CN112547105B - 铜(i)掺杂石墨化氮化碳纳米片催化剂及其制备方法与应用 - Google Patents

铜(i)掺杂石墨化氮化碳纳米片催化剂及其制备方法与应用 Download PDF

Info

Publication number
CN112547105B
CN112547105B CN202011392027.1A CN202011392027A CN112547105B CN 112547105 B CN112547105 B CN 112547105B CN 202011392027 A CN202011392027 A CN 202011392027A CN 112547105 B CN112547105 B CN 112547105B
Authority
CN
China
Prior art keywords
catalyst
copper
carbon nitride
graphitized carbon
doped graphitized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011392027.1A
Other languages
English (en)
Other versions
CN112547105A (zh
Inventor
孔令涛
杨丹丹
刘锦淮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei Technology Innovation Engineering Institute of CAS
Original Assignee
Hefei Technology Innovation Engineering Institute of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei Technology Innovation Engineering Institute of CAS filed Critical Hefei Technology Innovation Engineering Institute of CAS
Priority to CN202011392027.1A priority Critical patent/CN112547105B/zh
Publication of CN112547105A publication Critical patent/CN112547105A/zh
Application granted granted Critical
Publication of CN112547105B publication Critical patent/CN112547105B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/026Fenton's reagent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种采用廉价的三聚氰胺、氰尿酸和氯化铜为原材料,制备出一价铜掺杂石墨化氮化碳纳米片类芬顿催化剂的方法,并应用于多西环素有机污染物的高效降解。该方法包括步骤:将三聚氰胺和氰尿酸分别溶解在二甲基亚砜中,混合得到白色沉淀MCA;再将MCA与CuCl2·2H2O混合搅拌蒸干水分后,研磨成粉末,在氮气保护下煅烧,冷却洗涤过滤,冷冻干燥得到所制备的催化剂。将该催化剂应用于异相芬顿氧化反应中,可高效降解有机污染物多西环素,pH值(3~11)适用范围广。由于该催化剂制备简单,易于工业化生产,用于污染物的降解效率高,具有很高的应用价值。

Description

铜(I)掺杂石墨化氮化碳纳米片催化剂及其制备方法与应用
技术领域
本发明涉及一种一价铜(Ⅰ)掺杂石墨化氮化碳纳米片催化剂及其制备方法,该催化剂可以实现对污染废水中抗生素多西环素的有效去除,属于环境保护及处理的技术领域。
背景技术
人或其它动物往往不能将服用的抗生素完全吸收分解,致使大量的抗生素以原药或代谢产物的形式排入环境中造成的污染称为抗生素污染。抗生素的滥用会导致病原微生物产生耐药性,使得抗生素能杀死细菌的有剂量不断增加。低剂量的抗生素长期排入环境中,会造成敏感菌耐药性的增强。并且耐药基因可以在环境中扩展和演化,对生态环境及人类健康造成潜在威胁。抗生素除了能引起细菌的抗药性,同时对其它生物也可能产生毒性。多西环素作为一种典型的抗生素,在被人体摄入后,难以被肠胃吸收,被排出进入环境污水,对生态环境和生物安全造成极大的潜在威胁。因此,寻求一种好的方法来制备成本低廉、操作简单、催化降解能力强的催化剂来对污染废水中的多西环素进行高效的降解显得十分重要。
近年来,抗生素污染物的治理一直是热门的话题,常见的去除技术大体主要有吸附法和高级氧化法等。相比吸附法,高级氧化技术对抗生素的降解更为彻底,去除更为有效,因此高级氧化法在目前被广泛应用并被作为一种高效去除抗生素的技术。金属掺杂氮化碳具有较高的催化活性与稳定性,对于工业及医药上含抗生素污染废水的去除更显优势。
发明内容
本发明提供了一种一价铜(Ⅰ)掺杂氮化碳纳米片催化剂及其制备方法,本发明以三聚氰胺、氰尿酸及铜盐等为原料,利用高温固相反应获得一种一价铜(Ⅰ)掺杂氮化碳催化剂材料。该材料具有较大的比表面积和较高的催化活性,可以高效降解水中抗生素污染物多西环素,从而使该材料能够有效的应用于抗生素废水处理。
本发明所述铜(I)掺杂石墨化氮化碳纳米片催化剂的制备方法,采用以下步骤:
(1)分别配置三聚氰胺的二甲基亚砜溶液和氰尿酸的二甲基亚砜溶液,混合得到氰尿酸三聚氰胺;
(2)配置铜离子水溶液,加入氰尿酸三聚氰胺,60~80℃下不断搅拌直到水分蒸干;
(3)将蒸干后的混合物于氮气保护下煅烧,冷却,水洗过滤,冷冻干燥,得催化剂。
上述制备方法中,作为优选条件,步骤(1)混合后可瞬间产生白色沉淀,过滤洗涤干燥;步骤(2)所述铜离子水溶液采用CuCl2·2H2O配置,所述CuCl2·2H2O和氰尿酸三聚氰胺质量比为1:5.5~8;步骤(3)在氮气保护下以8~12℃/min的升温速率升温到600~620℃,保持2~3h;步骤(3)中煅烧后冷却,用去离子水洗涤除去杂质,冷冻干燥温度为-20~-50℃,冷冻时间为12~24h。
本发明铜(I)掺杂石墨化氮化碳纳米片的制备是先以三聚氰胺和氰尿酸制得超分子聚合体氰尿酸三聚氰胺后,再与铜离子反应。发明人发现,并不可以将三聚氰胺和氰尿酸以及铜离子物质进行直接混合制备本发明的催化剂产品,因三聚氰胺氰尿酸合成方法不同会导致形貌不同,随后得到的催化剂性能也不同。同时,制备步骤(1)中按照三聚氰胺与氰尿酸摩尔比1:1可得到氰尿酸三聚氰胺(MCA),量比过大或过小,所得产物的结构形貌就会有所不同,难以得到本发明所述的超分子聚合体氰尿酸三聚氰胺。
上述制备方法中,步骤(2)所述铜离子水溶液可以采用常见的可溶性铜盐或其水合物,而以CuCl2或其水合物进行配置为佳,因伴随着后续加热反应,氯离子也易被去除;同时,所述铜离子水溶液浓度以0.5~1mol/L为佳。
上述制备方法中,步骤(3)煅烧是在氮气下完成的,生成的产物为一价铜与碳氮基底的直接成键化合,而这有别于在空气中煅烧的情况,因为如果在空气中煅烧,则一价铜很容易被氧化,从而无法获得本发明最终的催化剂产品。
采用上述所述制备方法可得到本发明的铜(I)掺杂石墨化氮化碳纳米片催化剂,该催化剂比表面积为30~40m2/g;该催化剂可应用于高级氧化技术(异相芬顿氧化反应)中对于抗生素的降解,尤其适用于对四环素类如多西环素的降解,降解效率90%以上(高达98%)。
本发明所述催化剂在对于多西环素降解中的应用,可采用下述方法步骤:将铜(Ⅰ)掺杂石墨化氮化碳纳米片催化剂均匀分散在含抗生素的待处理的水体中,调pH值3~11,加入过氧化氢作为氧化剂,降解时间为12~30分钟,过滤除去铜(Ⅰ)掺杂石墨化氮化碳纳米片催化剂,得到净化水。
上述应用方法步骤中,所述铜(Ⅰ)掺杂石墨化氮化碳纳米片催化剂的加入量为8~12mg/100mL为佳;所述调pH值3~11,也即酸性和碱性条件均具有降解效果,即使碱性条件下pH=11时,仍可保持较好的降解效率。
本发明采用的原料材料廉价易得、操作方法简单、合成方便,所得产品铜(Ⅰ)掺杂石墨化氮化碳纳米片具有片状堆叠的银耳状形貌(并非无规则粉末状),其作为催化剂可应用于异相芬顿氧化反应中,高效降解有机污染物尤其是四环素类如多西环素,pH值(3~11)适用范围广。由于该催化剂制备简单,易于工业化生产,用于污染物的降解效率高,在抗生素(尤其是四环素类如多西环素)废水(污染物)处理中具有极高的应用价值。
附图说明
图1为铜(Ⅰ)掺杂石墨化氮化碳纳米片催化剂的SEM、TEM及AFM谱图,以更好的观察本发明合成的催化剂微观形貌,该材料表现为纳米片堆叠的银耳状。
图2为铜(Ⅰ)掺杂石墨化氮化碳纳米片催化剂在催化反应前后的FTIR图谱,FTIR图谱反映材料微观基本的成键情况,通过将参加催化反应前后的铜(Ⅰ)掺杂石墨化氮化碳纳米片催化剂的FTIR光谱进行比较,未发现明显的变化,说明本专利方法下所合成的催化剂具有良好的稳定性。
图3为铜(Ⅰ)掺杂石墨化氮化碳纳米片催化剂的BET吸脱附曲线和孔径分布曲线谱图。用BJH方法计算表明铜(Ⅰ)掺杂石墨化氮化碳纳米片催化剂的孔体积为0.2748cm3/g,主要孔径为15.36nm。根据Brunauer-Emmett-Teller(BET)法,铜(Ⅰ)掺杂石墨化氮化碳纳米片催化剂的比表面积为30.78±0.02m2/g。这些纳米片的大比表面积有助于更好地吸附有机化合物,也为催化过程提供更多的反应位点,从而提高催化活性。
图4为铜(Ⅰ)掺杂石墨化氮化碳纳米片催化剂的TGA和XRD谱图。由TGA图谱可见,在升温到大约500℃,本发明的铜(Ⅰ)掺杂石墨化氮化碳纳米片催化剂才发生明显失重,说明该材料具有良好的热稳定性。XRD谱图可以证明本发明的铜(Ⅰ)掺杂石墨化氮化碳纳米片被成功合成。
图5为铜(Ⅰ)掺杂石墨化氮化碳纳米片催化剂的XPS谱图,由铜谱可见,掺入的铜为正一价。
图6为铜(Ⅰ)掺杂石墨化氮化碳纳米片催化剂降解多西环素的时间变化图。
具体实施方式
下面结合具体实施例对本发明做进一步阐述,但本发明的实质内容并不仅限于下述实施例所述。所述方法如无特别说明均为常规方法,所述材料如无特别说明均能从公开商业途径获得,本领域内的技术人员应当知晓任何基于本发明实质内容的简单变换或替代均属于本发明所要求的保护范围。
下述实施例中,采用FEI-Quanta 200型扫描电子显微镜(SEM)、JEM-2010型投射电子显微镜(TEM)及Veeco多功能扫描探针原子力显微镜(AFM)表征催化剂的形貌及成分;Nicolet 8700型傅里叶红外变换光谱仪(FTIR)对样品进行分析;X射线衍射(XRD)采用D/max2500测试,Cu Ka源(k=1.541A);使用Tristar II3020M对催化剂进行氮气吸脱附比表面积分析及粒径与孔径分布分析,使用Q5000IR热重分析仪(TGA)对材料进行加热失重分析,采用UV-2550型紫外-可见光分光光度计检测水样中多西环素浓度。
实施例1
步骤1:将0.5g三聚氰胺和0.51g氰尿酸分别溶解在20mL和10mL二甲基亚砜中,并进行超声波处理,完全溶解后,将两种溶液在室温下混合瞬间产生白色沉淀,将其过滤并用乙醇洗涤,所得白色粉末MCA在60℃下干燥24h;
步骤2:在溶解CuCl2·2H2O(0.17g)的20mL去离子水中加入1.01g MCA,在80℃下不断搅拌成悬浮液,直到水分蒸干;
步骤3:将混合物研磨转移到刚玉坩埚并置于管式炉煅烧,在氮气保护下以10℃min-1的升温速率升温到600℃保持2h,自然冷却至室温后,用去离子水多次洗涤去除杂质,过滤所得样品,-40℃冷冻干燥12h,得到铜(Ⅰ)掺杂石墨化氮化碳纳米片催化剂。
上述铜(Ⅰ)掺杂石墨化氮化碳纳米片催化剂经扫描、原子力和透射电子显微镜表征其形貌及成分(图1),可以看出是纳米片结构,且主要成分为碳、氮、铜及少量的氧;通过热重分析仪得到其高温条件下的失重曲线(图4),测得该催化剂比表面积为30.78±0.02m2/g。吸脱附曲线和孔径分布曲线如图3。
本实例所得到的铜(Ⅰ)掺杂石墨化氮化碳纳米片催化剂应用于水中多西环素的降解:称取实施例1制备的铜(Ⅰ)掺杂石墨化氮化碳纳米片催化剂5mg加入到50mL多西环素浓度为20mg/L的水样中,稀盐酸调pH为4,加入0.2mL30%H2O2溶液,25℃下在摇床中充分震荡并在特定时间取样过滤检测其水溶液中多西环素剩余含量(图6),反应时间为18min时,去除效率97%。而对比试验发现,如果只加入0.2mL30%H2O2溶液,不添加本发明的催化剂,则18min内去除效率仅为15%。
实施例2
步骤1:同实施1的步骤1;
步骤2:在溶解CuCl2·2H2O(0.15g)的20mL去离子水中加入0.9g MCA,在80℃下不断搅拌悬浮液,直到水完全蒸发;
步骤3:将混合物研磨转移到刚玉坩埚并置于管式炉煅烧,在氮气保护下以10℃/min的升温速率升温到600℃保持2h,自然冷却至室温后,用去离子水多次洗涤去除杂质,过滤所得样品,-20℃冷冻干燥24h,得到铜(Ⅰ)掺杂石墨化氮化碳纳米片催化剂。
本实例所得到的铜(Ⅰ)掺杂石墨化氮化碳纳米片催化剂应用于水中多西环素的降解:称取实施例2制备的铜(Ⅰ)掺杂石墨化氮化碳纳米片催化剂5mg加入到50mL多西环素浓度为30mg/L的水样中,用氢氧化钠调pH为8,加入0.4mL30%H2O2溶液,25℃下在摇床中充分震荡并在特定时间取样过滤检测其水溶液中多西环素剩余含量,反应时间为20min时,去除效率96.5%。
实施例3
步骤1:同实施1的步骤1;
步骤2:在溶解CuCl2·2H2O(0.15g)的20mL去离子水中加入0.95g MCA,在80℃下不断搅拌悬浮液,直到水完全蒸发;
步骤3:将混合物研磨转移到刚玉坩埚并置于管式炉煅烧,在氮气保护下以10℃/min的升温速率升温到600℃保持2h,自然冷却至室温后,用去离子水多次洗涤去除杂质,过滤所得样品,-30℃冷冻干燥24h,得到铜(Ⅰ)掺杂石墨化氮化碳纳米片催化剂。
本实例所得到的铜(Ⅰ)掺杂石墨化氮化碳纳米片催化剂应用于水中多西环素的降解:称取实施例3制备的铜(Ⅰ)掺杂石墨化氮化碳纳米片催化剂5mg加入到50mL多西环素浓度为20mg/L的水样中,用氢氧化钠调pH为10,加入0.3mL30%H2O2溶液,25℃下在摇床中充分震荡并在特定时间取样过滤检测其水溶液中多西环素剩余含量,反应时间为25min时,去除效率94%。
实施例4
步骤1:同实施例1的步骤1方法,制备MCA;
步骤2:在溶解CuCl2·2H2O(0.15g)的20mL去离子水中加入1.1g MCA,在80℃下不断搅拌悬浮液,直到水完全蒸发;
步骤3:将混合物研磨转移到刚玉坩埚并置于管式炉煅烧,在氮气保护下以10℃min-1的升温速率升温到600℃保持2h,自然冷却至室温后,用去离子水多次洗涤去除杂质,过滤所得样品,-40℃冷冻干燥12h,得到铜(Ⅰ)掺杂石墨化氮化碳纳米片催化剂。
本实例所得到的铜(Ⅰ)掺杂石墨化氮化碳纳米片催化剂应用于水中多西环素的降解:称取实施例3制备的铜(Ⅰ)掺杂石墨化氮化碳纳米片催化剂5mg加入到50mL多西环素浓度为20mg/L的水样中,用盐酸调pH为5,加入0.3mL30%H2O2溶液,25℃下在摇床中充分震荡并在特定时间取样过滤检测其水溶液中多西环素剩余含量,反应时间为20min时,去除效率98%。
实施例5
步骤1:同实施例1的步骤1方法,制备MCA;
步骤2:在溶解CuCl2·2H2O(0.15g)的20mL去离子水中加入1.2g MCA,在80℃下不断搅拌悬浮液,直到水完全蒸发;
步骤3:将混合物研磨转移到刚玉坩埚并置于管式炉煅烧,在氮气保护下以10℃/min的升温速率升温到600℃保持2h,自然冷却至室温后,用去离子水多次洗涤去除杂质,过滤所得样品,-30℃冷冻干燥12h,得到铜(Ⅰ)掺杂石墨化氮化碳纳米片催化剂。
本实例所得到的铜(Ⅰ)掺杂石墨化氮化碳纳米片催化剂应用于水中多西环素的降解:称取实施例3制备的铜(Ⅰ)掺杂石墨化氮化碳纳米片催化剂5mg加入到50mL多西环素浓度为20mg/L的水样中,用氢氧化钠调pH为8,加入0.2mL30%H2O2溶液,25℃下在摇床中充分震荡并在特定时间取样过滤检测其水溶液中多西环素剩余含量,反应时间为25min时,去除效率92%。
应当说明的是,本发明的上述所述之技术内容仅为使本领域技术人员能够获知本发明技术实质而进行的解释与阐明,故所述之技术内容并非用以限制本发明的实质保护范围。本发明的实质保护范围应以权利要求书所述之为准。本领域技术人员应当知晓,凡基于本发明的实质精神所做出的任何修改、等同替换和改进等,均应在本发明的实质保护范围之内。

Claims (6)

1.铜(I)掺杂石墨化氮化碳纳米片催化剂在多西环素和/或四环素降解中的应用,所述催化剂比表面积为28~40m2/g,所述催化剂的制备方法,采用以下步骤:
(1)分别配置三聚氰胺的二甲基亚砜溶液和氰尿酸的二甲基亚砜溶液,按照三聚氰胺与氰尿酸摩尔比1:1混合后发生超分子聚合反应得到球型氰尿酸三聚氰胺;
(2)配置铜离子水溶液,加入氰尿酸三聚氰胺,60~80℃下不断搅拌直到水分蒸干;所述铜离子水溶液采用CuCl2或其水合物配置;
(3)将蒸干后的混合物于氮气保护下煅烧,冷却,水洗过滤,冷冻干燥,得催化剂;
所述步骤(3)在氮气保护下以8~12℃·min-1的升温速率升温到600~620℃,保持2~3h;
所述步骤(3)中煅烧后冷却,用去离子水洗涤除去杂质,冷冻干燥温度为-20~-50℃,冷冻时间为12~24h。
2.如权利要求1所述应用,其特征在于,步骤(1)混合后即产生白色沉淀,过滤洗涤干燥。
3.如权利要求1所述应用,其特征在于,步骤(2)所述铜离子水溶液浓度0.5~1mol/L。
4.如权利要求1所述的应用,其特征在于,步骤(2)所述铜离子水溶液采用CuCl2·2H2O配置,所述CuCl2·2H2O和氰尿酸三聚氰胺质量比为1:5.5~8。
5.如权利要求1所述应用,其特征在于,采用下述方法步骤:
将铜(I)掺杂石墨化氮化碳纳米片催化剂均匀分散在含多西环素和/或四环素的待处理的水体中,调pH值3~11,加入过氧化氢作为氧化剂,降解时间为12~30分钟,过滤除去铜(I)掺杂石墨化氮化碳纳米片催化剂,得到净化水。
6.如权利要求5所述应用,其特征在于,所述铜(I)掺杂石墨化氮化碳纳米片催化剂的加入量为8~12mg/100mL。
CN202011392027.1A 2020-12-02 2020-12-02 铜(i)掺杂石墨化氮化碳纳米片催化剂及其制备方法与应用 Active CN112547105B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011392027.1A CN112547105B (zh) 2020-12-02 2020-12-02 铜(i)掺杂石墨化氮化碳纳米片催化剂及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011392027.1A CN112547105B (zh) 2020-12-02 2020-12-02 铜(i)掺杂石墨化氮化碳纳米片催化剂及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN112547105A CN112547105A (zh) 2021-03-26
CN112547105B true CN112547105B (zh) 2024-03-05

Family

ID=75047099

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011392027.1A Active CN112547105B (zh) 2020-12-02 2020-12-02 铜(i)掺杂石墨化氮化碳纳米片催化剂及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN112547105B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115770601A (zh) * 2021-09-08 2023-03-10 南京工业大学 一种钴掺杂多孔氮化碳催化剂及其制备方法和应用
CN113908277B (zh) * 2021-10-25 2023-06-09 哈尔滨工程大学 一种光响应单原子催化功能纳米药物材料的制备方法
CN114950524B (zh) * 2022-05-25 2023-06-20 华南理工大学 一种多孔氮化碳-三氧化钨复合材料及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000051678A (ja) * 1998-08-10 2000-02-22 Asahi Chem Ind Co Ltd 立方晶窒化炭素物質の製造方法
CN108380235A (zh) * 2018-04-17 2018-08-10 同济大学 一种石墨相氮化碳基非均相类芬顿催化剂的制备方法及其应用
CN108993570A (zh) * 2018-07-30 2018-12-14 南京工业大学 一种铜掺杂石墨相氮化碳复合材料的制备方法及应用
CN109967112A (zh) * 2019-03-14 2019-07-05 浙江师范大学 一种氮化碳负载铬单原子芬顿催化剂的制备方法和应用
CN110465315A (zh) * 2018-05-09 2019-11-19 湖南大学 超分子聚合氮化碳光催化剂及其制备方法和应用
KR20200095606A (ko) * 2019-01-31 2020-08-11 전남대학교산학협력단 카본-카본 나이트라이드 복합체의 제조방법 및 이에 의해 제조된 카본-카본 나이트라이드 복합체
CN111573638A (zh) * 2020-06-08 2020-08-25 江苏理工学院 一种高效降解废水中亚甲基蓝染料的光催化材料的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000051678A (ja) * 1998-08-10 2000-02-22 Asahi Chem Ind Co Ltd 立方晶窒化炭素物質の製造方法
CN108380235A (zh) * 2018-04-17 2018-08-10 同济大学 一种石墨相氮化碳基非均相类芬顿催化剂的制备方法及其应用
CN110465315A (zh) * 2018-05-09 2019-11-19 湖南大学 超分子聚合氮化碳光催化剂及其制备方法和应用
CN108993570A (zh) * 2018-07-30 2018-12-14 南京工业大学 一种铜掺杂石墨相氮化碳复合材料的制备方法及应用
KR20200095606A (ko) * 2019-01-31 2020-08-11 전남대학교산학협력단 카본-카본 나이트라이드 복합체의 제조방법 및 이에 의해 제조된 카본-카본 나이트라이드 복합체
CN109967112A (zh) * 2019-03-14 2019-07-05 浙江师范大学 一种氮化碳负载铬单原子芬顿催化剂的制备方法和应用
CN111573638A (zh) * 2020-06-08 2020-08-25 江苏理工学院 一种高效降解废水中亚甲基蓝染料的光催化材料的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
From Melamine-Cyanuric Acid Supramolecular Aggregates to Carbon Nitride Hollow Spheres;Young-Si Jun et al.;《Advanced functional materials》;20130226;第23卷(第29期);第3661-3667页 *
金属掺杂石墨相氮化碳纳米材料的合成及在降解污染物应用的研究;楼炬峰;《中国优秀硕士学位论文全文数据库》;20200215(第2期);第15、19页 *

Also Published As

Publication number Publication date
CN112547105A (zh) 2021-03-26

Similar Documents

Publication Publication Date Title
CN112547105B (zh) 铜(i)掺杂石墨化氮化碳纳米片催化剂及其制备方法与应用
Li et al. Er-doped g-C3N4 for photodegradation of tetracycline and tylosin: high photocatalytic activity and low leaching toxicity
Shandilya et al. Islanding of EuVO4 on high-dispersed fluorine doped few layered graphene sheets for efficient photocatalytic mineralization of phenolic compounds and bacterial disinfection
Hu et al. Synthesis of novel ternary heterogeneous BiOCl/TiO2/sepiolite composite with enhanced visible-light-induced photocatalytic activity towards tetracycline
Ali et al. Synthesis of γ-alumina (Al 2 O 3) nanoparticles and their potential for use as an adsorbent in the removal of methylene blue dye from industrial wastewater
Tong et al. Polymorphous ZnO complex architectures: selective synthesis, mechanism, surface area and Zn-polar plane-codetermining antibacterial activity
Peng et al. Multipath fabrication of hierarchical CuAl layered double hydroxide/carbon fiber composites for the degradation of ammonia nitrogen
Zhang et al. Heterogeneous oxidation of naproxen in the presence of α-MnO2 nanostructures with different morphologies
Song et al. Efficient fabrication and photocatalytic properties of TiO2 hollow spheres
CN107951902B (zh) 一种石墨烯抗菌组合物及使用该组合物的卫生材料
CN113164867B (zh) 富勒烯及其衍生物复合材料在降解甲醛、室内VOCs或抑菌中的应用
CN108654586B (zh) 一种石墨化介孔碳-TiO2复合光催化材料及其制备方法与应用
CN114425340B (zh) 一种生物炭修饰钴铁双金属复合催化剂的制备及在催化降解四环素中应用
CN107442180B (zh) 一种MOFs-rGO负载的Pd纳米催化剂及其制备与应用
Shafiee et al. Removal of Rhodamine B by g-C3N4/Co3O4/MWCNT composite stabilized in hydrogel via the synergy of adsorption and photocatalysis under visible light
Rahman et al. Detailed photocatalytic study of alkaline titanates and its application for the degradation of methylene blue (MB) under solar irradiation
Altin CuO-TiO2/graphene ternary nanocomposite for highly efficient visible-light-driven photocatalytic degradation of bisphenol A
Wang et al. Biomass derived the V-doped carbon/Bi2O3 composite for efficient photocatalysts
Sebuso et al. Green synthesis of multilayer Graphene/ZnO nanocomposite for photocatalytic applications
Chi et al. Manganese oxides activated peroxymonosulfate for ciprofloxacin removal: effect of oxygen vacancies and chemical states
Zhan et al. AgBr/gC 3 N 4 nanocomposites for enhanced visible-light-driven photocatalytic inactivation of Escherichia coli
CN112916006B (zh) 一种不规则碳包覆氧化铜催化剂的制备方法与应用
CN113526491A (zh) 一种通过生物质水热碳化反应单次、高产量制备单分散小粒径碳纳米球的方法
CN105664860B (zh) 基于zif-8的mof型多级孔材料及其制备方法和应用
CN108772109B (zh) 一种纳米线球状钼钨杂多酸盐类催化剂及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant