CN112516811A - 一种含银抗菌薄层复合膜及其制备方法和应用 - Google Patents

一种含银抗菌薄层复合膜及其制备方法和应用 Download PDF

Info

Publication number
CN112516811A
CN112516811A CN201910873808.3A CN201910873808A CN112516811A CN 112516811 A CN112516811 A CN 112516811A CN 201910873808 A CN201910873808 A CN 201910873808A CN 112516811 A CN112516811 A CN 112516811A
Authority
CN
China
Prior art keywords
silver
layer
polyamine
composite film
containing antibacterial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910873808.3A
Other languages
English (en)
Inventor
于浩
刘轶群
潘国元
张杨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinopec Beijing Research Institute of Chemical Industry
China Petroleum and Chemical Corp
Original Assignee
Sinopec Beijing Research Institute of Chemical Industry
China Petroleum and Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinopec Beijing Research Institute of Chemical Industry, China Petroleum and Chemical Corp filed Critical Sinopec Beijing Research Institute of Chemical Industry
Priority to CN201910873808.3A priority Critical patent/CN112516811A/zh
Publication of CN112516811A publication Critical patent/CN112516811A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/48Antimicrobial properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明公开了一种含银抗菌薄层复合膜及其制备方法和应用。所述复合膜包括增强层、支撑层和分离层,所述分离层位于所述支撑层一个表面上,所述增强层位于支撑层另一个表面上,所述支撑层为聚合物多孔膜,所述分离层为负载含银化合物的聚酰胺分离层,其中,所述分离层中银元素的质量含量为0.1~10wt%。所述制备方法首先制备银化合物的多元胺溶液和多元酰氯溶液;然后将支撑层依次与含银化合物的多元胺溶液、多元酰氯溶液接触,再进行热处理制得。根据本发明制备的含银抗菌薄层复合膜具有抗菌性能持久、制备工艺简单、适合大量生产等优点。

Description

一种含银抗菌薄层复合膜及其制备方法和应用
技术领域
本发明涉及分离膜领域,具体地说,是涉及一种含银抗菌薄层复合膜及其制备方法和应用。
背景技术
包括纳滤膜、反渗透膜在内的薄层复合膜已被应用于各种领域,如海水和苦咸水淡化、工业废水处理、家庭饮用水净化等。然而,在使用过程中,微生物易在膜表面生长,经过繁殖后形成菌落,并释放代谢产物,在膜的表面形成生物质层,严重降低膜的分离性能和水通量。同时,生物质层随着时间的推移会变得越来越厚,难以清除。在膜表面引入抗菌剂,赋予膜接触杀菌的特性,是提高膜抗生物污染能力的一种有效方法。
银离子作为抗菌剂,具有安全性、广谱性、长效性、无耐性菌、抑菌效果显著等优点,因而是一种被广泛使用的抗菌物资。载银抗菌材料在使用过程中,银离子逐渐从抗菌材料表面溶出。银离子与细胞接触后,依靠静电引力吸附在带有负电荷的细胞壁上,占据细胞膜表面阳离子的位置,与蛋白质或其他阴离子基团结合,造成微生物共有成分破坏或产生功能障碍,从而达到抗菌的目的。CN109046038A公开了一种高强度抑菌反渗透膜的制备方法,该方法以芦苇叶为原料与柠檬酸、苹果酸以及马来酸酐反应制得反应产物,随后将反应产物与硝酸银溶液混合得到滤饼,最后将聚砜膜浸泡于固液混合物中,烘干即得到高强度抑菌反渗透膜。CN106823834A公开了一种持久抗菌性能的反渗透膜及其制备方法,该方法先在基膜上通过界面聚合形成聚酰胺分离层,然后将胍类抗菌聚合物、硝酸银及聚乙烯醇的混合溶液涂覆至聚酰胺分离层上,再通过还原性溶液将银离子还原,最后通过交联反应形成抗菌耐污染层。CN103480284A公开了一种耐污染聚酰胺复合膜及其制备方法,该方法将纳米银、铜或钛化合物与PVA溶液混合后涂覆于聚酰胺反渗透膜表面得到耐污染聚酰胺复合膜。
由此可见,上述现有技术或通过将反渗透膜浸入至含有抗菌金属的溶液中,或通过在反渗透膜表面再涂覆一层抗菌功能层,虽然提高了膜表面的抗菌性能,但一方面附着在膜表面的抗菌金属粒子会随着膜的使用快速流失,导致膜表面抗菌性能持久性差,另一方面增加了制备步骤,后处理时间长,提高了生产成本。
因此,目前存在的问题是亟需研究开发一种抗菌持久性良好而制备工艺简单的薄层复合膜及其制备方法。
发明内容
本发明所要解决的技术问题是针对上述现有技术的不足,提供一种抗菌性能持久、制备工艺简单、适合大量生产的抗菌薄层复合膜及其制备方法。
本发明的目的之一为提供一种含银抗菌薄层复合膜,所述复合膜包括增强层、支撑层和分离层,所述分离层位于所述支撑层一个表面上,所述增强层位于支撑层另一个表面上,所述支撑层为聚合物多孔膜,所述分离层为负载含银化合物的聚酰胺分离层。
根据本发明,对于所述支撑层没有特别的限定,可以由现有的各种具有一定的强度、并能够用于纳滤膜和/或反渗透膜的材料制成,优选由聚砜、聚醚砜和聚丙烯腈中的一种或多种制成。
在本发明中,对所述支撑层的来源没有特别的限定,可以为本领域常规的选择,例如,可以通过市售获得,在优选的情况下,可以采用相转化法自制获得。其中,所述相转化法为本领域技术人员所熟知的,例如,可以为气相凝胶法、溶剂蒸发凝胶法、热凝胶法或浸入凝胶法,优选为浸入凝胶法。在一种优选的实施方式中,通过将含有聚砜的涂覆液涂覆在增强层上形成初生膜,然后采用相转化法将所述初生膜转化为支撑层,以获得聚砜多孔支撑层。
根据本发明,所述支撑层的厚度可以在较大范围内变动,优选所述支撑层的平均厚度为20~80μm,为了使得支撑层与所述聚酰胺分离层之间达到更好的协同配合目的,使得到的复合膜对离子具有更好的截留性能和较高的水通量,优选所述支撑层的平均厚度30~60μm。
所述增强层位于支撑层的一个表面上,这样不仅更有利于支撑层的形成,并且还能够使得复合膜具有更好的力学性能。另外,本发明对所述增强层没有特别的限定,可以为本领域常规的选择,例如,可以为聚酯层、聚乙烯层或聚丙烯层中的一种或多种,优选为聚酯层,更优选为聚酯无纺布支撑层。所述增强层的来源没有特别的限定,可以为本领域常规的选择,例如,可以通过市售获得。
对所述增强层的厚度没有特别地限定,可以为本领域的常规选择,在优选的情况下,所述增强层的平均厚度为40~100μm,更优选为50~90μm。
在本发明中,作为上述负载含银化合物的聚酰胺分离层,优选通过将银化合物的多元胺溶液与多元酰氯溶液进行界面聚合得到。
根据本发明,所述负载含银化合物的聚酰胺分离层中银元素的质量含量优选为0.1~10%,更优选为0.5~5%。
根据本发明,所述银化合物为氧化银、氯化银、硫酸银或碳酸银中的一种或多种。
根据本发明,所述负载含银化合物的聚酰胺分离层的平均厚度为50~300nm,优选为100~200nm。
根据本发明,所述薄层复合膜包括复合纳滤膜和/或复合反渗透膜。
本发明的之二为提供一种所述含银抗菌薄层复合膜的制备方法,包括以下步骤:
(1)在所述增强层的一个表面上制备所述支撑层;
(2)在所述支撑层的另一个表面上制备得到含银化合物的聚酰胺分离层。
其中,步骤(1)方法可以为本领域的常规选择,优选地采用相转化法,可在增强层的一个表面涂覆支撑层聚合物溶液,经过相转化得到表面附着增强层的支撑层。
所述相转化法具体可以为:将支撑层的聚合物溶于溶剂中,得到浓度为10~20重量%的聚合物溶液,在常温下脱泡;接着将聚合物溶液涂覆在增强层上得到初始膜,随即将其在温度为10~30℃的水中浸泡1~60min,使得增强层表面的聚砜层经相转化成支撑层聚合物多孔膜。
所述溶剂可以为N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、N-甲基吡咯烷酮、二甲基亚砜等。
根据本发明的方法,步骤(2)中作为在所述支撑层的另一个表面上制备得到含银化合物的聚酰胺分离层的方法,优选通过将银化合物的多元胺溶液与多元酰氯溶液进行界面聚合得到。根据本发明中,更优选将所述支撑层的另一个表面依次与银化合物的多元胺溶液以及多元酰氯的溶液接触,然后进行热处理。
在本发明中,术语“界面聚合”是指:在两种互不相溶,分别溶解有两种单体的溶液的界面上(或界面有机相一侧)进行的聚合反应。
根据本发明,所述多元胺包括胺包括主多元胺或者包括主多元胺和副多元胺,所述主多元胺选自乙二胺、1,3-丙二胺、三乙烯四胺或多乙烯多胺中的至少一种;所述副多元胺选自间苯二胺、对苯二胺、哌嗪、聚乙烯亚胺中的一种或多种。
所述多元胺包括主多元胺和副多元胺时,多元胺中主多元胺的质量百分比为50~100%。
另外,在进行界面聚合时,优选所述银化合物的多元胺以溶液形式使用,溶剂优选为水。
另外,对于所述银化合物的多元胺溶液中多元胺的浓度没有特别的限定,可以为本领域的常规选择。例如,所述多元胺溶液中多元胺的浓度可以为0.01~10重量%,优选为0.1~2.5重量%。
根据本发明,所述银化合物为氧化银、氯化银、硫酸银或碳酸银中的一种或多种。
根据本发明,所述银化合物的多元胺溶液中银化合物与多元胺的质量比优选为(0.01~3):1,更优选为(0.1~2):1,进一步优选为(0.1~1):1。
在本发明中,对于所述多元酰氯的种类也没有特别的限定,可以为本领域通常用于制备聚酰胺所使用的酰氯化合物。优选地,所述多元酰氯为均苯三甲酰氯、间苯二甲酰氯和对苯二甲酰氯中的一种或多种,更优选为均苯三甲酰氯。
另外,在进行界面聚合时,优选所述多元酰氯以溶液形式使用,作为溶解所述多元酰氯的溶剂,可以为与上述溶解多元胺的溶剂不相容、且对所述多元酰氯惰性的溶剂。作为这样的溶剂例如可以为有机溶剂,作为所述有机溶剂优选为正己烷、十二烷、正庚烷、烷烃溶剂油(Isopar E、Isopar G、Isopar H、Isopar L和Isopar M)中的一种或多种。
另外,对于所述多元酰氯溶液中多元酰氯的浓度没有特别的限定,可以为本领域的常规选择。例如,所述多元酰氯溶液中多元酰氯的浓度可以为0.01~1重量%,优选为0.05~0.5重量%。
作为所述多元胺与所述多元酰氯的用量可以在一个较大的范围内变动,优选地,所述多元胺与所述多元酰氯的质量浓度比为(1~50):1,更优选为(10~30):1。
作为将所述银化合物的多元胺溶液和多元酰氯溶液进行界面聚合得到本发明的聚酰胺分离层的方式没有特别的限定,可以为本领域使多元胺与多元酰氯进行界面聚合而使用的各种常规的接触方式。优选地,将所述将支撑层与银化合物的多元胺溶液接触时间为10~120s,优选为15~60s;与多元酰氯溶液接触时间为10~120s,优选为15~60s;接触时的温度为10~40℃。
根据本发明,进行上述热处理时,所述热处理温度20~100℃,时间1~10min。优选地,所述热处理温度25~80℃,时间2~5min。
本发明目的之三为提供所述含银抗菌薄层复合膜在水处理过程中的应用。在所述复合膜使用过程中,银离子会缓慢地在水中溶解,从而起到长期的杀菌作用,增加了膜的持久抗菌能力。
本发明提供的含银抗菌薄层复合膜包括增强层、支撑层和负载含银化合物的聚酰胺分离层,其分离层通过将银化合物的多元胺溶液与多元酰氯溶液进行界面聚合得到;界面聚合过程中,胺类单体与酰氯单体反应生成聚酰胺的同时伴随着银化合物析出并固定在聚酰胺层,另一方面,聚酰胺层中残留的羧酸基团与银离子络合可以起到固定银离子的作用。在膜使用过程中,银离子会缓慢地在水中溶解,从而起到长期的杀菌作用,增加了膜的持久抗菌能力。
本发明提供的含银抗菌薄层复合膜及其制备方法具有如下优点:
(1)本发明提供的含银抗菌薄层复合膜制备方法简单,生产成本低。
(2)本发明提供的含银抗菌薄层复合膜抗菌持久性强,银化合物的引入不会造成薄层复合膜性能明显下降,甚至有所提升。
(3)本发明提供的含银抗菌薄层复合膜的制备工艺与常规制备工艺相似,无需引入额外的反应步骤,可在现有设备上实现,因此具有良好的工业化生产前景。
具体实施方式
为使本发明更加容易理解,下面将结合实施例来详细说明本发明,这些实施例仅起说明性作用,并不用于限制本发明。
本发明的含银抗菌薄层复合膜的性能评价及评价方法如下:
(1)水通量定义为:在一定的操作条件下,单位时间内透过单位膜面积的水的体积,其单位为L/(m2·h)。
(2)截盐率R定义为:在一定的操作压力条件下,进料液盐浓度Cf与渗透液中盐浓度CP之差,再除以进料液盐浓度。即:R=(CP-Cf)/CP×100%。
本发明中复合反渗透膜采用的测试操作条件为:进液为2000ppm的氯化钠水溶液,操作压力为225psi,操作温度为25℃。
本发明中复合纳滤膜采用的测试操作条件为:进液为500ppm的硫酸镁水溶液,操作压力为80psi,操作温度为25℃。
(3)抗菌性能测试:将抗菌薄层复合膜剪成40mm×40mm的样品,将上述样品与100μL的大肠杆菌菌液接触,再在37℃的恒温培养箱中培养18h,用倒平板法进行活菌计数,同时对普通复合膜(不含有抗菌银化合物)进行对比试验。抗菌率计算公式如下:
抗菌率(%)=(1-B/A)×100%
式中,A为普通复合膜样品活菌数;B为抗菌复合膜样品活菌数。
在以下实施例中,氧化银、氯化银、碳酸银、硫酸银、乙二胺和多乙烯多胺购自上海阿拉丁生化科技股份有限公司;三乙烯四胺、均苯三甲酰氯和对苯二甲酰氯购自百灵威科技有限公司;聚乙烯亚胺购自阿法埃莎公司;Isopar E、Isopar G购自西陇化工有限公司;其它化学试剂均购自国药集团化学试剂有限公司。
增强层表面制备支撑层采用相转化法制得,具体步骤如下:
将一定量聚砜(数均分子量为80000)溶于N,N-二甲基甲酰胺中,制得浓度为18重量%的聚砜溶液,常温下脱泡2h;然后,利用刮刀将聚砜溶液涂覆在(厚度为75μm的)聚酯无纺布上得到初始膜,随即将其在温度为25℃的水中浸泡60min,得到聚砜支撑层。所述聚砜支撑层平均厚度为50μm。
实施例1
向1g氧化银中依次加入2g乙二胺、100mL去离子水搅拌得到氧化银的乙二胺溶液,向0.1g均苯三甲酰氯中加入100mL Isopar E搅拌得到均苯三甲酰氯溶液。将上述聚砜支撑层上表面接触含有氧化银的乙二胺溶液,25℃下接触30s后排液;然后,将支撑层上表面再接触均苯三甲酰氯溶液,25℃下接触30s后排液;然后,将膜放进烘箱中,在70℃下加热3min,得到复合膜AgR1。X射线光电子能谱测试表明复合膜表面银元素质量含量为5.5wt%。其中,聚酰胺分离层的平均厚度为218nm。
将得到的复合膜AgR1在水中浸泡24h,然后测试其对2000ppm氯化钠水溶液的截盐能力,测试压力为225psi、温度为25℃,结果如表1所示。另外,通过微生物计数法来考察其抗菌活性,结果见表1。
实施例2
向3g硫酸银中依次加入1g乙二胺、100mL去离子水搅拌得到硫酸银的乙二胺溶液,向0.1g均苯三甲酰氯中加入100mL Isopar G搅拌得到均苯三甲酰氯溶液。将上述聚砜支撑层上表面接触含有硫酸银的乙二胺溶液,25℃下接触60s后排液;然后,将支撑层上表面再接触均苯三甲酰氯溶液,25℃下接触30s后排液;然后,将膜放进烘箱中,在100℃下加热2min,得到复合膜AgR2。X射线光电子能谱测试表明复合膜表面银元素质量含量为8.1wt%。其中,聚酰胺分离层的平均厚度为195nm。
将得到的复合膜AgR2在水中浸泡24h,然后测试其对2000ppm氯化钠水溶液的截盐能力,测试压力为225psi、温度为25℃,结果如表1所示。另外,通过微生物计数法来考察其抗菌活性,结果见表1。
实施例3
向0.1g碳酸银中依次加入0.5g乙二胺、100mL去离子水搅拌得到碳酸银的乙二胺溶液,向0.05g均苯三甲酰氯中加入100mL Isopar E搅拌得到均苯三甲酰氯溶液。将上述聚砜支撑层上表面接触含有碳酸银的乙二胺溶液,25℃下接触60s后排液;然后,将支撑层上表面再接触均苯三甲酰氯溶液,25℃下接触60s后排液;然后,将膜放进烘箱中,在70℃下加热4min,得到复合膜AgR3。X射线光电子能谱测试表明复合膜表面银元素质量含量为0.8wt%。其中,聚酰胺分离层的平均厚度为182nm。
将得到的复合膜AgR3在水中浸泡24h,然后测试其对2000ppm氯化钠水溶液的截盐能力,测试压力为225psi、温度为25℃,结果如表1所示。另外,通过微生物计数法来考察其抗菌活性,结果见表1。
实施例4
向0.2g硫酸银中依次加入2.3g三乙烯四胺、0.2g间苯二胺、100mL去离子水搅拌得到硫酸银的混合胺溶液,向0.06g均苯三甲酰氯和0.04g对苯二甲酰氯的混合物中加入100mL Isopar E搅拌得到混合酰氯溶液。将上述聚砜支撑层上表面接触含有硫酸银的混合胺溶液,25℃下接触15s后排液;然后,将支撑层上表面再接触混合酰氯溶液,25℃下接触15s后排液;然后,将膜放进烘箱中,在70℃下加热3min,得到复合膜AgR4。X射线光电子能谱测试表明复合膜表面银元素质量含量为1.4wt%。其中,聚酰胺分离层的平均厚度为153nm。
将得到的复合膜AgR3在水中浸泡24h,然后测试其对2000ppm氯化钠水溶液的截盐能力,测试压力为225psi、温度为25℃,结果如表1所示。另外,通过微生物计数法来考察其抗菌活性,结果见表1。
实施例5
向0.1g氧化银中依次加入0.5g三乙烯四胺、100mL去离子水搅拌得到氧化银的三乙烯四胺溶液,向0.1g均苯三甲酰氯中加入100mL Isopar E搅拌得到均苯三甲酰氯溶液。将上述聚砜支撑层上表面接触含有氧化银的三乙烯四胺溶液,25℃下接触60s后排液;然后,将支撑层上表面再接触均苯三甲酰氯溶液,25℃下接触60s后排液;然后,将膜放进烘箱中,在50℃下加热5min,得到复合膜AgN1。X射线光电子能谱测试表明复合膜表面银元素质量含量为2wt%。其中,聚酰胺分离层的平均厚度为202nm。
将得到的复合膜AgN1在水中浸泡24h,然后测试其对500ppm硫酸镁水溶液的截盐能力,测试压力为80psi、温度为25℃,结果如表1所示。另外,通过微生物计数法来考察其抗菌活性,结果见表1。
实施例6
向0.25g氯化银中依次加入1g三乙烯四胺、100mL去离子水搅拌得到氯化银的三乙烯四胺溶液,向0.075g均苯三甲酰氯和0.025g对苯二甲酰氯的混合物中加入100mL IsoparE搅拌得到多元酰氯溶液。将上述聚砜支撑层上表面接触含有氯化银的三乙烯四胺溶液,25℃下接触60s后排液;然后,将支撑层上表面再接触多元酰氯溶液,25℃下接触60s后排液;然后,将膜放进烘箱中,在60℃下加热3min,得到复合膜AgN2。X射线光电子能谱测试表明复合膜表面银元素质量含量为1.6wt%。其中,聚酰胺分离层的平均厚度为176nm。
将得到的复合膜AgN2在水中浸泡24h,然后测试其对500ppm硫酸镁水溶液的截盐能力,测试压力为80psi、温度为25℃,结果如表1所示。另外,通过微生物计数法来考察其抗菌活性,结果见表1。
实施例7
向0.5g碳酸银中依次加入1g三乙烯四胺、1g多乙烯多胺、100mL去离子水搅拌得到碳酸银的多元胺溶液,向0.1g均苯三甲酰氯中加入100mL Isopar E搅拌得到均苯三甲酰氯溶液。将上述聚砜支撑层上表面接触含有碳酸银的多元胺溶液,25℃下接触30s后排液;然后,将支撑层上表面再接触均苯三甲酰氯溶液,25℃下接触30s后排液;然后,将膜放进烘箱中,在50℃下加热5min,得到复合膜AgN3。X射线光电子能谱测试表明复合膜表面银元素质量含量为3.4wt%。其中,聚酰胺分离层的平均厚度为154nm。
将得到的复合膜AgN3在水中浸泡24h,然后测试其对500ppm硫酸镁水溶液的截盐能力,测试压力为80psi、温度为25℃,结果如表1所示。另外,通过微生物计数法来考察其抗菌活性,结果见表1。
实施例8
向0.3g硫酸银中依次加入1.5g多乙烯多胺、0.5g聚乙烯亚胺、100mL去离子水搅拌得到硫酸银的多元胺溶液,向0.05g均苯三甲酰氯和0.05g对苯二甲酰氯的混合物中加入100mL Isopar E搅拌得到混合酰氯溶液。将上述聚砜支撑层上表面接触含有硫酸银的多元胺溶液,25℃下接触30s后排液;然后,将支撑层上表面再接触混合酰氯溶液,25℃下接触30s后排液;然后,将膜放进烘箱中,在30℃下加热5min,得到复合膜AgN4。X射线光电子能谱测试表明复合膜表面银元素质量含量为1.5wt%。其中,聚酰胺分离层的平均厚度为137nm。
将得到的复合膜AgN4在水中浸泡24h,然后测试其对500ppm硫酸镁水溶液的截盐能力,测试压力为80psi、温度为25℃,结果如表1所示。另外,通过微生物计数法来考察其抗菌活性,结果见表1。
对比例1
按照实施例1制备复合膜的方法进行,所不同之处在于,乙二胺溶液中不添加氧化银,与酰氯溶液界面聚合后得到复合膜R1。其中,聚酰胺分离层的平均厚度为235nm。
将得到的复合膜R1在水中浸泡24h,然后测试其对2000ppm氯化钠水溶液的截盐能力,测试压力为225psi、温度为25℃,结果如表1所示。另外,通过微生物计数法来考察其抗菌活性,结果见表1。
对比例2
按照实施例5制备复合膜的方法进行,所不同之处在于,三乙烯四胺溶液中不添加氧化银,与酰氯溶液界面聚合后得到复合膜N1。其中,聚酰胺分离层的平均厚度为218nm。
将得到的复合膜N1在水中浸泡24h,然后测试其对500ppm硫酸镁水溶液的截盐能力,测试压力为80psi、温度为25℃,结果如表1所示。另外,通过微生物计数法来考察其抗菌活性,结果见表1。
表1实施例与对比例性能对比
Figure BDA0002203657940000121
通过对比实施例和对比例可以看出,该方法制备得到的抗菌薄层复合膜较不含有银化合物的薄层复合膜通量和截盐率无明显下降,甚至有所提升,但杀菌率高达98%以上。这是由于本发明提供的抗菌薄层复合膜中分离层通过将含银化合物的多元胺溶液与多元酰氯溶液进行界面聚合得到,在聚合过程中,胺类单体与酰氯单体反应生成聚酰胺的同时伴随着银化合物析出并固定在聚酰胺层,另一方面,聚酰胺层中残留的羧酸基团与银离子络合起到固定银离子的作用。因此,在膜使用过程中,银离子会缓慢地在水中溶解,从而起到长期的杀菌作用,增加了膜的持久抗菌能力。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于此。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个技术特征以任何其它的合适方式进行组合,这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。

Claims (17)

1.一种含银抗菌薄层复合膜,其特征在于所述复合膜包括增强层、支撑层和分离层,所述分离层位于所述支撑层一个表面上,所述增强层位于支撑层另一个表面上,所述支撑层为聚合物多孔膜,所述分离层为负载含银化合物的聚酰胺分离层。
2.根据权利要求1所述的含银抗菌薄层复合膜,其特征在于:
所述支撑层的聚合物多孔膜为聚砜、聚醚砜和聚丙烯腈中的一种或多种的膜。
3.根据权利要求1所述的含银抗菌薄层复合膜,其特征在于:
所述增强层为聚酯层、聚乙烯层或聚丙烯层中的一种或多种。
4.根据权利要求1所述的含银抗菌薄层复合膜,其特征在于:
所述负载含银化合物的聚酰胺分离层中银元素的质量含量为0.1~10%,优选为0.5~5%。
5.根据权利要求1所述的含银抗菌薄层复合膜,其特征在于:
所述银化合物为氧化银、氯化银、硫酸银或碳酸银中的一种或多种。
6.根据权利要求1所述的含银抗菌薄层复合膜,其特征在于:
所述负载银化合物的聚酰胺分离层通过将银化合物的多元胺溶液与多元酰氯溶液进行界面聚合得到。
7.根据权利要求1所述的含银抗菌薄层复合膜,其特征在于:
所述支撑层的平均厚度为20~80μm,优选为30~60μm;
所述增强层的平均厚度为40~100μm,优选为50~90μm;
所述负载含银化合物的聚酰胺分离层的平均厚度为50~300nm,优选为100~200nm。
8.一种根据权利要求1~7之任一项所述的含银抗菌薄层复合膜的制备方法,其特征在于包括以下步骤:
(1)在所述增强层的一个表面上制备所述支撑层;
(2)在所述支撑层的另一个表面上制备得到含银化合物的聚酰胺分离层。
9.根据权利要求8所述的含银抗菌薄层复合膜的制备方法,其特征在于:
步骤(1)中,在所述增强层的一个表面涂覆支撑层聚合物溶液,经过相转化得到表面附着增强层的支撑层。
10.根据权利要求8所述的含银抗菌薄层复合膜的制备方法,其特征在于:
步骤(2)中,将所述支撑层的另一个表面依次与银化合物的多元胺溶液以及多元酰氯的溶液接触,然后进行热处理。
11.根据权利要求10所述的含银抗菌薄层复合膜的制备方法,其特征在于:
所述多元胺包括主多元胺或者主多元胺和副多元胺,所述主多元胺选自乙二胺、1,3-丙二胺、三乙烯四胺或多乙烯多胺中的至少一种;所述副多元胺选自间苯二胺、对苯二胺、哌嗪、聚乙烯亚胺中的至少一种;
所述多元酰氯选自均苯三甲酰氯、间苯二甲酰氯或对苯二甲酰氯中的至少一种。
12.根据权利要求10所述的含银抗菌薄层复合膜的制备方法,其特征在于:
所述多元胺与所述多元酰氯的质量浓度比为(1~50):1,优选为(10~30):1。
13.根据权利要求11所述的含银抗菌薄层复合膜的制备方法,其特征在于:
所述多元胺包括主多元胺和副多元胺时,主多元胺的质量百分比为50~100%。
14.根据权利要求10所述的含银抗菌薄层复合膜的制备方法,其特征在于:
所述银化合物的多元胺溶液中银化合物与多元胺的质量比为(0.01~3):1,优选为(0.1~2):1。
15.根据权利要求10所述的含银抗菌薄层复合膜的制备方法,其特征在于:
所述支撑层的另一个表面与银化合物的多元胺溶液接触时间为10~120s,与多元酰氯溶液接触时间为10~120s。
16.根据权利要求10所述的含银抗菌薄层复合膜的制备方法,其特征在于:
所述热处理温度为20~100℃,热处理时间1~10min。
17.根据权利要求1~7之任一项所述的含银抗菌薄层复合膜在水处理过程中的应用。
CN201910873808.3A 2019-09-17 2019-09-17 一种含银抗菌薄层复合膜及其制备方法和应用 Pending CN112516811A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910873808.3A CN112516811A (zh) 2019-09-17 2019-09-17 一种含银抗菌薄层复合膜及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910873808.3A CN112516811A (zh) 2019-09-17 2019-09-17 一种含银抗菌薄层复合膜及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN112516811A true CN112516811A (zh) 2021-03-19

Family

ID=74974396

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910873808.3A Pending CN112516811A (zh) 2019-09-17 2019-09-17 一种含银抗菌薄层复合膜及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN112516811A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114432910A (zh) * 2022-01-29 2022-05-06 中国科学院过程工程研究所 一种分离膜及其制备方法和用途

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009034673A (ja) * 2007-07-12 2009-02-19 Nitto Denko Corp 複合半透膜
CN101874989A (zh) * 2009-12-18 2010-11-03 北京时代沃顿科技有限公司 一种耐微生物污染的复合反渗透膜及其制备方法
CN103480284A (zh) * 2013-09-03 2014-01-01 株洲时代新材料科技股份有限公司 一种耐污染聚酰胺复合膜及其制备方法
CN106582326A (zh) * 2015-10-20 2017-04-26 中国石油化工股份有限公司 一种抗菌复合纳滤膜及其制备方法和应用
CN106621850A (zh) * 2015-10-28 2017-05-10 中国石油化工股份有限公司 一种抗菌复合纳滤膜、其制备方法及应用
CN107983158A (zh) * 2016-10-26 2018-05-04 中国石油化工股份有限公司 一种抗菌复合纳滤膜及其制备方法
CN109925895A (zh) * 2019-04-08 2019-06-25 河北工业大学 一种抗污染聚酰胺薄膜复合膜的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009034673A (ja) * 2007-07-12 2009-02-19 Nitto Denko Corp 複合半透膜
CN101874989A (zh) * 2009-12-18 2010-11-03 北京时代沃顿科技有限公司 一种耐微生物污染的复合反渗透膜及其制备方法
CN103480284A (zh) * 2013-09-03 2014-01-01 株洲时代新材料科技股份有限公司 一种耐污染聚酰胺复合膜及其制备方法
CN106582326A (zh) * 2015-10-20 2017-04-26 中国石油化工股份有限公司 一种抗菌复合纳滤膜及其制备方法和应用
CN106621850A (zh) * 2015-10-28 2017-05-10 中国石油化工股份有限公司 一种抗菌复合纳滤膜、其制备方法及应用
CN107983158A (zh) * 2016-10-26 2018-05-04 中国石油化工股份有限公司 一种抗菌复合纳滤膜及其制备方法
CN109925895A (zh) * 2019-04-08 2019-06-25 河北工业大学 一种抗污染聚酰胺薄膜复合膜的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
侯智婕等: "氧化高银/聚酰胺复合膜的制备及性能研究", 《现代化工》 *
秦龙鑫等: "纳米银在水处理膜中的应用进展", 《化工进展》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114432910A (zh) * 2022-01-29 2022-05-06 中国科学院过程工程研究所 一种分离膜及其制备方法和用途

Similar Documents

Publication Publication Date Title
Li et al. Bioinspired fabrication of composite nanofiltration membrane based on the formation of DA/PEI layer followed by cross-linking
Asatekin et al. Anti-fouling ultrafiltration membranes containing polyacrylonitrile-graft-poly (ethylene oxide) comb copolymer additives
Prince et al. Synthesis and characterization of PEG-Ag immobilized PES hollow fiber ultrafiltration membranes with long lasting antifouling properties
Gao et al. Creation of active-passive integrated mechanisms on membrane surfaces for superior antifouling and antibacterial properties
CN109847586B (zh) 高通量反渗透膜及其制备方法和用途
El-Gendi et al. Investigation of polyvinylchloride and cellulose acetate blend membranes for desalination
Velu et al. Preparation and performance studies on polyethersulfone ultrafiltration membranes modified with gelatin for treatment of tannery and distillery wastewater
CN112870990B (zh) 一种抗菌耐污染反渗透复合膜及其制备方法
Li et al. Preparation of hydrophilic PVDF/PPTA blend membranes by in situ polycondensation and its application in the treatment of landfill leachate
CN112426884A (zh) 一种抗菌复合反渗透膜及其制备方法
Abdallah et al. Antibacterial blend polyvinylidene fluoride/polyethyleneimine membranes for salty oil emulsion separation
CN112516817A (zh) 一种聚偏氟乙烯疏松纳滤膜及其制备方法和应用
RU2717512C2 (ru) Устойчивые к хлору гидрофильные фильтрационные мембраны на основе полианилина
CN108786498B (zh) 一种表面改性制备抗粘附抗生物污染反渗透膜及制备方法
CN112516811A (zh) 一种含银抗菌薄层复合膜及其制备方法和应用
Fryczkowska The application of ultrafiltration composite GO/PAN membranes for removing dyes from textile wastewater
CN102512997B (zh) 一种亲水性酚酞基聚芳醚砜合金超滤膜及其制备方法
CN113171686A (zh) 一种季铵盐表面改性的醋酸纤维素反渗透膜的制备方法
CN112261989B (zh) 耐污染性反渗透分离膜、其制备方法以及包括其的耐污染性反渗透组件
CN112516812A (zh) 一种含铜抗菌薄层复合膜及其制备方法和应用
Daneshvar et al. Tris (hydroxymethyl) aminomethane-grafted polyamine nanofiltration membrane: enhanced antifouling and pH resistant properties
CN115025620B (zh) 一种盐湖提锂用纳滤膜及其生产工艺
Chan et al. Reusability of Nano-Fe3O4/Polyvinylidene Difluoride Membrane for Palm Oil Mill Effluent Treatment
CN115253719A (zh) 一种抗菌聚酰胺纳滤复合膜及其制备方法
KR20120022414A (ko) 내오염성능이 개선된 폴리아미드 역삼투막 및 그 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination