CN105664860B - 基于zif-8的mof型多级孔材料及其制备方法和应用 - Google Patents

基于zif-8的mof型多级孔材料及其制备方法和应用 Download PDF

Info

Publication number
CN105664860B
CN105664860B CN201610135677.5A CN201610135677A CN105664860B CN 105664860 B CN105664860 B CN 105664860B CN 201610135677 A CN201610135677 A CN 201610135677A CN 105664860 B CN105664860 B CN 105664860B
Authority
CN
China
Prior art keywords
zif
hole material
multilevel hole
type multilevel
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610135677.5A
Other languages
English (en)
Other versions
CN105664860A (zh
Inventor
田运齐
张敏
刘春苗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Si Da Anxin Beijing Material Science And Technology Ltd
Original Assignee
Si Da Anxin Beijing Material Science And Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Si Da Anxin Beijing Material Science And Technology Ltd filed Critical Si Da Anxin Beijing Material Science And Technology Ltd
Priority to CN201610135677.5A priority Critical patent/CN105664860B/zh
Publication of CN105664860A publication Critical patent/CN105664860A/zh
Application granted granted Critical
Publication of CN105664860B publication Critical patent/CN105664860B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28066Surface area, e.g. B.E.T specific surface area being more than 1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • B01J20/28073Pore volume, e.g. total pore volume, mesopore volume, micropore volume being in the range 0.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • B01J20/28076Pore volume, e.g. total pore volume, mesopore volume, micropore volume being more than 1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/2808Pore diameter being less than 2 nm, i.e. micropores or nanopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28083Pore diameter being in the range 2-50 nm, i.e. mesopores
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/20Organic adsorbents
    • B01D2253/204Metal organic frameworks (MOF's)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4812Sorbents characterised by the starting material used for their preparation the starting material being of organic character

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种基于ZIF‑8的MOF型多级孔材料及其制备方法和应用,MOF型多级孔材料的介孔范围在2‑50nm,微孔小于2nm,其BET比表面为1300‑1850m2/g,总孔体积1.20‑2.80cm3/g,介孔孔体积为0.5‑1.90cm3/g。制备方法包括如下步骤:(1)将金属锌盐、2‑甲基咪唑、碱和有机溶剂搅拌均匀,转移至反应釜中,于80‑130℃下恒温反应2‑12小时;(2)反应完毕冷却至室温,将得到的凝胶物质于20‑50℃条件下干燥成干胶,再萃取洗涤6小时以上;(3)最后在130‑150℃、真空条件下加热12小时以上,即得本发明多级孔材料。其微孔来自于ZIF‑8结构,介孔来自于粒子间孔隙,可用于有机污染物吸附净化等。

Description

基于ZIF-8的MOF型多级孔材料及其制备方法和应用
技术领域
本发明属于多孔材料合成技术领域,具体涉及一种基于ZIF-8的MOF型多级孔材料及其制备方法和应用。
背景技术
金属-有机骨架材料(Metal-Organic Frameworks,MOF),又称为金属有机骨架化合物、金属有机配位聚合物,其是以金属离子为配位中心,通过与多齿配体配位形成的具有一定空间结构的配合物,又称为MOF孔材料,是近20多年来发展起来的一类新型无机-有机杂化孔材料。由于其对某些气体和有机分子选择性吸附作用,在世界范围内作为新型多孔吸附材料被广泛地研究和应用开发。
类沸石咪唑骨架(Zeolitic imidazolate framework,ZIF)材料是一类新型的、具有沸石拓扑结构的纳米多孔材料,它由过渡金属原子(Zn/Co)与咪唑/咪唑衍生物连接而成,属于MOF的一种,因其更高的热稳定性和化学稳定性正受到越来越多的关注。图1为配位聚合物ZIF-8即[Zn(mim)2]n的结构图。ZIF在气体储存、分离和催化方面具有广大应用。但是由于ZIF的孔道大部分是微孔(直径<2nm),且孔道结构单一,使得分子在其孔道内扩散受阻,对大分子吸附也受到了限制。
孔径大于2nm、比表面积高且热稳定性好的MOF还被寄期于用在有机化合物(药物)的分离、化学催化,汽油脱硫等方面的应用。尤其是那些同时具有微孔(小于2nm)、介孔(2-50nm)的多级孔MOF更是人们梦寐以求的孔材料。由于多级孔的存在,这样的多级孔材料不仅是优良催化剂或催化剂载体,还有希望用于生物大分子的吸附、分离和生物酶的固定化,还可以用于芳香烃污染水的检测和深度净化等。
为了获得包含有微孔和介孔的多级孔MOF材料,人们试图通过使用表面活性剂为软模板的合成方法,使得某种MOF在其本来拥有微孔的基础上进一步产生介孔。虽然该方法已经能有效地应用于无机氧化物介孔(2-50nm)材料的合成,但在多级孔MOF的合成上还不尽人意。尽管目前有人用此方法已经获得包含有20nm介孔的MOF,但是其介孔孔体积很小(小于0.1cm3/g),也就是说材料中介孔的分布仍很稀少。
中国专利CN102895953A公开了一种多级孔道ZIF-8的合成方法,该方法包括以下步骤:将阴离子表面活性剂溶于去离子水中,加入锌的无机盐,溶解后加入2-甲基咪唑混合均匀,得到溶胶状物质;对溶胶状物质进行晶化,将固体产物分离、洗涤、干燥,得到多级孔道ZIF-8粉晶;以氢氧化钠溶液和有机溶剂为萃取剂将多级孔道ZIF-8粉晶中的阴离子表面活性剂萃取出来,得到多级孔道ZIF-8。但是该专利存在以下缺点:使用了所谓用于造孔的模板剂(阴离子表面活性剂),增加了生产成本,并且制备工艺,同时复杂表面活性剂的使用不仅不利于介孔的产生,反而因为难以全部清除而堵塞了部分粒子间孔隙。
现有技术中还有采用水溶胶的方法制备多孔MOF材料,沿袭了无机介孔分子筛的合成方法,但是得到的仍是ZIF-8纳米粒子间介孔孔隙主导的多级孔材料,由于使用了所谓模板的表面活性剂,使得这种材料的孔径分布很宽导致热稳定性不好,吸附性能较差。
发明内容
本发明的目的之一在于克服现有技术的缺陷,提供一种基于ZIF-8的MOF型多级孔材料,包含微孔和介孔,介孔可根据需要调控,可调范围在2-50nm,具有亲油疏水功能,是清除水中苯、甲苯等有机污染物良好吸附剂。
本发明的目的之二在于提供该MOF型多级孔材料的制备方法。
本发明的目的之三在于提供该MOF型多级孔材料在污水处理中有机污染物检测和吸附净化方面的应用。
本发明的技术方案为:一种基于ZIF-8的MOF型多级孔材料,包含微孔和介孔,介孔范围为2-50nm,微孔小于2nm,BET比表面为1300-1850m2/g,总孔体积1.20-2.80cm3/g,介孔孔体积为0.5-1.90cm3/g。在本发明的具体实施方式中,其微孔可视为来自于MOF“ZIF-8”结构(2-甲基咪唑锌),介孔可视为来自于小于60nm的纳米ZIF-8所形成的粒子间孔隙。
其中所述介孔孔体积优选为0.7-1.90cm3/g。
一种本发明任一基于ZIF-8的MOF型多级孔材料的制备方法,依次包括如下步骤:按比例将金属锌盐、2-甲基咪唑、碱和有机溶剂混合均匀,密闭条件下反应2-12小时,反应温度为80-130℃,反应完毕冷却得到凝胶物质。
还可以包括如下步骤:将得到的凝胶物质于20-50℃条件下干燥成干胶,之后再将其萃取洗涤6小时以上,再将洗涤后的材料脱除残留溶剂,得到MOF型多级孔材料。
上述步骤具体可以为:
步骤(1):按比例将金属锌盐、2-甲基咪唑(Hmim)、碱和有机溶剂混合搅拌均匀,然后转移至反应釜中,密闭条件下于80-130℃下恒温反应2-12小时。
步骤(2):反应完毕冷却至室温,将得到的凝胶物质于20-50℃条件下干燥成干胶(有机溶剂在实际生产中可以回收),之后再将其萃取洗涤6小时以上;
步骤(3):最后在130-150℃、真空条件下加热12小时以上,脱除残留溶剂,即得本发明多级孔材料。
所述金属锌盐可以为硝酸盐(NO3 -)、盐酸盐(Cl-)或醋酸盐(CH3COO-);
所述碱(MOH)可以为无机碱或有机碱;
所述有机溶剂优选为不多于4个碳原子的有机溶剂,如甲醇、乙醇、丙醇或异丙醇,四氢呋喃,也可以他们的混合物。
所述金属锌盐、2-甲基咪唑、碱和有机溶剂的配比(即,Zn2+:Hmim:MOH:有机溶剂)优选为1摩尔:2-2.5摩尔:2-2.5摩尔:2.0-20升。
所述金属锌盐、2-甲基咪唑、碱和有机溶剂的配比进一步优选为1摩尔:2-2.5摩尔:2-2.5摩尔:3-7升,有机溶剂用量过大,降低生产效率,增加了生产成本。
所述反应釜优选为配有聚四氟乙烯内衬的不锈钢反应釜。
本发明可以通过下列方式调整介孔的大小:
(i)改变反应混合物中使用单一溶剂(或混合溶剂)的比例;(ii)改变反应温度来调控MOF纳米粒子的大小及堆积密度,从而改变其介孔的大小。其原理在于:纳米ZIF-8与所述有机溶剂形成凝胶,如果纳米ZIF-8粒子数目少,有利于形成较大的粒子间孔隙,反之亦反;反应时间和温度变化可调控ZIF-8粒子的大小,同样导致介孔大小的改变;不同溶剂其表面张力不同,当溶剂挥发干时对纳米粒子产生的凝聚力就不同,表面张力大的溶剂有利于形成粒子间更小孔隙的MOF材料。
本发明通过改变有机溶剂的用量和/或反应温度来调控ZIF-8纳米粒子在MOF型多级孔材料单片体中的堆积密度,从而调控其介孔大小,获得同时具有有序微孔(来自于ZIF-8结构)和介孔(产生于纳米ZIF-8粒子间孔隙)的基于ZIF-8的多级孔MOF材料。根据申请人的若干次实验,采用上述方式,介孔孔径的可调范围至少2-60nm之间,本领域技术人员可以在具体的原料和工艺条件下,通过实验获得所需孔径的介孔。
本发明的有益效果如下:本发明MOF型多级孔材料同时具有微孔和介孔,且介孔孔体积较大,具备良好的热稳定性,真空条件下,150℃经历12小时结构无任何变化,其结构都具有优良的微孔(ZIF-8孔结构)和良好的亲油疏水性。
本发明MOF型多级孔材料可用于芳香族化合物污染水的深度净化应用,具体使用方法如下:
将本发明MOF型多级孔材料颗粒制成固定床,让被处理的污染水通过床体;或者将本发明MOF型多级孔材料颗粒投入被处理污水中搅拌至少5分钟,然后将本发明MOF型多级孔材料颗粒与水体分离。
另外,鉴于本发明MOF型多级孔材料,这种材料也可以用于其他用途的吸附剂,例如,对水的净化处理,对空气中有机污染物VOC等的吸附等,用于吸附气体或液体中的杂质。
附图说明
图1为配位聚合物ZIF-8的结构图。
图2为实施例1合成的MOF型多级孔材料和常规ZIF-8的X射线衍射图。
图3为实施例1合成的MOF型多级孔材料的扫描电镜(SEM)图片。
图4为实施例1合成的MOF型多级孔材料的氮气吸附等温线和孔径分布图。
图5为实施例1合成的MOF型多级孔材料在室温下对甲苯水溶液的吸附等温线。
具体实施方式
下面将结合实施例对本发明的实施方案进行详细描述,但是本领域技术人员将会理解,下列实施例仅用于说明本发明,而不应视为限定本发明的范围。
实施例1
将1.188克(4mmol)Zn(NO3)2·6H2O和0.656克(8mmol)Hmim于18mL无水乙醇中,加入8mmol氢氧化钠于室温搅拌均匀后,转移至20毫升容量的聚四氟乙烯反应釜中密闭于100℃反应6小时。冷至室温后,胶状物质于室温干燥成干胶,之后再将其用索氏提取器以无水乙醇萃取洗涤7小时。150℃真空(0.2mmHg)脱去残留乙醇即得本发明MOF型多级孔材料,收率96%(以Hmim计),图2为合成的MOF型多级孔材料的X射线衍射图,纳米粒子粒度小于60nm,图3为合成的MOF型多级孔材料的扫描电镜(SEM)图片,微孔(1.1nm)和介孔(35nm),BET比表面1320M2/g,总孔体积2.12cm3/g,介孔体积1.7cm3/g,图4为合成的MOF型多级孔材料的氮气吸附等温线和孔径分布图,其中IPD-mesoMOF-12-i、IPD-mesoMOF-12-ii和IPD-mesoMOF-12-iii分别表示用于实验的多个IPD-mesoMOF-12样品。
将所制备的MOF型多级孔材料颗粒制成固定床,让被处理的污染水通过床体,在室温下测试对甲苯水溶液的吸附效果,以甲苯为例:
实验表明,本发明MOF型多级孔材料对甲苯的吸附可在5分钟达到平衡;每公斤本发明MOF型多级孔材料可从甲苯污染的水中吸附220克甲苯(具体见图5);甲苯含量为0.7mg/L(饮用水甲苯含量的国家标准),经过处理后其含量可降低到0.14mg/L。
实施例2
将1.188克(4mmol)Zn(NO3)2·6H2O和10mmol Hmim于18mL无水乙醇中,加入10mmol氢氧化钠于室温搅拌均匀后,转移至20毫升容量的聚四氟乙烯反应釜中密闭于120℃反应6小时。冷至室温后,胶状物质于室温干燥成干胶,之后再将其用索氏提取器以无水乙醇萃取洗涤7小时。150℃真空(0.2mmHg)脱去残留乙醇即得本发明MOF型多级孔材料,收率97%(以Hmim计),纳米粒子粒度小于60nm,微孔(1.1nm)和介孔(35nm),BET比表面1670M2/g,总孔体积1.54cm3/g,介孔体积1.03cm3/g。
实施例3
将1.188克(4mmol)Zn(NO3)2·6H2O和0.656克(8mmol)Hmim于15mL无水乙醇中,加入8mmol氢氧化钠于室温搅拌均匀后,转移至20毫升容量的聚四氟乙烯反应釜中密闭于120℃反应6小时。冷至室温后,胶状物质于室温干燥成干胶,之后再将其用索氏提取器以无水乙醇萃取洗涤7小时。150℃真空(0.2mmHg)脱去残留乙醇即得本发明MOF型多级孔材料,收率97%(以Hmim计),纳米粒子粒度小于60nm,微孔(1.1nm)和介孔(35nm),BET比表面1660M2/g,总孔体积1.47cm3/g,介孔体积0.97cm3/g。
实施例4
将1.188克(4mmol)Zn(NO3)2·6H2O和0.656克(8mmol)Hmim于20mL无水乙醇中,加入8mmol氢氧化钠于室温搅拌均匀后,转移至25毫升容量的聚四氟乙烯反应釜中密闭于130℃反应6小时。冷至室温后,胶状物质于室温干燥成干胶,之后再将其用索氏提取器以无水乙醇萃取洗涤7小时。150℃真空(0.2mmHg)脱去残留乙醇即得本发明MOF型多级孔材料,收率98%(以Hmim计),纳米粒子粒度小于60nm,微孔(1.1nm)和介孔(35nm),BET比表面1740M2/g,总孔体积1.34cm3/g,介孔体积0.77cm3/g。
实施例5
将1.188克(4mmol)Zn(NO3)2·6H2O和0.656克(8mmol)Hmim于20mL无水乙醇中,加入8mmol氢氧化钠于室温搅拌均匀后,转移至20毫升容量的聚四氟乙烯反应釜中密闭于130℃反应2小时。冷至室温后,胶状物质于室温干燥成干胶,之后再将其用索氏提取器以无水甲醇萃取洗涤6小时以上。150℃真空(0.2mmHg)脱去残留乙醇即得MOF型多级孔材料,收率96%(以Hmim计)。纳米粒子粒度小于60nm,微孔(1.1nm)和介孔(36nm),BET比表面1730M2/g,总孔体积1.36cm3/g,介孔体积0.80cm3/g。
实施例6
将1.188克(4mmol)Zn(NO3)2·6H2O和0.656克(8mmol)Hmim于20mL无水乙醇中,加入8mmol氢氧化钠于室温搅拌均匀后,转移至25毫升容量的聚四氟乙烯反应釜中密闭于130℃反应4小时。冷至室温后,胶状物质于室温干燥成干胶,之后再将其用索氏提取器以无水甲醇萃取洗涤6小时以上。150℃真空(0.2mmHg)脱去残留乙醇即得MOF型多级孔材料,收率96%(以Hmim计)。纳米粒子粒度小于60nm,微孔(1.1nm)和介孔(34nm),BET比表面1700M2/g,总孔体积1.35cm3/g,介孔体积0.80cm3/g。
实施例7
将1.188克(4mmol)Zn(NO3)2·6H2O和0.656克(8mmol)Hmim于9mL无水乙醇和9mL四氢呋喃混合溶剂中,加入8mmol氢氧化钠于室温搅拌均匀后,转移至20毫升容量的聚四氟乙烯反应釜中密闭于100℃反应12小时。冷至室温后,胶状物质于室温干燥成干胶,之后再将其用索氏提取器以无水甲醇萃取洗涤6小时以上。150℃真空(0.2mmHg)脱去残留乙醇即得MOF型多级孔材料,收率96%(以Hmim计)。纳米粒子粒度小于60nm,微孔(1.1nm)和介孔(36nm),BET比表面1850m2/g,总孔体积1.49cm3/g,介孔体积0.91cm3/g。
实施例8
将0.22克(1mmol)Zn(CH3COO)2·6H2O和0.164克(2mmol)Hmim于18mL乙醇中,加入2mmol三丁基胺于室温搅拌均匀后,密闭于125℃反应5小时。胶状物质于室温干燥成干胶,之后再将其用索氏提取器以无水乙醇或甲醇萃取洗涤6小时以上。150℃真空(0.2mmHg)脱去残留乙醇即得多级孔材料IPD-mesoMOF-12,收率95%(以Hmim计)。纳米粒子粒度小于60nm,微孔(1.1nm)和介孔(36nm),BET比表面1710M2/g,总孔体积2.11cm3/g,介孔体积1.70cm3/g。
实施例9
将0.22克(1mmol)Zn(CH3COO)2·6H2O和0.164克(2mmol)Hmim于18mL乙醇中,加入2mmol氢氧化钠,于室温搅拌均匀后,密闭于125℃反应5小时。胶状物质于室温干燥成干胶,之后再将其用索氏提取器以无水乙醇或甲醇萃取洗涤6小时以上。150℃真空(0.2mmHg)脱去残留乙醇即得多级孔材料,收率95%(以Hmim计)。纳米粒子粒度小于60nm,微孔(1.1nm)和介孔(33nm),BET比表面1610M2/g,总孔体积2.01cm3/g,介孔体积1.50cm3/g。
实施例10
将0.22克(1mmol)Zn(CH3COO)2·6H2O和0.164克(2mmol)Hmim于18mL乙醇中,加入2mmol LiOH于室温搅拌均匀后,密闭于125℃反应5小时。胶状物质于室温干燥成干胶,之后再将其用索氏提取器以无水乙醇或甲醇萃取洗涤6小时以上。150℃真空(0.2mmHg)脱去残留乙醇即得多级孔材料IPD-mesoMOF-12,收率95%(以Hmim计)。纳米粒子粒度小于60nm,微孔(1.1nm)和介孔(36nm),BET比表面1710M2/g,总孔体积1.50cm3/g,介孔体积0.78cm3/g。
实施例11
将0.22克(1mmol)Zn(CH3COO)2·6H2O和0.164克(2mmol)Hmim于25mL乙醇中,加入2mmol LiOH于室温搅拌均匀后,密闭于125℃反应5小时。胶状物质于室温干燥成干胶,之后再将其用索氏提取器以无水乙醇或甲醇萃取洗涤6小时以上。150℃真空(0.2mmHg)脱去残留乙醇即得多级孔材料IPD-mesoMOF-12,收率90%(以Hmim计)。纳米粒子粒度小于60nm,微孔(1.1nm)和介孔(36nm),BET比表面1670M2/g,总孔体积1.45cm3/g,介孔体积0.70cm3/g。
实施例12
将1.188克(4mmol)Zn(NO3)2·6H2O和10mmol Hmim于18mL无水乙醇中,加入10mmol氢氧化钠于室温搅拌均匀后,转移至20毫升容量的聚四氟乙烯反应釜中密闭于110℃反应6小时。冷至室温后,胶状物质于室温干燥成干胶,之后再将其用索氏提取器以无水乙醇萃取洗涤7小时。150℃真空(0.2mmHg)脱去残留乙醇即得本发明MOF型多级孔材料,收率97%(以Hmim计),纳米粒子粒度小于60nm,微孔(1.1nm)和介孔(30nm),BET比表面1620M2/g,总孔体积1.52cm3/g,介孔体积1.01cm3/g。
实施例13
将1.188克(4mmol)Zn(NO3)2·6H2O和8mmol Hmim于12mL无水乙醇中,加入8mmol氢氧化钠于室温搅拌均匀后,转移至20毫升容量的聚四氟乙烯反应釜中密闭于100℃反应2小时。冷至室温后,胶状物质于室温干燥成干胶,之后再将其用索氏提取器以无水乙醇萃取洗涤7小时。150℃真空(0.2mmHg)脱去残留乙醇即得本发明MOF型多级孔材料,收率97%(以Hmim计),纳米粒子粒度小于60nm,微孔(1.1nm)和介孔(25nm),BET比表面1670M2/g,总孔体积1.24cm3/g,介孔体积0.54cm3/g。
实施例14
将1.188克(4mmol)Zn(NO3)2·6H2O和0.656克(8mmol)Hmim于18mL无水乙醇中,加入8mmol氢氧化钠于室温搅拌均匀后,混入8mmol氯化钠纳米粒子(粒度60nm),混匀,之后迅速转移至20毫升容量的聚四氟乙烯反应釜中密闭于100℃反应6小时。冷至室温后,胶状物质于室温干燥成干胶,之后再将其用索氏提取器以无水乙醇萃取洗涤7小时。150℃真空(0.2mmHg)脱去残留乙醇即得MOF型多级孔材料,收率96%(以Hmim计)。纳米粒子粒度小于60nm,微孔(1.2nm)和介孔(45nm),BET比表面1720M2/g,总孔体积2.19cm3/g,介孔体积1.9cm3/g。
实施例15
将1.188克(4mmol)Zn(NO3)2·6H2O和0.656克(8mmol)Hmim于18mL无水乙醇中,加入8mmol氢氧化钠于室温搅拌均匀后,混入12mmol氯化钠纳米粒子(粒度60nm),混匀,之后迅速转移至20毫升容量的聚四氟乙烯反应釜中密闭于100℃反应6小时。冷至室温后,胶状物质于室温干燥成干胶,之后再将其用索氏提取器以无水乙醇萃取洗涤7小时。150℃真空(0.2mmHg)脱去残留乙醇即得MOF型多级孔材料,收率96%(以Hmim计)。纳米粒子粒度小于60nm,微孔(1.2nm)和介孔(47nm),BET比表面1750M2/g,总孔体积2.19cm3/g,介孔体积1.93cm3/g。
将实施例14和实施例15制备的MOF型多级孔材料与实施例1做甲苯吸附的平行试验,吸附效果比实施例1又提高20%以上,平衡时间为3分钟。
对于上述采用硝酸锌的实施例,分别以盐酸锌和醋酸锌替代硝酸锌,获得的结果基本相同。
根据反应机理以及大量实验,以其他不多于碳原子的有机溶剂替代上述实施例中的无水乙醇,同样可以制得IPD-mesoMOF-12。
本发明制备的IPD-mesoMOF-12,外观呈白色固态干胶(研磨后呈粉末)。

Claims (6)

1.一种基于ZIF-8的MOF型多级孔材料,包含微孔和介孔,其特征在于同时具有来自于ZIF-8结构的有序微孔和产生于纳米ZIF-8粒子间孔隙的介孔,介孔范围为2-50nm,微孔小于2nm,BET比表面为1300-1850m2/g,总孔体积1.20-2.80cm3/g,介孔孔体积为0.5-1.90cm3/g。
2.根据权利要求1所述的MOF型多级孔材料,其特征在于介孔孔体积为0.7-1.90cm3/g。
3.根据权利要求1所述的基于ZIF-8的MOF型多级孔材料的制备方法,其特征在于依次包括如下步骤:
按比例将金属锌盐、2-甲基咪唑、碱和有机溶剂混合均匀,密闭条件下反应2-12小时,反应温度为80-130℃,反应完毕冷却得到凝胶物质,具体为:
步骤(1):按比例将金属锌盐、2-甲基咪唑、碱和有机溶剂混合搅拌均匀,然后转移至反应釜中,密闭条件下于80-130℃下恒温反应2-12小时;
步骤(2):反应完毕冷却至室温,将得到的凝胶物质于20-50℃条件下干燥成干胶,之后再将其萃取洗涤6小时以上;
步骤(3):最后在130-150℃、真空条件下加热12小时以上,脱除残留溶剂,即得多级孔材料,
所述金属锌盐为硝酸盐、盐酸盐或醋酸盐;
所述碱为无机碱或有机碱;
所述有机溶剂为不多于4个碳原子的有机溶剂;
所述金属锌盐、2-甲基咪唑、碱和有机溶剂的配比为1摩尔:2-2.5摩尔:2-2.5摩尔:2.0-20升。
4.根据权利要求3所述MOF型多级孔材料的制备方法,其特征在于步骤(1)中金属锌盐、2-甲基咪唑、碱和有机溶剂的配比为1摩尔:2-2.5摩尔:2-2.5摩尔:3-7升。
5.根据权利要求1或2所述的基于ZIF-8的MOF型多级孔材料或者根据权利要求3或4所述的方法制备的基于ZIF-8的MOF型多级孔材料用作吸附剂的应用。
6.根据权利要求1或2所述的基于ZIF-8的MOF型多级孔材料或者根据权利要求3或4所述的方法制备的基于ZIF-8的MOF型多级孔材料在芳香族化合物污染水深度净化中的应用,其特征在于用作吸附剂。
CN201610135677.5A 2016-03-10 2016-03-10 基于zif-8的mof型多级孔材料及其制备方法和应用 Expired - Fee Related CN105664860B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610135677.5A CN105664860B (zh) 2016-03-10 2016-03-10 基于zif-8的mof型多级孔材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610135677.5A CN105664860B (zh) 2016-03-10 2016-03-10 基于zif-8的mof型多级孔材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN105664860A CN105664860A (zh) 2016-06-15
CN105664860B true CN105664860B (zh) 2019-03-22

Family

ID=56307393

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610135677.5A Expired - Fee Related CN105664860B (zh) 2016-03-10 2016-03-10 基于zif-8的mof型多级孔材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN105664860B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106988017B (zh) * 2017-03-20 2019-04-12 南京理工大学 一种用于吸附pm2.5的高吸附性多孔复合薄膜及其制备方法
CN108129670B (zh) * 2017-12-05 2020-09-25 西北工业大学 一种梯度多孔金属有机骨架zif-8的制备方法
CN112898588B (zh) * 2021-01-25 2022-06-14 中国石油大学(北京) 一种纳米沸石咪唑酯骨架材料及其制备方法与在驱油中的应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102220626A (zh) * 2011-05-25 2011-10-19 大连理工大学 动态晶化制备纳米类沸石金属有机骨架化合物晶体的方法
CN102895953A (zh) * 2012-10-16 2013-01-30 中国石油大学(北京) 多级孔zif-8的合成方法及其在汽油深度脱硫中的应用
CN103230777A (zh) * 2013-05-06 2013-08-07 北京化工大学 一种吸附材料zif-8的大量制备方法及成型方法
CN104667876A (zh) * 2013-11-29 2015-06-03 北京思达安新材料科技有限公司 系列MOF型多级孔材料IPD-mesoMOF-1~8及其制备方法,以及介孔大小的调节方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6751631B2 (en) * 2001-05-01 2004-06-15 Sun Microsystems, Inc. Method for meta object facility repository bootstrap

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102220626A (zh) * 2011-05-25 2011-10-19 大连理工大学 动态晶化制备纳米类沸石金属有机骨架化合物晶体的方法
CN102895953A (zh) * 2012-10-16 2013-01-30 中国石油大学(北京) 多级孔zif-8的合成方法及其在汽油深度脱硫中的应用
CN103230777A (zh) * 2013-05-06 2013-08-07 北京化工大学 一种吸附材料zif-8的大量制备方法及成型方法
CN104667876A (zh) * 2013-11-29 2015-06-03 北京思达安新材料科技有限公司 系列MOF型多级孔材料IPD-mesoMOF-1~8及其制备方法,以及介孔大小的调节方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Hierarchical porous materials based on nanoscale metal-organic frameworks dominated with permanent interparticle porosity";Xun Liu et al;《Microporous and Mesoporous Materials》;20141117;第204卷;背景介绍、表1、表2和实验部分

Also Published As

Publication number Publication date
CN105664860A (zh) 2016-06-15

Similar Documents

Publication Publication Date Title
Hou et al. Metal–organic framework gels and monoliths
Zhang et al. Direct carbonization of Zn/Co zeolitic imidazolate frameworks for efficient adsorption of Rhodamine B
Yang et al. Selective separation of methyl orange from water using magnetic ZIF-67 composites
Dai et al. Synthesis of novel microporous nanocomposites of ZIF-8 on multiwalled carbon nanotubes for adsorptive removing benzoic acid from water
CN108201878B (zh) 一种碳点改性金属有机骨架吸附材料的制备方法及水体污染物治理应用
Malekmohammadi et al. A comparative study on ZIF-8 synthesis in aqueous and methanolic solutions: Effect of temperature and ligand content
Luo et al. Facile synthesis of boehmite/PVA composite membrane with enhanced adsorption performance towards Cr (VI)
CN107500310B (zh) 高性能纳米多级孔ts-1分子筛、制备方法及其应用
Ye et al. Superior adsorption performance of metal-organic-frameworks derived magnetic cobalt-embedded carbon microrods for triphenylmethane dyes
CN110237820B (zh) 微波辅助磁性中空Zn/Co沸石咪唑纳米笼材料的制备方法及应用
CN112058235B (zh) 一种铜有机框架-氧化硅多孔复合材料及其制备方法和应用
Wang et al. Low-cost route for synthesis of mesoporous silica materials with high silanol groups and their application for Cu (II) removal
CN105664860B (zh) 基于zif-8的mof型多级孔材料及其制备方法和应用
Fan et al. Guanidinium ionic liquid-controlled synthesis of zeolitic imidazolate framework for improving its adsorption property
Xu et al. Morphology-control of metal-organic framework crystal for effective removal of dyes from water
CN112337427A (zh) 一种La@Zr@SiO2@膨润土复合除磷吸附剂的制备方法
CN109876774B (zh) 一种处理染料污水的吸附材料及其制备方法
Zhang et al. Synthesis of HKUST-1 embedded in SBA-15 functionalized with carboxyl groups as a catalyst for 4-nitrophenol to 4-aminophenol
CN112547105A (zh) 铜(i)掺杂石墨化氮化碳纳米片催化剂及其制备方法与应用
CN111013543B (zh) 一种多孔级的CuBTC配体组装合成方法
Tehrani et al. Seed-mediated synthesis of a modified micro-mesoporous MIL-101 (Cr) for improved benzene and toluene adsorption at room conditions
Abbasi et al. Efficient CO oxidation over palladium supported on various MOFs: synthesis, amorphization, and space velocity of hydrogen stream
CN110639474A (zh) 一种用于分离丙烯和丙烷的吸附剂及其制备方法
Trongjitraksa et al. Enhancement of the thermal stability for MCM-48 with incorporation of different metals
Puerto-Rodríguez et al. On the adsorption properties and applications of mixed-linker MOFs based on HKUST-1

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190322

CF01 Termination of patent right due to non-payment of annual fee