CN112509775A - 一种低量添加重稀土的钕铁硼磁体及其制备方法 - Google Patents

一种低量添加重稀土的钕铁硼磁体及其制备方法 Download PDF

Info

Publication number
CN112509775A
CN112509775A CN202011473669.4A CN202011473669A CN112509775A CN 112509775 A CN112509775 A CN 112509775A CN 202011473669 A CN202011473669 A CN 202011473669A CN 112509775 A CN112509775 A CN 112509775A
Authority
CN
China
Prior art keywords
rare earth
heavy rare
powder
alloy
alloy sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011473669.4A
Other languages
English (en)
Inventor
朱晓男
彭众杰
相春杰
张强
丁开鸿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yantai Shougang Magnetic Materials Inc
Original Assignee
Yantai Shougang Magnetic Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yantai Shougang Magnetic Materials Inc filed Critical Yantai Shougang Magnetic Materials Inc
Priority to CN202011473669.4A priority Critical patent/CN112509775A/zh
Publication of CN112509775A publication Critical patent/CN112509775A/zh
Priority to JP2021171373A priority patent/JP7101448B2/ja
Priority to EP21214513.0A priority patent/EP4020505B1/en
Priority to US17/551,284 priority patent/US20220189688A1/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0557Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/044Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by jet milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2202/00Treatment under specific physical conditions
    • B22F2202/05Use of magnetic field
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/35Iron
    • B22F2301/355Rare Earth - Fe intermetallic alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/45Rare earth metals, i.e. Sc, Y, Lanthanides (57-71)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/10Micron size particles, i.e. above 1 micrometer up to 500 micrometer
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

本发明公开了一种低量添加重稀土的钕铁硼磁体及其制备方法,其特征在于以含无重稀土低熔点辅合金作为晶界相添加,再添加少量的重稀土Dy/Tb粉,利用低熔点高流动性的晶界相作为载体,在烧结过程中晶界相携带重稀土Dy/Tb粉分布在各个晶粒的周围,在烧结过程进行重稀土Dy/Tb粉扩散进入主相表层,实现重稀土元素的引入。采用主合金中添加一定比例的辅合金,进行氢处理,气流磨制粉,在气流磨粉中添加少量的重稀土Dy/Tb粉混合均匀,提高烧结温度,降低时效温度,促进重稀土元素的扩散,优化磁体晶界相结构,从而提高矫顽力。该方法可广泛用于低重稀土高性能烧结钕铁硼的制备与生产。

Description

一种低量添加重稀土的钕铁硼磁体及其制备方法
技术领域
本发明属于稀土永磁技术领域,具体为一种低量添加重稀土的钕铁硼磁体及其制备方法。
背景技术
在所有磁性材料中,永磁材料的使用量第一,而稀土永磁是永磁材料的重要组成部分,特别是第三代稀土永磁-钕铁硼永磁材料,以其优异的磁性能,一经发现即获得了广泛的应用。
随着应用领域的进一步拓展,也对钕铁硼永磁材料的性能提出了更高的要求,为满足电机、发电机等应用领域对工作温度的要求,需要提高烧结钕铁硼的最高工作温度,主要途径包括提高距离温度、矫顽力和磁晶各向异性场。研究表明,在磁体中添加重稀土元素,如Dy、Tb,是提高磁体工作温度最有效的手段。由于重稀土元素资源储量少、价格高昂,重稀土元素的添加在一定程度上提高了磁体的价格,进而限制其应用领域的拓展。同时,由于重稀土元素与铁发生反铁磁耦合,采用熔炼合金的方法添加重稀土Dy、Tb元素,导致Dy、Tb元素进入主相,导致磁体剩磁的降低。
如何在不降低磁体剩磁的情况下,提高磁体的矫顽力,并同时减少重稀土元素的含量,已经成为钕铁硼系永磁体发展所必然要解决的问题。
围绕这一目标,目前最有效的提高矫顽力的方式就是通过晶界扩散的方法对磁体的晶界进行改善,抑制反磁化畴的形核,提高矫顽力的同时避免了剩磁的下降,还降低了Dy、Tb的用量。由于晶界扩散深度的限制,仅适用于厚度小于5mm的磁体。此外采用扩散方法,重稀土的利用率低,也会造成生产成本的增加。中国专利ZL201110242847.7发明了一种低镝含量高性能烧结钕铁硼的制备方法,以溅射沉积的方法将Dy元素引入到气流磨粉体颗粒表面,实现晶界引入。该方法依赖于特殊的磁控溅射技术,且Dy元素的含量难以精确控制。中国专利CN1091022976发明了一种提高稀土钕铁硼性能的方法,采用重稀土辅合金的添加方式,使分布在主相周围后进行扩散进入主相,提高矫顽力。本实验方法采用无重稀土的辅合金相添加,同时添加重稀土粉,利用无重稀土辅相低熔点的特点,将重稀土分散在主相的任意周围,晶界相浸润性好,重稀土的浓度差大,这都促进了重稀土在主相壳层形成高HA相,提高矫顽力。
本发明借鉴扩散的原理,将重稀土Dy或Tb粉添加到钕铁硼合金粉中,优化烧结工艺,在850℃-950℃进行保温2-5h,利用低熔点辅相熔化,携带重稀土粉均匀分散在晶粒的周围,再进行高温烧结。再高温下,重稀土元素存在浓度差,会在磁体的各个位置进行扩散,进入主相颗粒表层,形成高HA的重稀土相,提高矫顽力。时效过程中辅合金也容易形成均匀连续分布的晶界相,同样会提高矫顽力。
发明内容
本发明解决的技术问题是提供一种低量添加重稀土的钕铁硼磁体及其制备方法,本申请制备的磁体可在保持磁体剩磁几乎不变的前提下,显著提高磁体的矫顽力。
本申请提供了一种低量添加重稀土的钕铁硼磁体,由主合金与辅合金按照重量配比,并添加重稀土制备而成,主合金成分(Pr2Nd8)xFe100-x-y-zByMz,M为Al、Co、Cu、Ga、Ti、Zr金属中至少一种;按照重量占比28.5≤x≤31,0.85≤y≤0.98,0.5≤z≤5;辅合金成分LuFe100-u-v-wBvMw,其中L为Pr,Nd金属中至少一种;M为Al、Co、Cu、Ga、Ti、Zr金属中至少一种;按照重量占比35≤u≤45,0≤v≤0.5,2≤w≤10;重稀土为Dy或Tb。
优选的,主合金片和辅合金片按照比例进行混合,辅合金片的添加比例为5wt%~20wt%。
优选的,当L同时选取Pr,Nd金属时,Pr的含量高于Nd的含量。
本申请提供了一种低量添加重稀土的钕铁硼磁体制备方法,以含无重稀土低熔点辅合金作为晶界相添加,再添加少量的重稀土粉制备磁体,包括以下步骤:
A)制备主合金片、辅合金片:
主合金成分(Pr2Nd8)xFe100-x-y-zByMz,其中M为Al、Co、Cu、Ga、Ti、Zr金属中至少一种;其中按照重量占比28.5≤x≤31,0.85≤y≤0.98,0.5≤z≤5,制备主合金速凝铸片,得到主合金片,微观组织中不出现α-Fe;主合金不含重稀土Dy、Tb金属;
辅合金成分LuFe100-u-v-wBvMw,其中L为Pr,Nd金属中至少一种;M为Al、Co、Cu、Ga、Ti、Zr金属中至少一种;其中按照重量占比35≤u≤45,0≤v≤0.5, 2≤w≤10,;制备辅合金速凝铸片,得到辅合金片;
将主合金 (Pr2Nd8)xFe100-x-y-zByMz和辅合金LuFe100-u-v-wBvMw,按照一定的比例进行混合,进行氢破碎和气流磨制粉;
B)将主合金片、辅合金片按照一定的比例混合后,进行氢处理后,再气流磨制粉得到合金粉末;在气流磨粉中添加一定量的重稀土Dy粉或Tb粉,将合金粉末置于混料机内混合,置于磁场中取向,压制成型;
C)将成型后的磁体进行烧结,获得钕铁硼磁体。
优选的,所述的主合金片和辅合金片按照一定的比例进行混合,辅合金片的添加比例为5wt%~20wt%。
优选的,当L同时选取Pr,Nd金属时,Pr的含量高于Nd的含量。
优选的,将气流磨粉加入颗粒为1.0-3.0μm的重稀土粉0.05wt%-1.0wt%,将粉料进行混合90-150min,使粉末均匀分散。
优选的,在磁场中取向的磁场强度为1.8-2.5T。
优选的,所述的烧结时效工艺具体为:
将成型后的磁体在850℃-950℃保温2-5h,在1000-1090℃保温4~8h;冷却后在800~900℃回火保温2~4h后,再在450~550℃回火保温3~6h。
与现有技术相比,本申请的有益之处在于:
本申请根据扩散原理,利用辅合金对晶界相进行优化,添加重稀土Dy/Tb作为扩散源,利用晶界相的流动性使重稀土均匀分散在主相周围;在烧结过程中,重稀土元素会扩散渗透,在逐渐扩散进入主相,在颗粒外围形成扩散层;在保证剩磁少量降低的同时,能够显著的提高矫顽力。
具体实施方式
为了更好地理解与实施,下面结合实施例详细说明本发明;所举实施例仅用于解释本发明;并非用于限制本发明的范围。
还需要说明的是术语“和或”是指涵盖而不是排他性,从而使得不仅包括罗列的要素也包括一些未明确列出的要素、方法、过程、物品及设备所必须的要素。
以下实施例均采用本申请的制备方法,在制作钕铁硼的工艺中添加低量的重稀土,本申请的重稀土采用Dy或Tb,而抗氧化剂和润滑剂的添加均为本领域的常规手段,不再详细给出具体成分。
实施例1
在本实施例中钕铁硼的制备方法,包括以下步骤:
步骤1、配制主合金,炼制钕铁硼主合金速凝片,其重量百分比为:(Pr2Nd8)30FebalB0.95(CoCuAlGa)2,Pr2Nd8为市面常见镨钕合金,bal表示Fe的用量为余量,利用真空感应速凝铸片技术炼制主合金片。
步骤2、配制辅合金,炼制钕铁硼辅合金速凝片,其重量百分比为:(Pr2Nd8)40FebalB0.3(CoCuAlGaTi)3,利用真空感应速凝铸片技术炼制辅合金片。
步骤3、将主合金片与辅合金片按照重量比90:10的比例混合后,进行氢处理破碎,在500℃脱氢处理2h。
步骤4、将氢处理后的合金粉末添加抗氧化剂和润滑剂混合均匀,置于气流磨中破碎,平均粉末粒度为3.8μm。
步骤5、将气流磨粉中添加润滑剂进行混合2h。将混合均匀的气流磨粉末置于磁场中垂直取向,之后压制成生坯,取向磁场强度为2.0T。
步骤6、将压制好的生坯置于真空中烧结,烧结温度为1050℃,烧结时间6h;之后在850℃回火保温3h,在500℃回火保温3h后气淬至室温,得到烧结钕铁硼磁体。
在实施例1中制备的磁体未添加重稀土,其余均按照本发明的制备方法,检测后得到磁体性能,剩磁为14.4kGs,矫顽力达到16.0kOe。
实施例2
在本实施例中的钕铁硼制备方法,包括以下步骤:
步骤1、配制主合金,炼制钕铁硼主合金速凝片,其重量百分比为:(Pr2Nd8)30FebalB0.95(CoCuAlGa)2,利用真空感应速凝铸片技术炼制主合金片。
步骤2、配制辅合金,炼制钕铁硼辅合金速凝片,其重量百分比为:(Pr2Nd8)40FebalB0.5(CoCuAlGaTi)3,利用真空感应速凝铸片技术炼制辅合金片。
步骤 3、将主合金片与辅合金片按照重量比90:10的比例混合后,进行氢处理破碎,在500℃脱氢处理2h。
步骤4、将氢处理后的合金粉末添加抗氧化剂和润滑剂混合均匀,置于气流磨中破碎,平均粉末粒度为3.8μm。
步骤5、将气流磨粉中添加润滑剂进行混合2h。将混合均匀的气流磨粉末置于磁场中垂直取向,之后压制成生坯,取向磁场强度为2.0T。
步骤6、将压制好的生坯置于真空中烧结,烧结温度为1050℃,烧结时间6h;之后在850℃回火保温3h,在500℃回火保温3h后气淬至室温,得到烧结钕铁硼磁体。
在实施例2中制备的磁体未添加重稀土,区别于实施例1的地方为辅合金片中B的用量增加,其余各项工艺步骤及参数无变化,检测后得到磁体性能,剩磁为14.38kGs,矫顽力达到16.3kOe。
实施例3
在本实施例中钕铁硼的制备方法,包括以下步骤:
步骤1、配制主合金,炼制钕铁硼主合金速凝片,其重量百分比为:(Pr2Nd8)30FebalB0.95(CoCuAlGa)2,利用真空感应速凝铸片技术炼制主合金片。
步骤2、配制辅合金,炼制钕铁硼辅合金速凝片,其重量百分比为:(Pr2Nd8)40FebalB0.3(CoCuAlGaTi)3,利用真空感应速凝铸片技术炼制辅合金片。
步骤 3、将主合金片与辅合金片按照重量比90:10的比例混合后,进行氢处理破碎,在500℃脱氢处理2h。
步骤4、将氢处理后的合金粉末添加抗氧化剂和润滑剂混合均匀,置于气流磨中破碎,平均粉末粒度为3.8μm。
步骤5、将气流磨粉中添加0.5wt%粒度1.5μm的Dy,再加入润滑剂进行混合2h。将混合均匀的气流磨粉末置于磁场中垂直取向,之后压制成生坯,取向磁场强度为2.0T。
步骤6、将压制好的生坯置于真空中烧结,烧结温度为1050℃,烧结时间6h;之后在850℃回火保温3h,在500℃回火保温3h后气淬至室温,得到低重稀土添加烧结钕铁硼。
在实施例3中区别于实施例1的地方为制备的磁体中添加重稀土Dy,其余各项工艺步骤及参数无变化,检测后得到磁体性能,剩磁为14.3kGs,矫顽力达到17.5kOe。
实施例4
在本实施例中钕铁硼的制备方法,包括以下步骤:
步骤1、配制主合金,炼制钕铁硼主合金速凝片,其重量百分比为:(Pr2Nd8)30FebalB0.95(CoCuAlGa)2,利用真空感应速凝铸片技术炼制主合金片。
步骤2、配制辅合金,炼制钕铁硼辅合金速凝片,其重量百分比为:(Pr2Nd8)40Febal(CoCuAlGaTi)3,利用真空感应速凝铸片技术炼制辅合金片。
步骤 3、将主合金片与辅合金片按照重量比90:10的比例混合后,进行氢处理破碎,在500℃脱氢处理2h。
步骤4、将氢处理后的合金粉末添加抗氧化剂和润滑剂混合均匀,置于气流磨中破碎,平均粉末粒度为3.8μm。
步骤5、将气流磨粉中添加0.5wt%粒度1.5μm的Dy,再加入润滑剂进行混合2h。将混合均匀的气流磨粉末置于磁场中垂直取向,之后压制成生坯,取向磁场强度为2.0T。
步骤6、将压制好的生坯置于真空中烧结,烧结温度为1050℃,烧结时间6h;之后在850℃回火保温3h,在500℃回火保温3h后气淬至室温,得到低重稀土添加烧结钕铁硼。
在实施例4制备的磁体中添加重稀土Dy,区别于实施例3的地方为辅合金片中B的用量减少为0,其余各项工艺步骤及参数无变化,检测后得到磁体性能,剩磁为14.33kGs,矫顽力达到17.4kOe。
实施例5
在本实施例中钕铁硼的制备方法,包括以下步骤:
步骤1、配制主合金,炼制钕铁硼主合金速凝片,其重量百分比为:(Pr2Nd8)30FebalB0.95(CoCuAlGa)2,利用真空感应速凝铸片技术炼制主合金片。
步骤2、配制辅合金,炼制钕铁硼辅合金速凝片,其重量百分比为:(Pr2Nd8)40FebalB0.3(CoCuAlGaTi)3,利用真空感应速凝铸片技术炼制辅合金片。
步骤 3、将主合金片与辅合金片按照重量比90:10的比例混合后,进行氢处理破碎,在500℃脱氢处理2h。
步骤4、将氢处理后的合金粉末添加抗氧化剂和润滑剂混合均匀,置于气流磨中破碎,平均粉末粒度为3.8μm。
步骤5、将气流磨粉中添加1wt%粒度1.5μm的Dy,再加入润滑剂进行混合2h。将混合均匀的气流磨粉末置于磁场中垂直取向,之后压制成生坯,取向磁场强度为2.0T。
步骤6、将压制好的生坯置于真空中烧结,烧结温度为1050℃,烧结时间6h;之后在850℃回火保温3h,在500℃回火保温3h后气淬至室温,得到低重稀土添加烧结钕铁硼。
在实施例5中区别于实施例3的地方为制备磁体中添加重稀土Dy的用量增加,其余各项工艺步骤及参数无变化,检测后得到磁体性能,剩磁为14.25kGs,矫顽力达到18.3kOe。
实施例6
在本实施例中钕铁硼的制备方法,包括以下步骤:
步骤1、配制主合金,炼制钕铁硼主合金速凝片,其重量百分比为:(Pr2Nd8)30FebalB0.95(CoCuAlGa)2,利用真空感应速凝铸片技术炼制主合金片。
步骤2、配制辅合金,炼制钕铁硼辅合金速凝片,其重量百分比为:(Pr2Nd8)40FebalB0.3(CoCuAlGaTi)3,利用真空感应速凝铸片技术炼制辅合金片。
步骤 3、将主合金片与辅合金片按照重量比90:10的比例混合后,进行氢处理破碎,在500℃脱氢处理2h。
步骤4、将氢处理后的合金粉末添加抗氧化剂和润滑剂混合均匀,置于气流磨中破碎,平均粉末粒度为3.8μm。
步骤5、将气流磨粉中添加0.5wt%粒度1.0μm的Tb,再加入润滑剂进行混合2h。将混合均匀的气流磨粉末置于磁场中垂直取向,之后压制成生坯,取向磁场强度为2.0T。
步骤6、将压制好的生坯置于真空中烧结,烧结温度为1050℃,烧结时间6h;之后在850℃回火保温3h,在500℃回火保温3h后气淬至室温,得到低重稀土添加烧结钕铁硼。
在实施例6中区别于实施例3的地方为制备的磁体中添加重稀土Tb,其余各项工艺步骤及参数无变化,检测后得到磁体性能,剩磁为14.35kGs,矫顽力达到18.5kOe。
实施例7
在本实施例中钕铁硼的制备方法,包括以下步骤:
步骤1、配制主合金,炼制钕铁硼主合金速凝片,其重量百分比为:(Pr2Nd8)30FebalB0.95(CoCuAlGa)2,利用真空感应速凝铸片技术炼制主合金片。
步骤2、配制辅合金,炼制钕铁硼辅合金速凝片,其重量百分比为:Pr40FebalB0.3(CoCuAlGaTi)3,利用真空感应速凝铸片技术炼制辅合金片。
步骤 3、将主合金片与辅合金片按照重量比90:10的比例混合后,进行氢处理破碎,在500℃脱氢处理2h。
步骤4、将氢处理后的合金粉末添加抗氧化剂和润滑剂混合均匀,置于气流磨中破碎,平均粉末粒度为3.8μm。
步骤5、将气流磨粉中添加0.5wt%粒度1.5μm的Dy,再加入润滑剂进行混合2h。将混合均匀的气流磨粉末置于磁场中垂直取向,之后压制成生坯,取向磁场强度为2.0T。
步骤6、将压制好的生坯置于真空中烧结,烧结温度为1050℃,烧结时间6h;之后在850℃回火保温3h,在500℃回火保温3h后气淬至室温,得到低重稀土添加烧结钕铁硼。
在实施例7中区别于实施例3的地方为辅合金的稀土元素为镨金属,其余各项工艺步骤及参数无变化,检测后得到磁体性能,剩磁为14.28kGs,矫顽力达到17.9kOe。
实施例8
在本实施例中钕铁硼的制备方法,包括以下步骤:
步骤1、配制主合金,炼制钕铁硼主合金速凝片,其重量百分比为:(Pr2Nd8)30FebalB0.95(CoCuAlGa)2,利用真空感应速凝铸片技术炼制主合金片。
步骤2、配制辅合金,炼制钕铁硼辅合金速凝片,其重量百分比为:Nd40FebalB0.3(CoCuAlGaTi)3,利用真空感应速凝铸片技术炼制辅合金片。
步骤 3、将主合金片与辅合金片按照重量比90:10的比例混合后,进行氢处理破碎,在500℃脱氢处理2h。
步骤4、将氢处理后的合金粉末添加抗氧化剂和润滑剂混合均匀,置于气流磨中破碎,平均粉末粒度为3.8μm。
步骤5、将气流磨粉中添加0.5wt%粒度1.5μm的Dy,再加入润滑剂进行混合2h。将混合均匀的气流磨粉末置于磁场中垂直取向,之后压制成生坯,取向磁场强度为2.0T。
步骤6、将压制好的生坯置于真空中烧结,烧结温度为1050℃,烧结时间6h;之后在850℃回火保温3h,在500℃回火保温3h后气淬至室温,得到低重稀土添加烧结钕铁硼。
在实施例8中区别于实施例3的地方为辅合金的稀土元素为钕金属,其余各项工艺步骤及参数无变化,检测后得到磁体性能,剩磁为14.33kGs,矫顽力达到17.5kOe。
实施例9
在本实施例中钕铁硼的制备方法,包括以下步骤:
步骤1、配制主合金,炼制钕铁硼主合金速凝片,其重量百分比为:(Pr2Nd8)30FebalB0.95(CoCuAlGa)2,利用真空感应速凝铸片技术炼制主合金片。
步骤2、配制辅合金,炼制钕铁硼辅合金速凝片,其重量百分比为:(Pr5Nd5)40FebalB0.3(CoCuAlGaTi)3,利用真空感应速凝铸片技术炼制辅合金片。
步骤 3、将主合金片与辅合金片按照重量比90:10的比例混合后,进行氢处理破碎,在500℃脱氢处理2h。
步骤4、将氢处理后的合金粉末添加抗氧化剂和润滑剂混合均匀,置于气流磨中破碎,平均粉末粒度为3.8μm。
步骤5、将气流磨粉中添加0.5wt%粒度1.5μm的Dy,再加入润滑剂进行混合2h。将混合均匀的气流磨粉末置于磁场中垂直取向,之后压制成生坯,取向磁场强度为2.0T。
步骤6、将压制好的生坯置于真空中烧结,烧结温度为1050℃,烧结时间6h;之后在850℃回火保温3h,在500℃回火保温3h后气淬至室温,得到低重稀土添加烧结钕铁硼。
在实施例9中区别于实施例3的地方为辅合金的稀土元素为Nd:Pr=1:1,其余各项工艺步骤及参数无变化,检测后得到磁体性能,剩磁为14.30kGs,矫顽力达到17.73kOe。
对比例1
在本实施例中钕铁硼的制备方法,包括以下步骤:
步骤1、配制合金,炼制钕铁硼合金速凝片,其重量百分比为:(Pr2Nd8)30.5Febal B0.9(CoCuAlGa)2,与实施例1成分相同,利用真空感应速凝铸片技术炼制主合金片。
步骤2、将合金片,进行氢处理破碎,在500℃脱氢处理2h。
步骤3、将氢处理后的合金粉末添加抗氧化剂和润滑剂混合均匀,置于气流磨中破碎,平均粉末粒度为3.8μm。
步骤4、将气流磨粉加入润滑剂进行混合2h。将混合均匀的气流磨粉末置于磁场中垂直取向,之后压制成生坯,取向磁场强度为2.0T。
步骤5、将压制好的生坯置于真空中烧结,烧结温度为1050℃,烧结时间6h;之后在850℃回火保温3h,在500℃回火保温3h后气淬至室温,得到烧结钕铁硼磁体。
在对比例1中制备的磁体仅采用主合金片,未添加重稀土,检测后得到磁体性能,剩磁为14.4kGs,矫顽力达到14kOe。
对以上实施例1至实施例6以及对比例1利用表1来展现不同方式下得到的磁体性能。
表1
辅合金B含量 辅合金TRe成分 辅相添加比例 HRe添加 Br (kGs) Hcj (kOe)
对比例1 与实施例1成分相同 Pr<sub>2</sub>Nd<sub>8</sub> 未添加 0 14.40 14.00
实施例1 0.3wt% Pr<sub>2</sub>Nd<sub>8</sub> 10% 0 14.40 16.00
实施例2 0.5wt% Pr<sub>2</sub>Nd<sub>8</sub> 10% 0 14.38 16.30
实施例3 0.3wt% Pr<sub>2</sub>Nd<sub>8</sub> 10% Dy添加0.5% D50=1.5μm 14.30 17.50
实施例4 0wt% Pr<sub>2</sub>Nd<sub>8</sub> 10% Dy添加0.5% D50=1.5μm 14.33 17.40
实施例5 0.3wt% Pr<sub>2</sub>Nd<sub>8</sub> 10% Dy添加1.0% D50=1.5μm 14.25 18.30
实施例6 0.3wt% Pr<sub>2</sub>Nd<sub>8</sub> 10% Tb添加0.5% D50=1.0μm 14.35 18.50
实施例7 0.3wt% Pr 10% Dy添加0.5% D50=1.5μm 14.28 17.93
实施例8 0.3wt% Nd 10% Dy添加0.5% D50=1.5μm 14.33 17.58
实施例9 0.3wt% Pr<sub>5</sub>Nd<sub>5</sub> 10% Dy添加0.5% D50=1.5μm 14.30 17.73
通过磁体性能分析,例如实施例1至实施例6,相对于对比例1,采用辅助合金Pr2Nd8添加方式制备的磁体,能够提高矫顽力;在实施例1与实施例2中未添加重稀土粉末,而实施例3至实施例5则进行重稀土粉末添加,可以看到,实施例3至实施例5得到的磁体矫顽力的增长幅度更大;实施例7至实施例9,相对于实施例3,通过调整辅合金的Pr与Nd比例,进行辅助合金添加方式制备的磁体,能够提高矫顽力,尤其当L同时选取Pr,Nd金属时,Pr的含量高于Nd的含量,矫顽力的提升效果更为明显。
另外,在本申请的制备方法中,按照主合金、辅合金各自成分的取值范围,在端点值、以及区间范围内取值而选取的主合金、辅合金,并在0.05wt%-1.0wt%添加重稀土Dy或Tb来制备钕铁硼磁体,均能达到实施例3-实施例9的效果,提高钕铁硼的矫顽力。
本申请提供的低量添加重稀土提高钕铁硼性能的制备方法,能够利用辅合金进行晶界相优化,添加重稀土Dy/Tb后作为扩散源,利用晶界相的流动性使重稀土均匀分散在主相周围;在烧结过程中,重稀土元素会扩散渗透,在逐渐扩散进入主相,在颗粒外围形成扩散层;在保证剩磁少量降低的同时,能够显著的提高矫顽力。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。

Claims (8)

1.一种低量添加重稀土的钕铁硼磁体,其特征在于:由主合金与辅合金按照重量配比,并添加重稀土制备而成,主合金成分(Pr2Nd8)xFe100-x-y-zByMz,M为Al、Co、Cu、Ga、Ti、Zr金属中至少一种;按照重量占比28.5≤x≤31,0.85≤y≤0.98,0.5≤z≤5;辅合金成分LuFe100-u-v- wBvMw,其中L为Pr,Nd金属中至少一种;M为Al、Co、Cu、Ga、Ti、Zr金属中至少一种;按照重量占比35≤u≤45,0≤v≤0.5,2≤w≤10;重稀土为Dy或Tb。
2.如权利要求1所述的一种低量添加重稀土的钕铁硼磁体,其特征在于:主合金片和辅合金片按照比例进行混合,辅合金片的添加比例为5wt%~20wt%。
3.如权利要求2所述的一种低量添加重稀土的钕铁硼磁体,其特征在于:其特征在于:当L同时选取Pr,Nd金属时,Pr的含量高于Nd的含量。
4.一种低量添加重稀土的钕铁硼磁体制备方法,其特征在于:以含无重稀土低熔点辅合金作为晶界相添加,再添加少量的重稀土粉制备磁体,具体步骤如下:
步骤1、制备主合金片:主合金成分(Pr2Nd8)xFe100-x-y-zByMz,M为Al、Co、Cu、Ga、Ti、Zr金属中至少一种;按照重量占比28.5≤x≤31,0.85≤y≤0.98,0.5≤z≤5,制备主合金速凝铸片,形成主合金片,主合金片的微观组织中不出现α-Fe;
步骤2、制备辅合金片:辅合金成分LuFe100-u-v-wBvMw,其中L为Pr,Nd金属中至少一种;M为Al、Co、Cu、Ga、Ti、Zr金属中至少一种;其中按照重量占比35≤u≤45,0≤v≤0.5,2≤w≤10,制备辅合金速凝铸片,形成辅合金片;
步骤3、主合金片与辅合金片的混合:将主合金片与辅合金片混合后的合金片进行氢破碎和脱氢处理得到合金粉末,添加润滑剂混匀后,进行气流磨制粉;
步骤4、在气流磨粉中添加0.05wt%-1.0wt%的重稀土Dy或Tb粉,将合金粉末置于混料机内混合均匀;
步骤5、置于磁场中取向,压制成型将成型后的磁体进行烧结,获得钕铁硼磁体。
5.如权利要求4所述的一种低量添加重稀土的钕铁硼磁体制备方法,其特征在于:其特征在于:在步骤2中,当L同时选取Pr,Nd金属时,Pr的含量高于Nd的含量。
6.如权利要求4所述的一种低量添加重稀土的钕铁硼磁体制备方法,其特征在于:步骤3中的主合金片和辅合金片按照比例进行混合,辅合金片的添加比例为5wt%~20wt%。
7.如权利要求4所述的一种低量添加重稀土的钕铁硼磁体制备方法,其特征在于:步骤4中所述的重稀土Dy或Tb粉的粉末粒度为1.0μm-3.0μm,添加量为粉料重量的0.05wt%-1.0wt%,混料时间为90-150min,在磁场中进行取向成型。
8.如权利要求4所述的一种低量添加重稀土的钕铁硼磁体制备方法,其特征在于:步骤5烧结过程中在850℃-950℃保温2-5h,再升温到1030-1090℃保温4~8h;冷却后在800~900℃回火保温2~4h后,再在450~550℃回火保温3~6h。
CN202011473669.4A 2020-12-15 2020-12-15 一种低量添加重稀土的钕铁硼磁体及其制备方法 Pending CN112509775A (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202011473669.4A CN112509775A (zh) 2020-12-15 2020-12-15 一种低量添加重稀土的钕铁硼磁体及其制备方法
JP2021171373A JP7101448B2 (ja) 2020-12-15 2021-10-20 焼結磁性体の製造方法
EP21214513.0A EP4020505B1 (en) 2020-12-15 2021-12-14 Preparation method for a neodymium-iron-boron magnet
US17/551,284 US20220189688A1 (en) 2020-12-15 2021-12-15 Preparation method for a neodymium-iron-boron magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011473669.4A CN112509775A (zh) 2020-12-15 2020-12-15 一种低量添加重稀土的钕铁硼磁体及其制备方法

Publications (1)

Publication Number Publication Date
CN112509775A true CN112509775A (zh) 2021-03-16

Family

ID=74973337

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011473669.4A Pending CN112509775A (zh) 2020-12-15 2020-12-15 一种低量添加重稀土的钕铁硼磁体及其制备方法

Country Status (4)

Country Link
US (1) US20220189688A1 (zh)
EP (1) EP4020505B1 (zh)
JP (1) JP7101448B2 (zh)
CN (1) CN112509775A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113838622A (zh) * 2021-09-26 2021-12-24 太原理工大学 一种高矫顽力烧结钕铁硼磁体及其制备方法
CN114823028A (zh) * 2022-05-27 2022-07-29 广州北创磁材科技有限公司 一种低成本高矫顽力钕铁硼合金及其制备方法
CN115747611A (zh) * 2022-10-13 2023-03-07 包头金山磁材有限公司 一种辅合金铸片和高剩磁高矫顽力钕铁硼永磁体及制备方法
WO2023124527A1 (zh) * 2021-12-28 2023-07-06 福建省长汀金龙稀土有限公司 一种晶界扩散材料、r-t-b磁体及其制备方法
EP4216239A1 (en) * 2022-01-24 2023-07-26 Yantai Dongxing Magnetic Materials Inc. A sintered ndfeb permanent magnet and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103426624A (zh) * 2013-08-14 2013-12-04 林建强 钕铁硼永磁体的制备方法
CN105990019A (zh) * 2016-06-08 2016-10-05 浙江东阳东磁稀土有限公司 一种低重稀土烧结钕铁硼的制备方法
CN106205924A (zh) * 2016-07-14 2016-12-07 烟台正海磁性材料股份有限公司 一种高性能钕铁硼磁体的制备方法
CN109102976A (zh) * 2018-08-10 2018-12-28 浙江东阳东磁稀土有限公司 一种提高稀土钕铁硼磁性能的方法
CN110060833A (zh) * 2019-05-21 2019-07-26 宁波永久磁业有限公司 一种高剩磁、高矫顽力r-t-b永磁材料及其制备方法
CN111883327A (zh) * 2020-06-11 2020-11-03 包头稀土研究院 低重稀土含量高矫顽力永磁体及制备的复合金方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7988795B2 (en) * 2005-12-02 2011-08-02 Shin-Etsu Chemical Co., Ltd. R-T-B—C rare earth sintered magnet and making method
CN102456458B (zh) 2010-10-15 2017-02-08 中国科学院宁波材料技术与工程研究所 高耐蚀性烧结钕铁硼磁体及其制备方法
JP6044866B2 (ja) * 2011-09-29 2016-12-14 日立金属株式会社 R−t−b系焼結磁石の製造方法
CN103106991B (zh) * 2013-01-30 2015-12-23 浙江大学 基于晶界重构的高矫顽力高稳定性钕铁硼磁体及制备方法
CN104752013A (zh) * 2013-12-27 2015-07-01 比亚迪股份有限公司 一种稀土永磁材料及其制备方法
CN103996475B (zh) * 2014-05-11 2016-05-25 沈阳中北通磁科技股份有限公司 一种具有复合主相的高性能钕铁硼稀土永磁体及制造方法
CN103996519B (zh) * 2014-05-11 2016-07-06 沈阳中北通磁科技股份有限公司 一种高性能钕铁硼稀土永磁器件的制造方法
JP6512150B2 (ja) 2016-03-28 2019-05-15 日立金属株式会社 R−t−b系焼結磁石の製造方法
CN106601407B (zh) 2017-01-23 2019-06-07 包头市神头稀土科技发展有限公司 提高钕铁硼磁体矫顽力的方法
CN110088853B (zh) 2018-12-29 2021-06-29 三环瓦克华(北京)磁性器件有限公司 稀土磁体及制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103426624A (zh) * 2013-08-14 2013-12-04 林建强 钕铁硼永磁体的制备方法
CN105990019A (zh) * 2016-06-08 2016-10-05 浙江东阳东磁稀土有限公司 一种低重稀土烧结钕铁硼的制备方法
CN106205924A (zh) * 2016-07-14 2016-12-07 烟台正海磁性材料股份有限公司 一种高性能钕铁硼磁体的制备方法
CN109102976A (zh) * 2018-08-10 2018-12-28 浙江东阳东磁稀土有限公司 一种提高稀土钕铁硼磁性能的方法
CN110060833A (zh) * 2019-05-21 2019-07-26 宁波永久磁业有限公司 一种高剩磁、高矫顽力r-t-b永磁材料及其制备方法
CN111883327A (zh) * 2020-06-11 2020-11-03 包头稀土研究院 低重稀土含量高矫顽力永磁体及制备的复合金方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113838622A (zh) * 2021-09-26 2021-12-24 太原理工大学 一种高矫顽力烧结钕铁硼磁体及其制备方法
WO2023124527A1 (zh) * 2021-12-28 2023-07-06 福建省长汀金龙稀土有限公司 一种晶界扩散材料、r-t-b磁体及其制备方法
EP4216239A1 (en) * 2022-01-24 2023-07-26 Yantai Dongxing Magnetic Materials Inc. A sintered ndfeb permanent magnet and preparation method thereof
CN114823028A (zh) * 2022-05-27 2022-07-29 广州北创磁材科技有限公司 一种低成本高矫顽力钕铁硼合金及其制备方法
CN115747611A (zh) * 2022-10-13 2023-03-07 包头金山磁材有限公司 一种辅合金铸片和高剩磁高矫顽力钕铁硼永磁体及制备方法
CN115747611B (zh) * 2022-10-13 2023-10-20 包头金山磁材有限公司 一种辅合金铸片和高剩磁高矫顽力钕铁硼永磁体及制备方法

Also Published As

Publication number Publication date
JP2022094920A (ja) 2022-06-27
JP7101448B2 (ja) 2022-07-15
EP4020505A1 (en) 2022-06-29
EP4020505B1 (en) 2023-07-12
US20220189688A1 (en) 2022-06-16

Similar Documents

Publication Publication Date Title
CN112509775A (zh) 一种低量添加重稀土的钕铁硼磁体及其制备方法
EP3182423B1 (en) Neodymium iron boron magnet and preparation method thereof
EP3827916A1 (en) A manufacturing method of sintered nd-fe-b permanent magnet
CN108220732B (zh) 合金材料、粘结磁体以及稀土永磁粉的改性方法
CN105513737A (zh) 一种不含重稀土元素烧结钕铁硼磁体的制备方法
CN106128673A (zh) 一种烧结钕铁硼磁体及其制备方法
CN106205924B (zh) 一种高性能钕铁硼磁体的制备方法
CN111326307A (zh) 一种渗透磁体用的涂覆材料及高矫顽力钕铁硼磁体的制备方法
CN104575901A (zh) 一种添加铽粉的钕铁硼磁体及其制备方法
CN103426624A (zh) 钕铁硼永磁体的制备方法
EP3667685A1 (en) Heat-resistant neodymium iron boron magnet and preparation method therefor
CN107958760B (zh) 一种稀土永磁材料及其制备方法
EP4152349A1 (en) Method for preparing ndfeb magnets including lanthanum or cerium
CN111446055A (zh) 一种高性能钕铁硼永磁材料及其制备方法
CN113838622A (zh) 一种高矫顽力烧结钕铁硼磁体及其制备方法
CN108806910B (zh) 提高钕铁硼磁性材料矫顽力的方法
CN112216460A (zh) 纳米晶钕铁硼磁体及其制备方法
CN114334416A (zh) 一种固液相分离扩散工艺制备高性能钕铁硼磁体的方法
CN113593882A (zh) 2-17型钐钴永磁材料及其制备方法和应用
CN111477446A (zh) 一种钕铁硼系烧结磁体及其制备方法
JP2023177261A (ja) 希土類磁性体及びその製造方法
CN113096952B (zh) 一种钕铁硼磁材的制备方法
JP7146029B1 (ja) ネオジム鉄ホウ素永久磁石及びその製造方法と使用
CN114284018A (zh) 钕铁硼磁体及其制备方法和应用
CN113223849A (zh) 一种高性能高丰度稀土铁硼永磁材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210316