聚甲基丙烯酸甲酯基底介质增透膜的制备方法,其特征在于,所述保护气体为高纯氩气。
7.根据权利要求1所述的聚甲基丙烯酸甲酯基底介质增透膜的制备方法,其特征在于,该增透膜中,Al2O3过渡层、Ta2O5高折射率膜层、SiO2低折射率膜层的物理厚度依次为:166nm、63nm、182nm。
CN202011408757.6A 2020-12-04 2020-12-04 一种聚甲基丙烯酸甲酯基底介质增透膜及其制备方法 Active CN112553585B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011408757.6A CN112553585B (zh) 2020-12-04 2020-12-04 一种聚甲基丙烯酸甲酯基底介质增透膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011408757.6A CN112553585B (zh) 2020-12-04 2020-12-04 一种聚甲基丙烯酸甲酯基底介质增透膜及其制备方法

Publications (2)

Publication Number Publication Date
CN112553585A CN112553585A (zh) 2021-03-26
CN112553585B true CN112553585B (zh) 2023-04-07

Family

ID=75048337

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011408757.6A Active CN112553585B (zh) 2020-12-04 2020-12-04 一种聚甲基丙烯酸甲酯基底介质增透膜及其制备方法

Country Status (1)

Country Link
CN (1) CN112553585B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113140350B (zh) * 2021-03-29 2022-04-26 中国科学院长春光学精密机械与物理研究所 一种超反射镜及其设计方法和制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4333983A (en) * 1980-04-25 1982-06-08 Optical Coating Laboratory, Inc. Optical article and method
CN106207744A (zh) * 2016-08-24 2016-12-07 陜西源杰半导体技术有限公司 红外半导体激光器芯片的新型抗反射膜及其镀膜工艺
CN107636495A (zh) * 2015-03-13 2018-01-26 卢普+胡布拉赫光学有限公司 包括在可见光区域内针对低照度条件的减反射涂层的光学制品
CN107861179A (zh) * 2017-11-17 2018-03-30 成都菲奥姆光学有限公司 一种可见‑红外超宽带反射薄膜的制备方法
CN109182972A (zh) * 2018-08-30 2019-01-11 华中光电技术研究所(中国船舶重工集团有限公司第七七研究所) 大尺寸蓝宝石基底多光谱硬质增透膜及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4333983A (en) * 1980-04-25 1982-06-08 Optical Coating Laboratory, Inc. Optical article and method
CN107636495A (zh) * 2015-03-13 2018-01-26 卢普+胡布拉赫光学有限公司 包括在可见光区域内针对低照度条件的减反射涂层的光学制品
CN106207744A (zh) * 2016-08-24 2016-12-07 陜西源杰半导体技术有限公司 红外半导体激光器芯片的新型抗反射膜及其镀膜工艺
CN107861179A (zh) * 2017-11-17 2018-03-30 成都菲奥姆光学有限公司 一种可见‑红外超宽带反射薄膜的制备方法
CN109182972A (zh) * 2018-08-30 2019-01-11 华中光电技术研究所(中国船舶重工集团有限公司第七七研究所) 大尺寸蓝宝石基底多光谱硬质增透膜及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王治乐.2.获得致密膜层的新技术.《薄膜光学与真空镀膜技术》.哈尔滨工业大学出版社,2013, *

Also Published As

Publication number Publication date
CN112553585A (zh) 2021-03-26

Similar Documents

Publication Publication Date Title
JP3808917B2 (ja) 薄膜の製造方法及び薄膜
CN102732830B (zh) 一种高透过率低反射率的减反射膜镀膜方法
CN112553585B (zh) 一种聚甲基丙烯酸甲酯基底介质增透膜及其制备方法
CN107861179A (zh) 一种可见‑红外超宽带反射薄膜的制备方法
CN104369440B (zh) 用于激光器的全介质反射膜及其制备方法
CN111574071A (zh) 一种高透过宽色系盖板玻璃的制备方法
CN113862616B (zh) 一种增透抗uv车载显示面板的一次镀膜成型方法
CN109628894B (zh) 一种远紫外高反射镜的制备方法
CN112501557B (zh) 一种蓝宝石基底1-5μm超宽带增透膜及其制备方法
CN112813391B (zh) 一种超宽波段红外长波通截止滤光膜制备方法
CN109837517A (zh) 一种基于磁控溅射的外反射银膜制备方法
CN107099779B (zh) 一种提高光学器件激光损伤阈值和面形的iad镀制方法
CN105866976A (zh) 防紫外线镜片结构及其制备方法
CN109112479A (zh) 可见及近红外光波段减反射膜及制造方法
CN101231352A (zh) 红外光学窗口用HfON/BP增透保护膜及其制备方法
CN114335392B (zh) 一种oled柔性显示用减反射膜的制备工艺
CN114114475B (zh) 一种用于硒化锌基片的高附着力高表面质量的增透膜及其制备方法和应用
CN108842186A (zh) 用于太赫兹波段增透的碲化锌晶体表面微结构的制备方法
CN102096136A (zh) 空间用光学石英玻璃耐辐照滤紫外薄膜及制备方法
CN115421226A (zh) 一种硫系玻璃光学元件及其制备方法
CN110221368B (zh) 单元素多层红外高反膜及其制备方法
CN104237985A (zh) 一种全介质反射膜及其制备方法
CN114107890A (zh) 一种用于红外光学窗口表面的高硬度SiCN增透保护薄膜及其制备方法
JPH0665738A (ja) 成膜装置および成膜方法
CN110484888A (zh) 一种基于磁控溅射的外反射铝膜制备方法及铝镜

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: A polymethyl methacrylate based medium anti reflective film and its preparation method

Granted publication date: 20230407

Pledgee: Agricultural Bank of China Limited Shanghai pilot Free Trade Zone New Area Branch

Pledgor: SHANGHAI MIFENG LASER TECHNOLOGY Co.,Ltd.

Registration number: Y2024980012603

PE01 Entry into force of the registration of the contract for pledge of patent right