CN112486015A - 一种新型咖啡机温度抗干扰控制方法 - Google Patents

一种新型咖啡机温度抗干扰控制方法 Download PDF

Info

Publication number
CN112486015A
CN112486015A CN202011413855.9A CN202011413855A CN112486015A CN 112486015 A CN112486015 A CN 112486015A CN 202011413855 A CN202011413855 A CN 202011413855A CN 112486015 A CN112486015 A CN 112486015A
Authority
CN
China
Prior art keywords
coffee machine
temperature
time domain
delay
control system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011413855.9A
Other languages
English (en)
Other versions
CN112486015B (zh
Inventor
李世华
吕泽洲
吴超
王佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN202011413855.9A priority Critical patent/CN112486015B/zh
Publication of CN112486015A publication Critical patent/CN112486015A/zh
Application granted granted Critical
Publication of CN112486015B publication Critical patent/CN112486015B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B11/00Automatic controllers
    • G05B11/01Automatic controllers electric
    • G05B11/36Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential
    • G05B11/42Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential for obtaining a characteristic which is both proportional and time-dependent, e.g. P. I., P. I. D.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明公开了一种新型咖啡机温度抗干扰控制方法,包括以下步骤:步骤一、考虑咖啡机温度控制系统惯性系数、咖啡机温度控制系统增益、咖啡机温度控制系统的延迟时间,建立全自动咖啡机的温度控制系统频域模型和时域模型;步骤二、根据拟控制输入、不考虑延迟的功率­—温度传递函数、咖啡机温度控制系统的延迟时间,得到延迟影响抑制量;步骤三、根据拟控制输入、不考虑延迟的功率­—温度传递函数、咖啡机温度控制系统的延迟时间、延迟通道滤波器,得到流量影响估算量。本发明的方法和传统方法相比,具有形式简单容易实现,抗延迟控制性能更好和抗干扰控制性能更好的优点。

Description

一种新型咖啡机温度抗干扰控制方法
技术领域
本发明属于工业控制产品领域,涉及一种咖啡机的高精度温度控制方法,具体涉及一种新型咖啡机温度抗干扰控制方法,该方法是基于流量影响估算和延迟影响抑制的咖啡机温度控制方法。
背景技术
目前中国制造的咖啡机产量虽然是世界第一,然而大部分都是较为低端的蒸馏渗滤式或者滴漏式咖啡机,带有实时温度控制的全自动咖啡机则几乎由国外产品垄断。温度控制的精度越高,制作出来的咖啡其口感就越好,带有高精度温度控制的国产全自动咖啡机亟待研究和发展。
全自动咖啡机的高精度温度控制有两大难点,第一是全自动咖啡机的温度控制其本身是一个大延迟的控制系统,该延迟的存在会导致温度控制的调节时间过程、精度大大降低,甚至导致温度控制的失败;第二是全自动咖啡机的温度控制受到水流量的干扰很大,干扰的存在会直接导致温度控制的精度大大降低。全自动咖啡机的现有温度控制一般是基于比例积分微分(PID)算法的,直接使用PID算法进行温度控制对大延迟和干扰的抑制能力很弱,一般只能通过增大比例系数和积分系数小幅提升抑制延迟和干扰的控制性能。
发明内容
为解决上述问题,本发明公开了一种新型咖啡机温度抗干扰控制方法,该方法是基于流量影响估算和延迟影响抑制的咖啡机温度控制方法。该方法在现有比例积分微分算法的技术框架上,去掉了对流量影响抑制能力较弱的积分因子,通过设计流量影响估算算法,依据全自动咖啡机的温度控制模型估算出温度控制过程中受到的流量干扰,并且在控制输入通道予以补偿来抑制流量干扰的影响;另外,本发明还通过设计延迟影响抑制算法,依据全自动咖啡机的温度控制模型在控制输入通道设计算法来抑制大延迟对温度控制的不良影响;本发明将所设计的流量影响估算算法和延迟影响抑制算法结合在现有的比例积分微分算法上,大大提升了现有全自动咖啡机产品的温度控制精度。
为达到上述目的,本发明的技术方案如下:
一种新型咖啡机温度抗干扰控制方法,包括以下步骤:
步骤一:考虑咖啡机温度控制惯性系数、咖啡机温度控制系统增益、咖啡机温度控制系统的延迟时间,建立全自动咖啡机的温度控制系统频域模型和时域模型;
步骤二:根据拟控制输入、不考虑延迟的功率—温度传递函数和咖啡机温度控制系统的延迟时间,得到延迟影响抑制量;
步骤三:根据拟控制输入、不考虑延迟的功率-温度传递函数、咖啡机温度控制系统的延迟时间、延迟通道滤波器,得到流量影响估算量。
进一步的,所述步骤一的温度控制系统频域模型具体表示为:
T(s)=G(s)e-τs[P(s)+Q(s)]
式中,e表示自然底数;τ表示咖啡机温度控制系统的延迟时间;s表示拉普拉斯复数算子;
T(s)为咖啡机温度输出频域量;Q(s)为咖啡机温度控制系统受到来自水流量的频域干扰量;
G(s)表示不考虑延迟的功率-温度传递函数,具体为:
Figure BDA0002819557840000021
式中,N表示咖啡机温度控制系统增益,D表示咖啡机温度控制系统惯性系数。
因此,所建立的咖啡机温度控制系统频域模型还能够写为:
Figure BDA0002819557840000022
相对应的,所建立的咖啡机温度控制系统时域模型为:
Figure BDA0002819557840000023
式中,T(k)为咖啡机的温度输出第k步时域量,T(k-1)为咖啡机的温度输出第k-1步时域量,τk为咖啡机温度控制系统的延迟步长,Tc为采样周期,P(k-τk)为咖啡机的加热功率的第k-τk步时域量,Q(k-τk)具体为:咖啡机温度控制系统受到来自水流量的干扰第k-τk步时域量。
其中,τk具体为:咖啡机温度控制系统的延迟时间τ与采样周期Tc之商的取整(用数学里的向下取整或者向上取整都可以),由下式表示:
Figure BDA0002819557840000024
式中,[]表示取整。
步骤一至此结束。
进一步的,所述步骤二的拟控制输入频域量P*(s)具体为:咖啡机温度控制系统比例微分的输出频域量,相对应的,定义咖啡机温度控制系统比例微分的第k步输出的时域量P*(k)为拟控制输入第k步的时域量。这里需要指出的是所述咖啡机温度控制系统比例微分就是现有技术的温度控制比例积分微分方法的一部分,步骤二提取现有技术的不含积分因子的温度控制输出来进一步设计延迟影响抑制方法。
进一步的,所述步骤二的延迟影响抑制频域量T′(s)具体通过以下式子计算得到:
Figure BDA0002819557840000031
相对应的,所述步骤二的延迟影响抑制第k步时域量T′(k)为:
Figure BDA0002819557840000032
式中,T′(k)为延迟影响抑制第k步时域量,T′(k-1)为延迟影响抑制第k-1步时域量,τk为咖啡机温度控制系统的延迟步长,Tc为采样周期,P*(k)为咖啡机温度控制系统比例微分的第k步输出的时域量,P*(k-τk)为咖啡机温度控制系统比例微分的第k-τk步输出的时域量。
进一步的,根据咖啡机温度输出频域量T(s)和延迟影响抑制频域量T′(s)计算出温度反馈频域量T#(s),具体为:
T#(s)=T′(s)+T(s)
相对应的,由咖啡机的温度输出第k步时域量T(k)和延迟影响抑制第k步时域量T′(k)计算出温度反馈第k步时域量T#(k),具体为:
T#(k)=T′(k)+T(k)
进一步的,根据咖啡机温度指令频域量T*(s)和咖啡机温度反馈频域量T#(s)计算出温度偏差频域量E(s),具体为:
E(s)=T*(s)-T#(s)
相对应的,由咖啡机温度指令第k步时域量T*(k),咖啡机温度反馈第k步时域量T#(k)计算出温度偏差第k步时域量E(k),具体为:
E(k)=T*(k)-T#(k)
进一步的,根据温度偏差频域量E(s),由现有的比例微分(PD)算法,计算出拟控制频域输入P*(s),具体为:
P*(s)=(kp+kds)E(s)=(kp+kds)[T*(s)-T#(s)]
式中,kp为比例系数,kd为微分系数。
相对应的,所述拟控制第k步时域输入P*(k)为:
Figure BDA0002819557840000033
式中,E(k-1)为温度偏差第k-1步时域量。
其中
E(k)=T*(k)-T#(k)
E(k-1)=T*(k-1)-T#(k-1)
式中T*(k)为咖啡机温度指令第k步时域量,T*(k-1)为咖啡机温度指令第k-1步时域量,T*(k)为咖啡机温度反馈第k步时域量,T#(k-1)为咖啡机温度反馈第k-1步时域量。
步骤二至此结束。
所述步骤三的流量影响估算频域量
Figure BDA0002819557840000041
具体通过以下式子计算得到:
Figure BDA0002819557840000042
式中,G-1(s)为不考虑延迟的功率-温度传递函数的倒数,λ(s)为所设计的延迟通道滤波器,
具体为:
Figure BDA0002819557840000043
式中,Z为延迟通道滤波器的参数,用于本方法具体实施中进行调节。
相对应的,步骤三的流量影响估算第k步时域量
Figure BDA0002819557840000044
为:
Figure BDA0002819557840000045
其中,其中,
Figure BDA0002819557840000046
为流量影响估算第k-1步时域量,T(k-1)为咖啡机温度输出第k-1步时域量,P(k-τk)为控制输入第k-τk步时域量。
进一步的,控制输入频域量P(s)根据拟控制输入频域量P*(s)和流量影响估算频域量
Figure BDA0002819557840000047
得到,具体为:
Figure BDA0002819557840000048
相对应的,控制输入第k步时域量P(k)由拟控制输入第k步时域量P*(k)和流量影响估算第k步时域量
Figure BDA0002819557840000049
得到,具体为:
Figure BDA00028195578400000410
步骤三至此结束。
通过步骤一至步骤三,即可实现基于流量影响估算和延迟影响抑制的咖啡机温度控制方法。
本发明的有益效果是:
(1)形式简单,容易实现;本发明的流量影响估算算法和延迟影响抑制算法可以直接加在现有全自动咖啡机产品的PID控制算法上,只需要将积分因子消除,不改变现有控制结构;
(2)抗延迟控制性能更好;本发明设计的延迟影响抑制算法可以在控制输入通道减弱甚至完全抑制温度控制对象的延迟。说明书附图2的控制曲线说明了本发明与现有方法的对比性优势,其中实线为给定的温度(50℃),虚线为现有方法的控制效果,点线为本发明的控制效果,从控制曲线中可以看出,咖啡机的0.1s延迟导致了现有方法的控制效果很差,具体表现为在2s内还无法跟踪给定的温度,而本发明的控制效果则很好,具体表现为在很短的时间内(0.35s)跟踪上给定的温度;
(3)抗干扰控制性能更好;本发明设计的流量影响估算算法可以在控制输入通道补偿流量干扰的影响。说明书附图2的控制曲线说明了本发明与现有方法的对比性优势,其中实现为给定的温度(50℃),虚线为现有方法的控制效果,点线为本发明的控制效果,从控制曲线中可以看出,在时间1s时流量干扰加入之后,本发明在很短的时间内(0.25s)就消除了干扰的影响,重新跟踪上给定的温度,而现有方法则一直没有消除流量干扰的影响。
附图说明
图1是本发明的原理图。
图2是本发明的有益效果波形图。
具体实施方式
下面结合附图和具体实施方式,进一步阐明本发明,应理解下述具体实施方式仅用于说明本发明而不用于限制本发明的范围。
本发明为一种新型咖啡机温度抗干扰控制方法,具体是一种基于流量影响估算和延迟影响抑制的咖啡机温度控制方法,原理如图1所示,具体步骤如下:
步骤一:考虑咖啡机温度控制系统惯性系数、咖啡机温度控制系统增益、咖啡机温度控制系统的延迟时间,建立全自动咖啡机的温度控制系统频域模型和时域模型;
步骤二:延迟影响抑制步骤,根据拟控制输入、不考虑延迟的功率—温度传递函数、咖啡机温度控制系统的延迟时间,得到延迟影响抑制量;
步骤三:流量影响估算步骤,根据拟控制输入、不考虑延迟的功率—温度传递函数、咖啡机温度控制系统的延迟时间、延迟通道滤波器,得到流量影响估算量。
为了说明本发明的具体实施方式,下面结合Matlab R2014a软件进行阐述。仿真咖啡机参数设置为:温度控制系统增益N为2℃/W;温度控制惯性系数D为6;咖啡机温度控制系统的延迟时间τ为0.1s。
下面结合附图对本发明的实施例作详细设计步骤说明。
先开始步骤一:考虑温度控制系统惯性系数和温度控制系统增益和咖啡机温度控制系统的延迟时间,建立全自动咖啡机的温度控制系统频域模型和时域模型。
步骤一是建模步骤,为的是建立方便本方法进行温度控制制方法设计的咖啡机温度控制频域模型和时域模型。
所述步骤一的温度控制频域模型具体表示为:
T(s)=G(s)e-τs[P(s)+Q(s)]
式中,e表示自然底数;τ表示咖啡机温度控制系统的延迟时间;s表示拉普拉斯复数算子;
T(s)为咖啡机温度输出频域量;Q(s)为咖啡机温度控制系统受到来自水流量的频域干扰量;
G(s)表示不考虑延迟的功率-温度传递函数,具体为:
Figure BDA0002819557840000061
式中,N表示咖啡机温度控制系统增益,D表示咖啡机温度控制系统惯性系数。
因此,所建立的咖啡机温度控制系统频域模型还能够写为:
Figure BDA0002819557840000062
相对应的,所建立的咖啡机温度控制系统时域模型为:
Figure BDA0002819557840000063
式中,T(k)为咖啡机的温度输出第k步时域量,T(k-1)为咖啡机的温度输出第k-1步时域量,τk为咖啡机温度控制系统的延迟步长,Tc为采样周期,P(k-τk)为咖啡机的加热功率的第k-τk步时域量,Q(k-τk)具体为:咖啡机温度控制系统受到来自水流量的干扰第k-τk步时域量。
其中,τk具体为:咖啡机温度控制系统的延迟时间τ与采样周期Tc之商的取整(用数学里的向下取整或者向上取整都可以),由下式表示:
Figure BDA0002819557840000064
式中,[]表示取整。
步骤一至此结束。根据步骤一建立的温度控制频域模型和时域模型直接用于步骤二和步骤三算法的设计。
下面开始步骤二:根据拟控制输入、不考虑延迟的功率-温度传递函数、咖啡机温度控制系统的延迟时间,得到延迟影响抑制量。
步骤二的目的是抑制延迟影响对咖啡机温度控制系统的影响。所述步骤二的拟控制输入频域量P*(s)具体为:温度控制系统比例微分(PD)的输出频域量,相对应的,定义咖啡机温度控制系统比例微分(PD)的第k步输出的时域量P*(k)为拟控制输入第k步时域量。
进一步的,所述步骤二的延迟影响抑制频域量T′(s)具体通过以下式子计算得到:
Figure BDA0002819557840000071
相对应的,所述步骤二的延迟影响抑制第k步时域量T′(k)为:
Figure BDA0002819557840000072
式中,T′(k)为延迟影响抑制第k步时域量,T′(k-1)为延迟影响抑制第k-1步时域量,τk为咖啡机温度控制系统的延迟步长,Tc为采样周期,P*(k)为咖啡机温度控制系统比例微分(PD)的第k步输出的时域量,P*(k-τk)为咖啡机温度控制系统比例微分(PD)的第k-τk步输出的时域量。
进一步的,根据咖啡机温度输出频域量T(s)和延迟影响抑制频域量T′(s)计算出温度反馈频域量T#(s),具体为:
T#(s)=T′(s)+T(s)
相对应的,由咖啡机的温度输出第k步时域量T(k)和延迟影响抑制第k步时域量T′(k)计算出温度反馈第k步时域量T#(k),具体为:
T#(k)=T′(k)+T(k)
进一步的,根据咖啡机温度指令频域量T*(s)和咖啡机温度反馈频域量T#(s)计算出温度偏差频域量E(s),具体为:
E(s)=T*(s)-T#(s)
相对应的,由咖啡机温度指令第k步时域量T*(k),咖啡机温度反馈第k步时域量T#(k)计算出温度偏差第k步时域量E(k),具体为:
E(k)=T*(k)-T#(k)
进一步的,根据温度偏差频域量E(s),由现有的比例微分(PD)算法,计算出拟控制频域输入P*(s),具体为:
P*(s)=(kp+kds)E(s)=(kp+kds)[T*(s)-T#(s)]
式中,kp为比例系数,kd为微分系数。
相对应的,所述拟控制第k步时域输入P*(k)为:
Figure BDA0002819557840000081
式中,E(k-1)为温度偏差第k-1步时域量。
其中
E(k)=T*(k)-T#(k)
E(k-1)=T*(k-1)-T#(k-1)
式中T*(k)为咖啡机温度指令第k步时域量,T*(k-1)为咖啡机温度指令第k-1步时域量,T*(k)为咖啡机温度反馈第k步时域量,T#(k-1)为咖啡机温度反馈第k-1步时域量。
步骤二至此结束。步骤二得到的拟控制输入频域量P*(s)以及拟控制输入第k步时域量P*(k)将用于步骤三的流量影响估算步骤中。
下面进行步骤三:流量影响估算步骤,根据拟控制输入、不考虑延迟的功率-温度传递函数、咖啡机温度控制系统的延迟时间、延迟通道滤波器,得到流量影响估算量。
步骤三的目的是为了消除流量干扰对咖啡机温度控制系统的影响,所述步骤三的流量影响估算频域量
Figure BDA0002819557840000082
具体通过以下式子计算得到:
Figure BDA0002819557840000083
式中,G-1(s)为不考虑延迟的功率-温度传递函数的倒数,λ(s)为所设计的延迟通道滤波器,
具体为:
Figure BDA0002819557840000084
式中,Z为延迟通道滤波器的参数,可在本发明方法具体实施中进行调节。
相对应的,步骤三的流量影响估算第k步时域量
Figure BDA0002819557840000085
为:
Figure BDA0002819557840000086
其中,
Figure BDA0002819557840000087
为流量影响估算第k-1步时域量,T(k-1)为咖啡机温度输出第k-1步时域量,P(k-τk)为控制输入第k-τk步时域量。
进一步的,控制输入频域量P(s)根据拟控制输入频域量P*(s)和流量影响估算频域量
Figure BDA0002819557840000091
得到,具体为:
Figure BDA0002819557840000092
相对应的,控制输入第k步时域量P(k)由拟控制输入第k步时域量P*(k)和流量影响估算第k步时域量
Figure BDA0002819557840000093
得到,具体为:
Figure BDA0002819557840000094
步骤三至此结束。实施步骤一至步骤三,即能够实现新型咖啡机温度抗干扰控制方法。
本发明方案所公开的技术手段不仅限于上述实施方式所公开的技术手段,还包括由以上技术特征任意组合所组成的技术方案。

Claims (4)

1.一种新型咖啡机温度抗干扰控制方法,包括以下步骤:
步骤一:考虑咖啡机温度控制惯性系数、咖啡机温度控制系统增益、咖啡机温度控制系统的延迟时间,建立全自动咖啡机的温度控制系统频域模型和时域模型;
步骤二:根据拟控制输入、不考虑延迟的功率-温度传递函数和咖啡机温度控制系统的延迟时间,得到延迟影响抑制量;
步骤三:根据拟控制输入、不考虑延迟的功率-温度传递函数、咖啡机温度控制系统的延迟时间、延迟通道滤波器,得到流量影响估算量。
2.根据权利要求1所述的一种新型咖啡机温度抗干扰控制方法,其特征在于,步骤一的咖啡机温度控制频域模型具体表示为T(s)=G(s)e-τs[P(s)+Q(s)]
式中,e表示自然底数;τ表示咖啡机温度控制系统的延迟时间;s表示拉普拉斯复数算子;T(s)为咖啡机温度输出频域量;Q(s)为咖啡机温度控制系统受到来自水流量的频域干扰量;G(s)表示不考虑延迟的功率-温度传递函数,具体为:
Figure FDA0002819557830000011
式中,N表示咖啡机温度控制系统增益,D表示咖啡机温度控制系统惯性系数。
因此,所建立的咖啡机温度控制系统频域模型还能够写为:
Figure FDA0002819557830000012
相对应的,所建立的咖啡机温度控制系统时域模型为:
Figure FDA0002819557830000013
式中,T(k)为咖啡机的温度输出第k步时域量,T(k-1)为咖啡机的温度输出第k-1步时域量,τk为咖啡机温度控制系统的延迟步长,Tc为采样周期,P(k-τk)为咖啡机的加热功率的第k-τk步时域量,Q(k-τk)具体为:咖啡机温度控制系统受到来自水流量的干扰第k-τk步时域量。
其中,τk具体为:咖啡机温度控制系统的延迟时间τ与采样周期Tc之商的取整,由下式表示:
Figure FDA0002819557830000014
式中,[]表示取整。
3.根据权利要求1所述的一种新型咖啡机温度抗干扰控制方法,其特征在于,步骤二的拟控制输入频域量P*(s)具体为:咖啡机温度控制系统比例微分的输出频域量,相对应的,定义咖啡机温度控制系统比例微分的第k步输出的时域量P*(k)为拟控制输入第k步的时域量。这里需要指出的是所述咖啡机温度控制系统比例微分就是现有技术的温度控制比例积分微分方法的一部分,步骤二提取现有技术的不含积分因子的温度控制输出来进一步设计延迟影响抑制方法。
所述步骤二的延迟影响抑制频域量T′(s)具体通过以下式子计算得到:
Figure FDA0002819557830000021
相对应的,所述步骤二的延迟影响抑制第k步时域量T′(k)为:
Figure FDA0002819557830000022
式中,T′(k)为延迟影响抑制第k步时域量,T′(k-1)为延迟影响抑制第k-1步时域量,τk为咖啡机温度控制系统的延迟步长,Tc为采样周期,P*(k)为咖啡机温度控制系统比例微分的第k步输出的时域量,P*(k-τk)为咖啡机温度控制系统比例微分的第k-τk步输出的时域量;
根据咖啡机温度输出频域量T(s)和延迟影响抑制频域量T′(s)计算出温度反馈频域量T#(s),具体为:
T#(s)=T′(s)+T(s)
相对应的,由咖啡机的温度输出第k步时域量T(k)和延迟影响抑制第k步时域量T′(k)计算出温度反馈第k步时域量T#(k),具体为:
T#(k)=T′(k)+T(k)
根据咖啡机温度指令频域量T*(s)和咖啡机温度反馈频域量T#(s)计算出温度偏差频域量E(s),具体为:
E(s)=T*(s)-T#(s)
相对应的,由咖啡机温度指令第k步时域量T*(k),咖啡机温度反馈第k步时域量T#(k)计算出温度偏差第k步时域量E(k),具体为:
E(k)=T*(k)-T#(k)
根据温度偏差频域量E(s),由现有的比例微分算法,计算出拟控制频域输入P*(s),具体为:
P*(s)=(kp+kds)E(s)=(kp+kds)[T*(s)-T#(s)]
式中,kp为比例系数,kd为微分系数;
相对应的,所述拟控制第k步时域输入P*(k)为:
Figure FDA0002819557830000031
式中,E(k-1)为温度偏差第k-1步时域量;
其中
E(k)=T*(k)-T#(k)
E(k-1)=T*(k-1)-T#(k-1)
式中T*(k)为咖啡机温度指令第k步时域量,T*(k-1)为咖啡机温度指令第k-1步时域量,T*(k)为咖啡机温度反馈第k步时域量,T#(k-1)为咖啡机温度反馈第k-1步时域量。
4.根据权利要求1所述的一种新型咖啡机温度抗干扰控制方法,其特征在于,步骤三的流量影响估算频域量
Figure FDA0002819557830000032
具体通过以下式子计算得到:
Figure FDA0002819557830000033
式中,G-1(s)为不考虑延迟的功率-温度传递函数的倒数,λ(s)为所设计的延迟通道滤波器,具体为:
Figure FDA0002819557830000034
式中,Z为延迟通道滤波器的参数,用于本方法具体实施中进行调节;
相对应的,步骤三的流量影响估算第k步时域量
Figure FDA0002819557830000035
为:
Figure FDA0002819557830000036
其中,
Figure FDA0002819557830000041
为流量影响估算第k-1步时域量,T(k-1)为咖啡机温度输出第k-1步时域量,P(k-τk)为控制输入第k-τk步时域量;
控制输入频域量P(s)根据拟控制输入频域量P*(s)和流量影响估算频域量
Figure FDA0002819557830000042
得到,具体为:
Figure FDA0002819557830000043
相对应的,控制输入第k步时域量P(k)由拟控制输入第k步时域量P*(k)和流量影响估算第k步时域量
Figure FDA0002819557830000044
得到,具体为:
Figure FDA0002819557830000045
CN202011413855.9A 2020-12-07 2020-12-07 一种新型咖啡机温度抗干扰控制方法 Active CN112486015B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011413855.9A CN112486015B (zh) 2020-12-07 2020-12-07 一种新型咖啡机温度抗干扰控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011413855.9A CN112486015B (zh) 2020-12-07 2020-12-07 一种新型咖啡机温度抗干扰控制方法

Publications (2)

Publication Number Publication Date
CN112486015A true CN112486015A (zh) 2021-03-12
CN112486015B CN112486015B (zh) 2022-10-11

Family

ID=74939879

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011413855.9A Active CN112486015B (zh) 2020-12-07 2020-12-07 一种新型咖啡机温度抗干扰控制方法

Country Status (1)

Country Link
CN (1) CN112486015B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102360176A (zh) * 2011-07-21 2012-02-22 山东省电力学校 基于简化二阶自抗扰控制器的电厂主汽温度控制方法
CN104503506A (zh) * 2014-12-05 2015-04-08 东华大学 一种远程工业气相色谱仪柱箱温度监控系统
CN104677944A (zh) * 2015-03-25 2015-06-03 何赟泽 一种微波调频热波成像系统及方法
CN105807811A (zh) * 2016-03-14 2016-07-27 东华大学 一种基于wi-fi的远程大棚温度监控系统
CN111336683A (zh) * 2020-03-10 2020-06-26 南通大学 空气源热泵温度控制系统mpc-pid串级控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102360176A (zh) * 2011-07-21 2012-02-22 山东省电力学校 基于简化二阶自抗扰控制器的电厂主汽温度控制方法
CN104503506A (zh) * 2014-12-05 2015-04-08 东华大学 一种远程工业气相色谱仪柱箱温度监控系统
CN104677944A (zh) * 2015-03-25 2015-06-03 何赟泽 一种微波调频热波成像系统及方法
CN105807811A (zh) * 2016-03-14 2016-07-27 东华大学 一种基于wi-fi的远程大棚温度监控系统
CN111336683A (zh) * 2020-03-10 2020-06-26 南通大学 空气源热泵温度控制系统mpc-pid串级控制方法

Also Published As

Publication number Publication date
CN112486015B (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
CN110784149B (zh) 交流伺服系统机械谐振抑制方法以及系统
CN104503502B (zh) 一种改进型Smith预估主汽温控制结构
CN109104130B (zh) 全阶磁链观测器反馈矩阵获取方法及无速度传感器
CN109802433B (zh) 一种并网逆变器功率振荡抑制系统及方法
CN108072062B (zh) 一种电磁炉加热控制方法、系统和电磁炉
CN105159062A (zh) 一种基于插入式快速重复控制器的复合控制方法及系统
CN110531612A (zh) 一种分数阶pid控制器的参数整定方法
CN109560740A (zh) 一种模型参考自适应的异步电机参数辨识方法
CN112486015B (zh) 一种新型咖啡机温度抗干扰控制方法
CN110011359A (zh) 一种有限集模型预测控制下的并网逆变器参数辨识方法
CN110035244A (zh) 多通道低频cmos串行图像数据的训练方法
KR970003873B1 (ko) 프로세스 제어장치
CN110620497A (zh) 抑制三相pwm整流器启动冲击电流的控制方法及电路
CN112783099B (zh) 分数阶复合控制方法和永磁同步电动机速度伺服系统
CN104716883B (zh) 永磁同步电机低速性能的提升方法
CN108448986B (zh) 基于可调带宽型预测控制的永磁电机电流控制方法
CN106992548B (zh) 一种提高并网变换器稳定性的控制方法
CN109507873A (zh) 一种带宽参数化直流调速反馈控制系统
CN113690910B (zh) 基于分数阶pid控制的三相电网锁相环及其锁相方法
CN111366780B (zh) 单相并网lcl逆变器网侧电流微分检测方法
CN110109360B (zh) 一种工业过程广义大琳响应控制方法
CN113485482A (zh) 一种烹饪设备的自适应温度控制方法
CN109660162A (zh) 一种适用于感应电机的免疫滑模控制方法
CN104601080A (zh) 定子磁链电压模型的偏移计算和反馈补偿方法
CN112653343B (zh) 一种lcl型并网单逆变器电流反馈有源阻尼方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant