CN109628894B - 一种远紫外高反射镜的制备方法 - Google Patents

一种远紫外高反射镜的制备方法 Download PDF

Info

Publication number
CN109628894B
CN109628894B CN201811635662.0A CN201811635662A CN109628894B CN 109628894 B CN109628894 B CN 109628894B CN 201811635662 A CN201811635662 A CN 201811635662A CN 109628894 B CN109628894 B CN 109628894B
Authority
CN
China
Prior art keywords
film
substrate
temperature
mgf
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811635662.0A
Other languages
English (en)
Other versions
CN109628894A (zh
Inventor
杜建立
张锦龙
王金艳
焦宏飞
程鑫彬
王占山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Runkun Shanghai Optical Technology Co ltd
Tongji University
Original Assignee
Runkun Shanghai Optical Technology Co ltd
Tongji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Runkun Shanghai Optical Technology Co ltd, Tongji University filed Critical Runkun Shanghai Optical Technology Co ltd
Priority to CN201811635662.0A priority Critical patent/CN109628894B/zh
Publication of CN109628894A publication Critical patent/CN109628894A/zh
Application granted granted Critical
Publication of CN109628894B publication Critical patent/CN109628894B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0694Halides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/26Vacuum evaporation by resistance or inductive heating of the source
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5826Treatment with charged particles
    • C23C14/5833Ion beam bombardment
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0816Multilayer mirrors, i.e. having two or more reflecting layers
    • G02B5/085Multilayer mirrors, i.e. having two or more reflecting layers at least one of the reflecting layers comprising metal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physical Vapour Deposition (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

本发明涉及一种远紫外高反射镜的制备方法,包括清洗、镀膜、退火和储存,具体包括以下步骤:在镀膜时抽高真空离子束刻蚀清洗好基板,先镀打底层Cr膜后用热蒸发方式镀制Al膜,温度升高到180‑220℃烘烤镀膜室,继续抽真空用氩离子束流刻蚀Al膜表面Al2O3膜,然后电子束蒸镀MgF2薄膜;抽真空在250‑300℃温度下退火3小时提高样品薄膜质量,将样品充N2放入干燥柜中储存。与现有技术相比,本发明制备的远紫外高反膜光学特性优异、反射率较高、环境稳定性好,可以批量制备,在未来的光学薄膜领域具有广泛应用前景。

Description

一种远紫外高反射镜的制备方法
技术领域
本发明涉及远紫外光学薄膜制备领域,尤其是涉及一种远紫外高反射镜的制备方法。
背景技术
远紫外高反射镜对于100-200nm波段的远紫外光谱区域中,采用测量的许多研究领域应用广泛,且具有相当重要的研究意义。例如来自火箭、卫星、恒星的高分辨率光谱测量,紫外波段天文观测、同步辐射束线建设与应用等研究方面,高反射镜都是重要光学元件之一。
提高远紫外高反射镜的反射率,对于远紫外波段的研究极其重要,但是适用于远紫外的材料有限。Al膜在远紫外波段具有较高的反射能力并且与玻璃基板的附着性较好,因此Al是用作远紫外波段高反射薄膜元件的首先材料,不足之处是Al膜表面极易氧化形成Al2O3膜,而Al2O3膜对波段160nm以下的辐射的吸收能力较强,使Al膜的反射率急剧下降。为了防止Al膜氧化,可以在Al膜表面蒸镀上厚度适当的一层或几层保护膜,在120nm附近常用MgF2作为保护膜。在Al+MgF2高反射镜研究过程中,实际制备的Al+MgF2反射镜性能和理论设计有较大差距。为了提高实际制备Al+MgF2的反射率,改善制备工艺关键的技术问题是:抑制Al膜氧化形成Al2O3膜,减少在远紫外波段的吸收;提高薄膜质量和储存稳定性,进而提高实际制备Al+MgF2的反射率。
在Al+MgF2高反射镜研究过程中,实际制备的Al+MgF2反射率拟合值低于理论设计值。120-130nm波段,理论设计值反射率高达90%,常规实验方法为常温镀制Al+MgF2薄膜法,其实际反射率最高在80%左右,高温制备MgF2虽然可以提高薄膜质量但也会加速Al膜氧化,增加吸收,实际反射率仍低于理论值。根据调查发现即使采用同样的膜系,反射率也不完全相同,有的甚至差别还较大。为了制备在远紫外波段适用高质量反射镜,需要深入研究热蒸发制作Al膜和电子束蒸镀MgF2膜的参数例如真空度、沉积速率、镀膜纯度、镀膜温度等,保存环境、时间稳定性等因素对其性能的影响,目前尚未有一种合适的Al+MgF2远紫外高反射镜的制备方法。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种远紫外高反射镜的制备方法。
本发明的目的可以通过以下技术方案来实现:
一种远紫外高反射镜的制备方法,包括以下步骤:
1)清洗基板:将基板进行超声清洗后用N2吹干待用;
2)离子束流刻蚀基板:基板放入镀膜室后抽真空使气压低于10-4pa,采用离子束流刻蚀基板,通过刻蚀减少基板表面沉积的杂质和缺陷,用以改善基板表面的质量;
3)镀制Cr膜:在常温下,采用电子束蒸发方式镀制10-15nm的Cr膜,用以增加基板对Al膜的附着力;
4)镀制Al膜:在常温下,采用热蒸发方式加热熔化钨舟中的Al粒,通过晶振监控的方式控制基板上Al膜的镀制厚度为80-120nm;
5)控制和减少Al2O3氧化膜的形成:将镀膜室温度升高到180-220℃,烘烤整个镀膜室超过30分钟,用以降低镀膜室的水汽对Al膜氧化的影响,继续抽真空,使气压低于10-4pa,采用氩离子束流刻蚀Al膜生成Al2O3氧化膜,减小紫外波段的吸收;
6)镀制MgF2薄膜:采用电子束蒸发方式镀制20-30nm致密均匀的MgF2薄膜,并将镀制MgF2薄膜后的基板在镀膜机中冷却到室温;
7)退火处理:将镀制好的基板放入清洗干净的耐高温石英容器中,置于高温试验箱中抽真空使气压低于10-4pa,设置分步退火条件,将样品在250-300℃退火3小时;
8)储存:将退火处理后的基板,放入密封容器里充入N2,置于干燥柜中保存。
所述的步骤1)中,采用温度为40摄氏度弱碱性溶液清洗基板,并通过速率为50mm/min的慢提拉方式取出。
所述的步骤2)中,采用电压为450V、电流为600mA、氧气流量为0sccm、氩气流量为20sccm的离子束流刻蚀基板10分钟。
所述的步骤3)中,施加140mA电流,以7-10A/s的速率镀制Cr膜。
所述的步骤4)中,施加450mA电流,热蒸发钨舟中纯度为99.999%的Al粒,使Al粒以10-20A/s的速率蒸发镀制Al膜。
所述的步骤5)中,采用电压为500V,电流为500mA,流量为25sccm的氩离子束流以5-8A/s的速率进行20s的Al膜刻蚀。
所述的步骤6)中,在离子蚀刻氧化层后,施加30mA电流以速率7-10A/s镀制MgF2薄膜。
所述的步骤7)中,样品退火处理具体包括以下步骤:
71)加热10分钟时升温到50℃;
72)再加热20分钟,使温度从50℃加热到100℃;
73)再加热30分钟,使温度从100℃加热到200℃;
74)再加热30分钟,使温度从200℃加热到300℃;
75)维持温度300℃,退火3小时;
76)降温到室温,完成整个退火过程。
与现有技术相比,本发明具有以下优点:
本发明主要包括镀膜和退火两个大步骤,为了减小制备过程中高反膜的影响因素,制备高质量的远紫外高反射镜做好充足准备,在镀膜时抽高真空离子束刻蚀基板可以减少基板对镀膜过程的影响,镀打底层Cr膜可以增加Al膜的附着力,温度升高到180-220℃烘烤镀膜室可以减小水分的影响同时为镀制更加均匀的MgF2薄膜做准备,继续抽真空用氩离子束流可以刻蚀Al膜表面形成的Al2O3膜,在后续处理阶段采用高温试验箱中抽真空在250-300℃温度下退火3小时可以提高样品薄膜质量,然后将退火样品放入充有N2的装置中放入干燥柜中储存可以控制镀制薄膜的老化作用。
附图说明
图1为光谱仪测试的光谱曲线与理论计算的光谱曲线的对比图;
图2为Al+MgF2薄膜镀制的流程图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
实施例
本发明提出的远紫外高反射镜的制备方法,制备方法主要从镀膜、退火两个方面进行展开,具体步骤为:
(1)镀膜:将基板进行超声清洗然后用N2吹干基板待用;基板放入镀膜室后抽真空到低于10-4pa;用电压为450V,电流为600mA,氧气流量为0sccm,氩气流量为20sccm的离子束流刻蚀基板10分钟左右,通过刻蚀技术可以减少基板表面沉积的杂质、缺陷,改善基板表面的质量;常温用电子束蒸发方式(参数140mA的电流)以速率为7-10A/s蒸发镀制10-15nm的Cr,增加基板对Al膜的附着力;常温用热蒸发方式通过施加450mA的电流,加热熔化钨舟中的Al粒,让Al粒以10-20A/s的速率蒸发镀制,通过晶振监控的方式控制基板上Al膜的镀制厚度为80-120nm;将镀膜室温度升高到180-220℃,烘烤整个镀膜室大于30分钟,降低镀膜室的水汽对Al膜氧化的影响,继续抽真空低于10-4pa;用电压为500V,电流为500mA,用流量约为25sccm的氩离子束流以5-8A/s的速率刻蚀Al膜薄膜生成的Al2O3氧化膜20s左右,减小吸收;用电子束蒸发方式(电流30mA)以速率为7-10A/s蒸发镀制20-30nm致密均匀的MgF2薄膜;将样品在镀膜机中冷却到室温。
(2)退火:将镀制好的样品,放入清洗干净的耐高温石英容器中,置于高温试验箱中抽真空低于10-4pa,设置分步退火条件将样品在250-300℃退火3小时。退火后的样品薄膜均匀性更好,可以降低样品表面粗糙度,并且退火后的样品稳定性更优。将退火处理后的样品,放入密封容器里充入N2,然后置于干燥柜中保存,因为样品受大气成分的影响,N2中保存可防止成分进一步反应对样品造成的影响,放入干燥柜保存的样品稳定性更好,对反射率的影响更小。
进一步地,所述的基板的清洗所需要的清洗溶液温度为40摄氏度弱碱性溶液,取出方式是通过速率为50mm/min慢提拉方式取出,N2吹干基板待用;
进一步地,所述的离子束流刻蚀基板是用电压为450V,电流为600mA,氧气流量为0sccm,氩气流量为20sccm的离子束流刻蚀基板10分钟左右;
进一步地,所述的常温电子束蒸发方式镀制Cr膜是施加140mA电流以7-10A/s的速率镀制10-15nm的Cr,这样镀制的Cr膜均匀,镀制Cr是为镀制Al膜做准备,这样可以增加Al膜的附着力;
进一步地,所述的常温热蒸发方式镀制Al膜是施加450mA电流热蒸发钨舟中纯度99.999%的Al粒,让Al粒以10-20A/s的速率蒸发镀制80-120nm的Al膜;
进一步地,所述的控制和减少Al2O3氧化膜的形成是用电压为500V,电流为500mA,用流量为25sccm的氩离子束流以5-8A/s的速率刻蚀Al膜薄膜生成的Al2O3氧化膜20s左右;
进一步地,所述的MgF2薄膜的镀制是离子蚀刻氧化层后,立即施加30mA电流以速率7-10A/s镀制完成20-30nm致密均匀的MgF2薄膜,因为MgF2易于熔化,所以所需要的电流较小;
进一步地,所述的样品退火处理具体步骤:第一步是10分钟加热到50℃,第二步是20分钟加热到50-100℃,第三步是30分钟加热到100-200℃,第四步是30分钟加热到200-300℃,第五步是维持温度300℃的退火3个小时的时间,第六步是10小时降温到室温,完成整个退火过程。
实施例1
1、以Al+MgF2为例,薄膜制备过程主要从镀膜、退火两个方面进行展开具体步骤如下:
(1)镀膜:将基板进行超声清洗然后用N2吹干基板待用;基板放入镀膜室后抽真空到低于10-4pa;用电压为450V,电流为600mA,氧气流量为0sccm,氩气流量为20sccm的离子束流刻蚀基板10分钟左右,通过刻蚀技术可以减少基板表面沉积的杂质、缺陷,改善基板表面的质量;常温用电子束蒸发方式(参数140mA的电流)以速率为7-10A/s蒸发镀制10-15nm的Cr,增加基板对Al膜的附着力;常温用热蒸发方式通过施加450mA的电流,加热熔化钨舟中的Al粒,让Al粒以10-20A/s的速率蒸发镀制,通过晶振监控的方式控制基板上Al膜的镀制厚度为80-120nm;将镀膜室温度升高到180-220℃,烘烤整个镀膜室大于30分钟,降低镀膜室的水汽对Al膜氧化的影响,继续抽真空低于10-4pa;用电压为500V,电流为500mA,用流量约为25sccm的氩离子束流以5-8A/s的速率刻蚀Al膜薄膜生成的Al2O3氧化膜20s左右,减小吸收;用电子束蒸发方式(电流30mA)以速率为7-10A/s蒸发镀制20-30nm致密均匀的MgF2薄膜;将样品在镀膜机中冷却到室温。
(2)退火:将镀制好的样品,放入清洗干净的耐高温石英容器中,置于高温试验箱中抽真空低于10-4pa,设置分步退火条件将样品在250-300℃退火3小时。退火后的样品薄膜均匀性更好,可以降低样品表面粗糙度,并且退火后的样品稳定性更优。将退火处理后的样品,放入密封容器里充入N2,然后置于干燥柜中保存,因为样品受大气成分的影响,N2中保存可防止成分进一步反应对样品造成的影响,放入干燥柜保存的样品稳定性更好,对反射率的影响更小。
2、制备薄膜的结果:
如图1所示,光谱仪测试的光谱曲线与理论计算的光谱曲线的对比图。
Al+MgF2的理论值在125nm处的反射率大约为90%,实验制备样品测试结果光谱曲线:未刻蚀镀制的薄膜在125nm处的反射率为R=73%;刻蚀氧化层后镀制的MgF2薄膜在120nm附近反射率为R=80%,退火处理后反射率在123nm处为R=90%。进行刻蚀处理的Al+MgF2薄膜的反射率得到提高,退火处理的Al+MgF2的反射率有10%的提高,刻蚀氧化层后镀制MgF2样品退火处理后反射率在123nm处为R=90%,与理论值相接近。
如图2所示,Al+MgF2薄膜镀制的流程图。
Al+MgF2薄膜镀制的流程图涵盖了制备Al+MgF2薄膜的整个过程,包括清洗、镀膜。退火和储存几个方面的内容,详细介绍了制备中的细节和参数需要。

Claims (7)

1.一种远紫外高反射镜的制备方法,其特征在于,包括以下步骤:
1)清洗基板:将基板进行超声清洗后用N2吹干待用;
2)离子束流刻蚀基板:基板放入镀膜室后抽真空使气压低于10-4pa,采用离子束流刻蚀基板,通过刻蚀减少基板表面沉积的杂质和缺陷,用以改善基板表面的质量;
3)镀制Cr膜:在常温下,采用电子束蒸发方式镀制10-15nm的Cr膜,用以增加基板对Al膜的附着力;
4)镀制Al膜:在常温下,采用热蒸发方式加热熔化钨舟中的Al粒,通过晶振监控的方式控制基板上Al膜的镀制厚度为80-120nm;
5)控制和减少Al2O3氧化膜的形成:将镀膜室温度升高到180-220℃,烘烤整个镀膜室超过30分钟,用以降低镀膜室的水汽对Al膜氧化的影响,继续抽真空,使气压低于10-4pa,采用氩离子束流刻蚀Al膜生成Al2O3氧化膜,减小紫外波段的吸收;
6)镀制MgF2薄膜:采用电子束蒸发方式镀制20-30nm致密均匀的MgF2薄膜,并将镀制MgF2薄膜后的基板在镀膜机中冷却到室温;
7)退火处理:将镀制好的基板放入清洗干净的耐高温石英容器中,置于高温试验箱中抽真空使气压低于10-4pa,设置分步退火条件,将镀制MgF2薄膜后的基板在250-300℃退火3小时,具体包括以下步骤:
71)加热10分钟时升温到50℃;
72)再加热20分钟,使温度从50℃加热到100℃;
73)再加热30分钟,使温度从100℃加热到200℃;
74)再加热30分钟,使温度从200℃加热到300℃;
75)维持温度300℃,退火3小时;
76)降温到室温,完成整个退火过程;
8)储存:将退火处理后的基板,放入密封容器里充入N2,置于干燥柜中保存。
2.根据权利要求1所述的一种远紫外高反射镜的制备方法,其特征在于,所述的步骤1)中,采用温度为40摄氏度弱碱性溶液清洗基板,并通过速率为50mm/min的慢提拉方式取出。
3.根据权利要求1所述的一种远紫外高反射镜的制备方法,其特征在于,所述的步骤2)中,采用电压为450V、电流为600mA、氧气流量为0sccm、氩气流量为20sccm的离子束流刻蚀基板10分钟。
4.根据权利要求1所述的一种远紫外高反射镜的制备方法,其特征在于,所述的步骤3)中,施加140mA电流,以7-10A/s的速率镀制Cr膜。
5.根据权利要求1所述的一种远紫外高反射镜的制备方法,其特征在于,所述的步骤4)中,施加450mA电流,热蒸发钨舟中纯度为99.999%的Al粒,使Al粒以10-20A/s的速率蒸发镀制Al膜。
6.根据权利要求1所述的一种远紫外高反射镜的制备方法,其特征在于,所述的步骤5)中,采用电压为500V,电流为500mA,流量为25sccm的氩离子束流以5-8A/s的速率进行20s的Al膜刻蚀。
7.根据权利要求1所述的一种远紫外高反射镜的制备方法,其特征在于,所述的步骤6)中,在离子蚀刻氧化层后,施加30mA电流以速率7-10A/s镀制MgF2薄膜。
CN201811635662.0A 2018-12-29 2018-12-29 一种远紫外高反射镜的制备方法 Active CN109628894B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811635662.0A CN109628894B (zh) 2018-12-29 2018-12-29 一种远紫外高反射镜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811635662.0A CN109628894B (zh) 2018-12-29 2018-12-29 一种远紫外高反射镜的制备方法

Publications (2)

Publication Number Publication Date
CN109628894A CN109628894A (zh) 2019-04-16
CN109628894B true CN109628894B (zh) 2020-10-23

Family

ID=66054595

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811635662.0A Active CN109628894B (zh) 2018-12-29 2018-12-29 一种远紫外高反射镜的制备方法

Country Status (1)

Country Link
CN (1) CN109628894B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110471173B (zh) * 2019-08-05 2021-05-11 同济大学 一种带衍射面的四反中波红外取景器光学系统
CN111844831B (zh) * 2020-07-06 2022-03-22 大连理工大学 一种轻质基材薄壁反射镜的制作方法
CN112941460A (zh) * 2021-02-01 2021-06-11 深圳正和捷思科技有限公司 一种高可靠性滤光片制作方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60181704A (ja) * 1984-02-29 1985-09-17 Canon Inc 真空紫外用反射ミラー
JPH05150105A (ja) * 1991-12-02 1993-06-18 Tokyo Tokushu Glass Kk 金属表面鏡およびその製造方法
CN1527071A (zh) * 2003-09-23 2004-09-08 甘国工 有增强附着力的金属保护层的高反射镜及其制造方法
CN100575990C (zh) * 2008-06-04 2009-12-30 中国科学院长春光学精密机械与物理研究所 厚度调节混合制作多级微反射镜的方法
JP5440165B2 (ja) * 2009-12-28 2014-03-12 デクセリアルズ株式会社 導電性光学素子、タッチパネル、および液晶表示装置
CN102747328B (zh) * 2012-06-27 2014-01-29 同济大学 一种提高高反射薄膜激光损伤阈值的镀制方法
JP6340608B2 (ja) * 2014-06-17 2018-06-13 岡本硝子株式会社 高耐久性銀ミラー

Also Published As

Publication number Publication date
CN109628894A (zh) 2019-04-16

Similar Documents

Publication Publication Date Title
CN109628894B (zh) 一种远紫外高反射镜的制备方法
EP0754777B1 (en) Process for producing thin film, and thin film formed by the same
US4201649A (en) Low resistance indium oxide coatings
US4451498A (en) Method for making oxide based electrochromic display devices
KR20030081077A (ko) 투명한 전도성 적층물 및 이의 제조방법
US20060023311A1 (en) Method for obtaining a thin, stabilized fluorine-doped silica layer, resulting thin layer, and use thereof in ophthalmic optics
CN106835030A (zh) 大角度多波段红外高增透膜结构及其制备方法
CN112813391B (zh) 一种超宽波段红外长波通截止滤光膜制备方法
Perales et al. Improvement of MgF2 thin coating films for laser applications
CN107254667A (zh) 光学介质薄膜、Al2O3、含硅薄膜、激光器腔面膜的制备方法
EP1307907B1 (fr) Procede de depot d'une couche de silice dopee au fluor
CN112626474A (zh) 一种电致变色膜系中的钽酸锂薄膜的制备方法
CN111206214A (zh) 一种有效改善硫系玻璃镀膜膜层牢固度问题的镀膜工艺
JP2002339084A (ja) 金属膜および金属膜被覆部材
CN111020506B (zh) 一种基于磁控溅射的在铌酸锂基片上的钛酸锶钡成膜方法
US3491000A (en) Method of producing vanadium dioxide thin films
CN109100900B (zh) 一种HfO2基铁电材料的使用方法
CN112553585A (zh) 一种聚甲基丙烯酸甲酯基底介质增透膜及其制备方法
JPH11260724A (ja) 化合物半導体薄膜の製造方法および製造装置
JP2000345320A (ja) 薄膜構造体及びその製造方法
Rubio et al. Reactive sputtered Ta2O5 antireflection coatings
US11466356B2 (en) Optical element having metallic seed layer and aluminum layer, and method for producing same
JP3098134B2 (ja) 酸化物結晶膜の製造方法
Farhan et al. Investigation of optical and structural properties of ion-assisted deposition (IAD) ZrO 2 thin films
KR100244651B1 (ko) 전색 박막의 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant