CN112481543B - 一种高性能钕铁硼材料及其制备方法 - Google Patents

一种高性能钕铁硼材料及其制备方法 Download PDF

Info

Publication number
CN112481543B
CN112481543B CN202011121368.5A CN202011121368A CN112481543B CN 112481543 B CN112481543 B CN 112481543B CN 202011121368 A CN202011121368 A CN 202011121368A CN 112481543 B CN112481543 B CN 112481543B
Authority
CN
China
Prior art keywords
alloy
iron
neodymium
boron
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011121368.5A
Other languages
English (en)
Other versions
CN112481543A (zh
Inventor
胡建青
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dongyang Kelida Electronic Equipment Co.,Ltd.
Original Assignee
Dongyang Kelida Electronic Equipment Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongyang Kelida Electronic Equipment Co ltd filed Critical Dongyang Kelida Electronic Equipment Co ltd
Priority to CN202011121368.5A priority Critical patent/CN112481543B/zh
Publication of CN112481543A publication Critical patent/CN112481543A/zh
Application granted granted Critical
Publication of CN112481543B publication Critical patent/CN112481543B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0573Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本发明涉及稀土永磁材料技术领域,尤其是一种高性能钕铁硼材料及其制备方法,该磁体由以下原料制备而成:镁钕合金、锆锡合金、铁钴合金、硼铜合金、铈铁合金、锌铁合金、钼铁合金、铁硅合金、铁粉、硫酸钙、碳酸锰。本发明磁性材料构成密合度更高的复合晶体,使材料具有更加优异的磁性能,有效防止磁体加工中表面磨损导致的气孔增加进一步降低磁体性能,进而提高磁体在不利环境中的持续使用效果,尤其是在高温环境中磁体的磁性能衰减更慢,显著提高磁体的抗冲击性能,强化磁体的力学特性,减少磁体在各种配件组装使用中的力学损伤。

Description

一种高性能钕铁硼材料及其制备方法
技术领域
本发明涉及稀土永磁材料技术领域,尤其是一种高性能钕铁硼材料及其制备方法。
背景技术
钕铁硼磁性材料是镨钕金属、硼铁等组成的合金,又称磁钢。钕铁硼永磁材料由于其优异的磁性能被广泛应用于风力发电、新能源汽车、磁浮列车等新兴技术领域,而热变形工艺作为与烧结工艺同时期发明的技术一直被广大科研工作者高度关注,可用于制备全密度各向异性钕铁硼永磁体,具有制备工艺简单、能耗低、材料利用率高、环境稳定性好、近终成形和温度低、时间短等许多优势。
现有技术中关于钕铁硼磁性材料的研究很多,如专利号为CN201811247522.6的一种钕铁硼磁性材料及制备方法,采用镨钕合金、镝铁合金、硼铁合金、铌铁合金、钇铁合金、纳米二氧化硅、镓、氧化铝、抗氧化剂、铁,使得钕铁硼磁性材料的矫顽力更高,但是在极端环境中磁体材料的性能起伏较大,尤其是高温环境中;又如专利号为CN201711387664.8的一种纳米晶热变形钕铁硼永磁体及其制备方法,主要使用元素FeCoNiM1M2,其中M1和M2为Cu、Al、Cr、Mn、Ga、Zn、Sn、Mg、Si、B中的一种或几种,且M1和M2不相同,使得磁体掺杂高塑中强、软磁性良好,但是磁性材料耐磨性较差,实际使用中限制性因素较多。
发明内容
为了解决现有技术中存在的问题,本发明提供一种高性能钕铁硼材料及其制备方法,以降低生产成本,提高磁体的高温性能;该磁体由以下重量份的原料制备而成:镁钕合金29-33份、锆锡合金1-2份、铁钴合金1-2份、硼铜合金1-2份、铈铁合金0.5-1份、锌铁合金5-8份、钼铁合金1-3份、铁硅合金3-5份、铁粉41-43份、硫酸钙0.1-0.3份、碳酸锰0.1-0.3份、微孔硅酸钙0.3-0.5份;所述镁钕合金杂质含量低于1%,镁元素、钕元素的质量比为5-7:3-4;所述铁钴合金杂质含量低于0.3%,铁元素、钴元素的质量比为8-10:1-1.3;所述硼铜合金的杂质含量低于0.1%,铜元素和硼元素的质量比为10-12:0.6-1.2;所述铈铁合金中铁元素和铈元素的质量比为9-10:0.1-0.3;所述锌铁合金的杂质含量低于0.3%,锌元素和铁元素的质量比为1-3:5-7;所述钼铁合金中钼元素、铁元素的质量比为0.1-0.3:120-130;所述铁硅合金中铁元素、硅元素的质量比为10-15:2-3。
优选的,所述锆锡合金中锡含量为1 wt%-1.2wt%。
优选的,所述铁粉细度5000目;所述硫酸钙细度500-800目;所述碳酸锰细度500-800目。
本发明所述的高性能钕铁硼材料,制备方法为:
(1)将镁钕合金、锆锡合金、铁钴合金、硼铜合金、铈铁合金、锌铁合金、钼铁合金、铁硅合金混合,置于混炼炉中,先将混炼炉抽至真空度为0.01Pa以下,然后充入氮气,将混炼炉温度升高至1150-1170℃;抽出氮气,将炉内抽至真空度0.1Pa以下,充入氩气,升高温度将合金熔化;
(2)升高炉内压强,将熔融态的合金液喷射到氢气压强为3-5Pa的容器中,制得合金粉体;
(3)将合金粉体置于氢爆炉中,抽至真空0.01Pa以下,注入氢气提高氢爆炉压强,升温到300-500℃,保温5-8h,再将温度升高脱氢得到精细粉末,将精细粉末置于球磨机中粉碎至细度50-150nm得到超细粉;
(4)将上一步骤制得的超细粉和铁粉、微孔硅酸钙、硫酸钙、碳酸锰加入三维混合机中搅拌均匀,再放入模具中,在580-660℃、150-200MPa的压力下保温1-2min挤压成型;
(5)挤压成型后,将温度升高至800-900℃,压力为250-300MPa下处理15-25s即可。
进一步的,所述氢爆炉压强为200-300Pa。
进一步的,所述脱氢温度为700-800℃。
与现有技术相比,本发明的技术效果体现在:
本发明通过使用硼铜合金,利用其晶粒小的特点,使得熔化后的硼受到铜的裹挟,更容易进入镁、钕、锆、锡、铁、钴等原子之间,使得制作成的钕硼铁材料晶体更紧凑。而且,添加铜基形成的永磁材料,可以形成强的加工织构,使得铜基体上析出富铁、钕等组分的磁性相,强化各向异性,从而导致磁硬化,显著提高磁材料的结构强度和磁性能。
本发明通过使用钼铁合金使得制备出来的钕铁硼材料具有均匀的细晶组织,通过均匀细晶组织的有序排列,使得各组分材料的磁性能可以相互协同,强化整体的磁效应,而且钕铁硼的强度和耐磨性。
本发明通过使用铁硅合金,通过硅铁合金的融化与其他组分的充分混合,利用硅与氧的结合,脱除钕铁硼材料中的氧元素,强化铁合金的性能,使得材料整体性更好、晶体聚合度更高,提高钕铁硼的力学性能,使得各组分的磁性能可以集中体现。
本发明利用硫酸钙填充在合金超细粉中,利用其隔热作用,使得钕铁硼在微观上存在温度传导的阻隔,防止温度急剧变化时材料晶体的体积变化降低的结构稳定性,使得制作出来的钕铁硼材料对环境适应性更好更为稳定。
本发明通过使用碳酸锰,强化组分之间的吸热差异,使得高温处理下钕铁硼晶体生长细化,形成表面较为平滑的微观表面,更容易发挥钕铁硼磁体的结构性能,提高抗冲击性。有效防止磁体加工中表面磨损导致的气孔增加,进而提高磁体在不利环境中的持续使用效果,尤其是在高温环境中磁体的磁性能衰减更慢。通过高效的晶体堆结,促进微孔硅酸钙对晶体的吸附,显著提高磁体的抗冲击性能,强化磁体的力学特性,减少磁体在各种配件组装使用中的力学损伤。
而且,本发明根据元素特点,在设备抽成真空之后再注入氮气冲洗,然后使用氩气,有效减少氩气多次冲洗进而达到防止氩气消耗的目的;并且在合金熔炼中将融化金属高压喷射形成粉末,使得熔融态的金属利用气体冲击得到一定的搅拌溶解,同时形成的粉末更为均匀,防止机械粉碎中引入新的杂质;重要的是,喷射的粉体进入存有氢气的容器中,利用金属粉体未完全的冷却凝固定型的时候接触氢气,与氢气冲击形成一定的微观挤压形变,得到一定的氢化,然后再次进行氢化,提高氢爆效率,使得粉体的均一性更好,更利于后续的加工混合成型,进一步促进后续性能的提升。
使用本发明制备得钕铁硼材料磁感矫顽力超过14.98 Hcb/KOe、最大磁能(BH)max高于49.95MGOe、冲击强度超过28.99 KJ/m2、磁通变化率低于4.32%,其性能优越,实用性好。
具体实施方式
下面结合具体的实施方式来对本发明的技术方案做进一步的限定,但要求保护的范围不仅局限于所作的描述。
实施例1
一种高性能钕铁硼材料,由以下重量份的原料制备而成:镁钕合金29份、锆锡合金1份、铁钴合金1份、硼铜合金1份、铈铁合金0.5份、锌铁合金5份、钼铁合金1份、铁硅合金3份、铁粉41份、硫酸钙0.1份、碳酸锰0.1份、微孔硅酸钙0.3份;所述镁钕合金杂质含量低于1%,镁元素、钕元素的质量比为5:3;所述铁钴合金杂质含量低于0.3%,铁元素、钴元素的质量比为8:1;所述硼铜合金的杂质含量低于0.1%,铜元素和硼元素的质量比为10:0.6;所述铈铁合金中铁元素和铈元素的质量比为9:0.1;所述锌铁合金的杂质含量低于0.3%,锌元素和铁元素的质量比为1:5;所述钼铁合金中钼元素、铁元素的质量比为0.1:120;所述铁硅合金中铁元素、硅元素的质量比为10:2。
本实施例所述的高性能钕铁硼材料,制备方法为:
(1)原料粉碎:将镁钕合金、锆锡合金、铁钴合金、硼铜合金、铈铁合金、锌铁合金、钼铁合金、铁硅合金混合,置于混炼炉中,现将混炼炉抽至真空度为0.01Pa以下,然后充入氮气,将混炼炉温度升高至1150℃;再抽出氮气,将炉内抽至真空度0.1Pa以下,充入氩气,升高温度将合金熔化;
(2)升高炉内压强,将熔融态的合金液喷射到氢气压强为3Pa的容器中,制得合金粉体;
(3)将合金粉体置于氢爆炉中,抽至真空0.01Pa以下,注入氢气使得氢爆炉压强为200Pa,加入到300℃,保温5h,再将温度升高到700度脱氢得到精细粉末,将精细粉末置于球磨机中粉碎至细度50nm得到超细粉;
(4)将上一步骤制得的超细粉和铁粉、微孔硅酸钙、硫酸钙、碳酸锰加入三维混合机中搅拌均匀,再放入模具中,在580℃、150-200MPa的压力下保温1min挤压成型;
(5)挤压成型后,将温度升高至800℃,在压力为250MPa下处理15s即可。
实施例2
一种高性能钕铁硼材料,由以下重量份的原料制备而成:镁钕合金33份、锆锡合金2份、铁钴合金2份、硼铜合金2份、铈铁合金1份、锌铁合金8份、钼铁合金3份、铁硅合金5份、铁粉43份、硫酸钙0.3份、碳酸锰0.3份、微孔硅酸钙0.5份;所述镁钕合金杂质含量低于1%,镁元素、钕元素的质量比为7:4;所述铁钴合金杂质含量低于0.3%,铁元素、钴元素的质量比为10:1.3;所述硼铜合金的杂质含量低于0.1%,铜元素和硼元素的质量比为12:1.2;所述铈铁合金中铁元素和铈元素的质量比为10: 0.3;所述锌铁合金的杂质含量低于0.3%,锌元素和铁元素的质量比为3:7;所述钼铁合金中钼元素、铁元素的质量比为0.3:130;所述铁硅合金中铁元素、硅元素的质量比为15:3;所述锆锡合金中锡含量为1.2wt%;所述铁粉细度5000目;所述硫酸钙细度800目;所述碳酸锰细度800目。
本实施例所述的高性能钕铁硼材料,制备方法为:
(1)原料粉碎:将镁钕合金、锆锡合金、铁钴合金、硼铜合金、铈铁合金、锌铁合金、钼铁合金、铁硅合金混合,置于混炼炉中,现将混炼炉抽至真空度为0.01Pa以下,然后充入氮气,将混炼炉温度升高至1170℃;再抽出氮气,将炉内抽至真空度0.1Pa以下,充入氩气,升高温度将合金熔化;
(2)升高炉内压强,将熔融态的合金液喷射到氢气压强为5Pa的容器中,制得合金粉体;
(3)将合金粉体置于氢爆炉中,抽至真空0.01Pa以下,注入氢气使得氢爆炉压强为300Pa,加入到500℃,保温8h,再将温度升高到800度脱氢得到精细粉末,将精细粉末置于球磨机中粉碎至细度150nm得到超细粉;
(4)将上一步骤制得的超细粉和铁粉、微孔硅酸钙、硫酸钙、碳酸锰加入三维混合机中搅拌均匀,再放入模具中,在660℃、200MPa的压力下保温2min挤压成型;
(5)挤压成型后,将温度升高至900℃,压力为300MPa下处理25s即可。
实施例3
一种高性能钕铁硼材料,由以下重量份的原料制备而成:镁钕合金33份、锆锡合金1份、铁钴合金2份、硼铜合金1份、铈铁合金1份、锌铁合金5份、钼铁合金3份、铁硅合金3份、铁粉43份、硫酸钙0.1份、碳酸锰0.3份、微孔硅酸钙0.35份;所述镁钕合金杂质含量低于1%,镁元素、钕元素的质量比为7:3;所述铁钴合金杂质含量低于0.3%,铁元素、钴元素的质量比为10:1;所述硼铜合金的杂质含量低于0.1%,铜元素和硼元素的质量比为12:0.6;所述铈铁合金中铁元素和铈元素的质量比为10:0.1;所述锌铁合金的杂质含量低于0.3%,锌元素和铁元素的质量比为3:5;所述钼铁合金中钼元素、铁元素的质量比为0.3:120;所述铁硅合金中铁元素、硅元素的质量比为15:2;所述锆锡合金中锡含量为1.15wt%;所述铁粉细度5000目;所述硫酸钙细度800目;所述碳酸锰细度500目。
本实施例所述的高性能钕铁硼材料,制备方法为:
(1)将镁钕合金、锆锡合金、铁钴合金、硼铜合金、铈铁合金、锌铁合金、钼铁合金、铁硅合金混合,置于混炼炉中,现将混炼炉抽至真空度为0.01Pa以下,然后充入氮气,将混炼炉温度升高至1170℃;再抽出氮气,将炉内抽至真空度0.1Pa以下,充入氩气,升高温度将合金熔化;
(2)升高炉内压强,将熔融态的合金液喷射到氢气压强为3Pa的容器中,制得合金粉体;
(3)将合金粉体置于氢爆炉中,抽至真空0.01Pa以下,注入氢气使得氢爆炉压强为250Pa,加入到370℃,保温6h,再将温度升高到750度脱氢得到精细粉末,将精细粉末置于球磨机中粉碎至细度110nm得到超细粉;
(4)将上一步骤制得的超细粉和铁粉、微孔硅酸钙、硫酸钙、碳酸锰加入三维混合机中搅拌均匀,再放入模具中,在620℃、180MPa的压力下保温1min挤压成型;
(5)挤压成型后,将温度升高至900℃,压力为250MPa下处理19s即可。
对比例设置:
Figure 707394DEST_PATH_IMAGE002
试验例
按照实施例1-3、对比例1-8制作钕硼铁材料,测试其磁性能参数;按GB/ T 1843-2008 测试冲击强度;将各组磁体置于120℃恒温箱中150h,取出测其加温前后电镀磁体的磁通变化率。如下表:
Figure 358955DEST_PATH_IMAGE004
由表可以看出,使用本发明方案有效提高了磁性材料的磁性能,且材料的冲击强度更高,具有更好的高温耐受性。

Claims (6)

1.一种高性能钕铁硼材料,其特征在于,由以下重量份的原料制备而成:镁钕合金29-33份、锆锡合金1-2份、铁钴合金1-2份、硼铜合金1-2份、铈铁合金0.5-1份、锌铁合金5-8份、钼铁合金1-3份、铁硅合金3-5份、铁粉41-43份、硫酸钙0.1-0.3份、碳酸锰0.1-0.3份、微孔硅酸钙0.3-0.5份;所述镁钕合金杂质含量低于1%,镁元素、钕元素的质量比为5-7:3-4;所述铁钴合金杂质含量低于0.3%,铁元素、钴元素的质量比为8-10:1-1.3;所述硼铜合金的杂质含量低于0.1%,铜元素和硼元素的质量比为10-12:0.6-1.2;所述铈铁合金中铁元素和铈元素的质量比为9-10:0.1-0.3;所述锌铁合金的杂质含量低于0.3%,锌元素和铁元素的质量比为1-3:5-7;所述钼铁合金中钼元素、铁元素的质量比为0.1-0.3:120-130;所述铁硅合金中铁元素、硅元素的质量比为10-15:2-3。
2.如权利要求1所述的高性能钕铁硼材料,其特征在于,所述锆锡合金中锡含量为1wt%-1.2wt%。
3.如权利要求1所述的高性能钕铁硼材料,其特征在于,所述铁粉细度5000目;所述硫酸钙细度500-800目;所述碳酸锰细度500-800目。
4.如权利要求1所述的高性能钕铁硼材料,其特征在于,制备方法为:
(1)将镁钕合金、锆锡合金、铁钴合金、硼铜合金、铈铁合金、锌铁合金、钼铁合金、铁硅合金混合,置于混炼炉中,先将混炼炉抽至真空度为0.01Pa以下,然后充入氮气,将混炼炉温度升高至1150-1170℃;抽出氮气,将炉内抽至真空度0.1Pa以下,充入氩气,升高温度将合金熔化;
(2)升高炉内压强,将熔融态的合金液喷射到氢气压强为3-5Pa的容器中,制得合金粉体;
(3)将合金粉体置于氢爆炉中,抽至真空0.01Pa以下,注入氢气提高氢爆炉压强,升温到300-500℃,保温5-8h,再将温度升高脱氢得到精细粉末,将精细粉末置于球磨机中粉碎至细度50-150nm得到超细粉;
(4)将上一步骤制得的超细粉和铁粉、微孔硅酸钙、硫酸钙、碳酸锰加入三维混合机中搅拌均匀,再放入模具中,在580-660℃、150-200MPa的压力下保温1-2min挤压成型;
(5)挤压成型后,将温度升高至800-900℃,压力为250-300MPa下处理15-25s即可。
5.如权利要求4所述的高性能钕铁硼材料,其特征在于,所述氢爆炉压强为200-300Pa。
6.如权利要求4所述的高性能钕铁硼材料,其特征在于,所述脱氢温度为700-800℃。
CN202011121368.5A 2020-10-20 2020-10-20 一种高性能钕铁硼材料及其制备方法 Active CN112481543B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011121368.5A CN112481543B (zh) 2020-10-20 2020-10-20 一种高性能钕铁硼材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011121368.5A CN112481543B (zh) 2020-10-20 2020-10-20 一种高性能钕铁硼材料及其制备方法

Publications (2)

Publication Number Publication Date
CN112481543A CN112481543A (zh) 2021-03-12
CN112481543B true CN112481543B (zh) 2022-03-01

Family

ID=74926801

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011121368.5A Active CN112481543B (zh) 2020-10-20 2020-10-20 一种高性能钕铁硼材料及其制备方法

Country Status (1)

Country Link
CN (1) CN112481543B (zh)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2705985B2 (ja) * 1988-11-14 1998-01-28 旭化成工業株式会社 磁性材料、それから成る磁石及びそれらの製造方法
DE68916184T2 (de) * 1988-11-14 1994-11-17 Asahi Chemical Ind Magnetische Stoffe, enthaltend Seltenerdelemente, Eisen, Stickstoff und Wasserstoff.
CN101325109B (zh) * 2008-04-08 2010-09-08 浙江大学 晶界相重构的高强韧性烧结钕铁硼磁体及其制备方法
WO2015008406A1 (ja) * 2013-07-18 2015-01-22 Jfeスチール株式会社 粉末冶金用混合粉およびその製造方法ならびに鉄基粉末製焼結体の製造方法
US20200276643A1 (en) * 2017-06-02 2020-09-03 Tundra Composites, LLC Surface Modified Metallic Particulate In Sintered Products
CN109161819B (zh) * 2018-09-20 2020-07-07 京磁材料科技股份有限公司 低碳含量的烧结钕铁硼磁体的制备方法
CN109326404B (zh) * 2018-10-25 2020-03-31 徐州永丰磁业有限公司 一种钕铁硼磁性材料及制备方法
CN110660553A (zh) * 2019-09-06 2020-01-07 包头市科锐微磁新材料有限责任公司 一种各向同性热压钕铁硼快淬磁粉及其制备方法

Also Published As

Publication number Publication date
CN112481543A (zh) 2021-03-12

Similar Documents

Publication Publication Date Title
US20210166847A1 (en) Manufacturing method of sintered nd-fe-b permanent magnet
US11742120B2 (en) Two-step diffusion method for preparing high-performance dual-main-phase sintered mischmetal-iron-boron magnet
CN102903472A (zh) 一种烧结钕铁硼磁体及其制备方法
JPWO2002103719A1 (ja) 希土類永久磁石材料
KR20000048146A (ko) 희토류/철/붕소계 영구자석 합금 조성물
CN103646742A (zh) 一种钕铁硼磁体及其制备方法
CN104575901A (zh) 一种添加铽粉的钕铁硼磁体及其制备方法
CN103426624A (zh) 钕铁硼永磁体的制备方法
CN112509775A (zh) 一种低量添加重稀土的钕铁硼磁体及其制备方法
CN106252011B (zh) 一种晶界相复合添加提高烧结钕铁硼矫顽力的方法
CN113838622A (zh) 一种高矫顽力烧结钕铁硼磁体及其制备方法
CN111952032B (zh) 一种低硼低重稀土高矫顽力烧结钕铁硼系永磁体的制备方法
CN105761925A (zh) 一种钬铁镓共晶掺杂制备高性能钕铁硼磁体的方法
CN110033914B (zh) 提高烧结钕铁硼磁体的矫顽力的方法
CN112481543B (zh) 一种高性能钕铁硼材料及其制备方法
CN111477446A (zh) 一种钕铁硼系烧结磁体及其制备方法
CN109550973B (zh) 一种AlNiCo/SmCo复合磁粉的制备方法、磁粉及磁体
CN111755191A (zh) 一种高丰度稀土Ce/Y/Nd/La取代的高最大磁能积的钐铁氮基磁粉
CN108806911B (zh) 一种钕铁硼磁体及其制备方法
JP4618437B2 (ja) 希土類永久磁石の製造方法およびその原料合金
KR20210041315A (ko) 소결 자석의 제조 방법
CN110875110A (zh) 含vn粒子的钕铁硼磁性材料及其制备方法
CN109148138A (zh) 一种高性能钐钴烧结永磁体用全流程低氧的制备方法
JPH0316763B2 (zh)
CN112216460B (zh) 纳米晶钕铁硼磁体及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20220215

Address after: 322117 Hu Xi Zhen Xi Nan Cun, Dongyang City, Jinhua City, Zhejiang Province

Applicant after: Dongyang Kelida Electronic Equipment Co.,Ltd.

Address before: 118100 No.71 Yingbin street, Fengcheng City, Dandong City, Liaoning Province

Applicant before: Hu Jianqing

GR01 Patent grant
GR01 Patent grant