CN112456987A - 仿生叠层石墨烯复合陶瓷刀具及其制备方法 - Google Patents

仿生叠层石墨烯复合陶瓷刀具及其制备方法 Download PDF

Info

Publication number
CN112456987A
CN112456987A CN202011465351.1A CN202011465351A CN112456987A CN 112456987 A CN112456987 A CN 112456987A CN 202011465351 A CN202011465351 A CN 202011465351A CN 112456987 A CN112456987 A CN 112456987A
Authority
CN
China
Prior art keywords
layer
parts
graphene
surface layer
ceramic cutter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011465351.1A
Other languages
English (en)
Other versions
CN112456987B (zh
Inventor
肖光春
陈本帅
许崇海
陈照强
衣明东
张静婕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qilu University of Technology
Original Assignee
Qilu University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qilu University of Technology filed Critical Qilu University of Technology
Priority to CN202011465351.1A priority Critical patent/CN112456987B/zh
Publication of CN112456987A publication Critical patent/CN112456987A/zh
Application granted granted Critical
Publication of CN112456987B publication Critical patent/CN112456987B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3804Borides
    • C04B2235/3813Refractory metal borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3886Refractory metal nitrides, e.g. vanadium nitride, tungsten nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials For Medical Uses (AREA)
  • Ceramic Products (AREA)

Abstract

本发明公开了一种仿生叠层石墨烯复合陶瓷刀具及其制备方法,属于机械制造和硅酸盐材料领域,本发明要解决的技术问题为如何在保证陶瓷刀具材料较高强度和硬度的同时,进一步提高陶瓷复合材料在高速切削加工过程中的断裂韧性和减摩抗磨性能,采用的技术方案为:该刀具是将表层与基体层按照不同层数和层厚比依次交替铺叠而成,表层采用氧化铝‑硼化钛‑石墨烯纳米片复合材料,基体层采用氧化铝‑氮化钛复合材料;其中,表层和基体层的总层数不少于3层且表层与基体层的层厚比至少为2。该制备方法具体如下:(1)、制备薄层混合原始粉末;(2)、制备氧化铝‑氮化钛混合原始粉末;(3)、铺叠;(4)、烧结;(5)、制备出叠层陶瓷刀具。

Description

仿生叠层石墨烯复合陶瓷刀具及其制备方法
技术领域
本发明涉及机械制造和硅酸盐材料领域,具体地说是一种仿生叠层石墨烯复合陶瓷刀具及其制备方法。
背景技术
叠层复合材料是指利用复合技术使两种或两种以上性能不同的材料在界面上实现牢固结合的一种新型复合材料。仿生叠层复合材料这种独特的多界面结构及在表层产生残余压应力在提高材料强度的同时能够保证复合材料具有一定的塑韧性,其性能主要由基体层和表层各自的性能和二者界面结合状态决定。因此,基体层与表层的结构和特性、各自的体积含量、层数和层厚比对叠层复合陶瓷材料的性能起到决定性作用。
故如何在保证陶瓷刀具材料较高强度和硬度的同时,进一步提高陶瓷复合材料在高速切削加工过程中的断裂韧性和减摩抗磨性能是目前亟待解决的技术问题。
发明内容
本发明的技术任务是提供一种仿生叠层石墨烯复合陶瓷刀具及其制备方法,来解决如何在保证陶瓷刀具材料较高强度和硬度的同时,进一步提高陶瓷复合材料在高速切削加工过程中的断裂韧性和减摩抗磨性能的问题。
本发明的技术任务是按以下方式实现的,一种仿生叠层石墨烯复合陶瓷刀具,该刀具是将表层与基体层按照不同层数和层厚比依次交替铺叠而成,表层采用氧化铝-硼化钛-石墨烯纳米片复合材料,基体层采用氧化铝-氮化钛复合材料;其中,表层和基体层的总层数不少于3层且表层与基体层的层厚比至少为2。
作为优选,所述氧化铝-硼化钛-石墨烯纳米片复合材料主要由以下重量配比的原料混合而成:亚微米氧化铝75-80份,硼化钛18-22份,石墨烯纳米片0.1-0.5份,氧化镁0.3-0.7份,氧化钇0.3-0.7份。
更优地,所述氧化铝-硼化钛-石墨烯纳米片复合材料主要由以下重量配比的原料混合而成:亚微米氧化铝78.7份,硼化钛20份,石墨烯纳米片0.3份,氧化镁0.5份,氧化钇0.5份。
更优地,所述氧化铝-氮化钛复合材料主要由以下重量配比的原料混合而成:亚微米氧化铝77-81份,氮化钛18-22份,氧化镁0.3-0.7份,氧化钇0.3-0.7份。
更优地,所述氧化铝-氮化钛复合材料主要由以下重量配比的原料混合而成:亚微米氧化铝79份,氮化钛20份,氧化镁0.5份,氧化钇0.5份。
更优地,所述氧化铝-硼化钛-石墨烯纳米片复合材料中亚微米氧化铝和硼化钛的比例为7-8:2-3,优选8:2,硼化钛可以提高材料的抗弯强度;
所述亚微米氧化铝的平均粒径为0.2μm;硼化钛的平均粒径为0.5-1μm;氧化镁的平均粒径为0.5-2μm;氧化钇的平均粒径为0.5-2μm;氮化钛的平均粒径为0.02-1μm,优选为0.5-1μm,在叠层结构中,界面结合强度是影响复合材料力学性能的重要原因。因此,对化铝、硼化钛、氮化钛的平均粒径差距有所要求,合适的粒径差距有助于界面处结合强度,进而提高复合材料力学性能。
一种仿生叠层石墨烯复合陶瓷刀具的制备方法,该制备方法具体如下:
(1)、制备薄层混合原始粉末:将石墨烯纳米片0.1-0.5份分散于100ml无水乙醇溶液中,超声分散1-2h后得到石墨烯分散液;将石墨烯分散液加入到亚微米氧化铝75-80份,硼化钛18-22份,氧化镁0.3-0.7份和氧化钇0.3-0.7份的混合分散液中,继续超声分散1h;将混合分散液倒入球磨罐中高速球磨36-48h,干燥、过筛得到表层混合原始粉末;
(2)、制备氧化铝-氮化钛混合原始粉末:将亚微米氧化铝77-81份,氮化钛18-22份,氧化镁0.3-0.7份,氧化钇0.3-0.7份的混合液超声处理1-2h,将混合分散液倒入球磨罐中高速球磨36-48h,干燥、过筛得到氧化铝-氮化钛混合原始粉末;
(3)、铺叠:按照不同的层数和层厚比将表层混合原始粉末和基体层混合原始粉末依次交替铺叠到石墨磨具中,每铺叠一层预压一次;
(4)、烧结:将石墨磨具放入到放电等离子烧结炉中进行烧结,烧结温度为1525℃,保温时间为5min,烧结压力为30MPa;
(5)、制备出叠层陶瓷刀具:烧结后冷却至室温,取出叠层陶瓷试样,对试样表面进行磨削、研磨和抛光,即可制备出叠层陶瓷刀具。
作为优选,所述步骤(3)中表层层厚为0.14-0.5mm;表层和基体层的总层数为3、5、7或9层且表层与基体层的层厚比为2、4、6或8。
作为优选,所述步骤(4)中放电等离子烧结炉中烧结过程中升温速率包括如下三个阶段:
①、800℃以下升温速率为:100℃/min;
②、800℃-1200℃之间升温速率为:80℃/min;
③、1200℃-1525℃之间升温速率为:50℃/min;
更优地,所述氧化铝-硼化钛-石墨烯纳米片复合材料中亚微米氧化铝和硼化钛的比例为7-8:2-3,优选8:2;
所述亚微米氧化铝的平均粒径为0.2μm;硼化钛的平均粒径为0.5-1μm;氧化镁的平均粒径为0.5-2μm;氧化钇的平均粒径为0.5-2μm;氮化钛的平均粒径为0.02-1μm,优选为0.5-1μm。
本发明的仿生叠层石墨烯复合陶瓷刀具及其制备方法具有以下优点:
(一)本发明通过石墨烯和表层残余压应力的协同作用来提高陶瓷复合材料在高速切削加工过程中的断裂韧性和减摩抗磨性能;同时通过表层残余压应力和氧化铝-氮化钛层来保证复合材料的硬度和强度;
(二)通过本发明制备的叠层陶瓷刀具,残余压应力与残余拉应力交替出现,在拥有高界面结合强度的同时起到更好的偏转裂纹的作用,能有效抑制裂纹扩展,提高复合材料的力学性能;具体如下:
①将表层厚度控制在0.18-0.3mm,使表层产生更大的残余压应力来保证高硬度;
②采用氧化铝-氮化钛复合材料的基体层可以保证复合材料的高强度;
③石墨烯纳米片和表层残余压应力协同作用,在切削过程中可以提高材料的断裂韧性以及减摩抗磨性能,有效提高刀具寿命;
④本发明中材料组分中不包含镍、钼等金属相,拥有更好的高温切削性能。
具体实施方式
参照具体实施例对本发明的仿生叠层石墨烯复合陶瓷刀具及其制备方法作以下详细地说明。
实施例1:
本发明的仿生叠层石墨烯复合陶瓷刀具的制备方法具体如下:
(1)、将石墨烯纳米片0.35g在100ml无水乙醇中超声分散1h,得到分散均匀的石墨烯分散液;将石墨烯分散液倒入装有亚微米氧化铝78.5g,硼化钛19g,氧化镁0.45g,氧化钇0.55g的球磨罐中高能球磨36h;经干燥、过筛得到表层复合原始粉末;
(2)、将含有亚微米氧化铝78.5g,氮化钛20.5g,氧化镁0.55g,氧化钇0.45g的混合分散液倒入到球磨罐中高能球磨48h;经干燥、过筛得到基体层复合原始粉末;
(3)、将表层复合原始粉末和基体层复合原始粉末依次交替铺叠在石墨模具中,每铺一层预压一次;取叠层层数为5层,层厚比为6,表层层厚为0.27mm;
(4)、将石墨模具放入到放电等离子烧结炉中进行烧结,烧结温度为1525℃,保温时间为5min,烧结压力为30MPa;其中,烧结过程中的升温速率:800℃以前100℃/min,800℃-1200℃之间80℃/min,1200℃-1525℃之间50℃/min;
(5)、烧结后冷却至室温,取出叠层陶瓷试样,对试样表面进行磨削、研磨和抛光,即可制备出叠层陶瓷刀具。
实施例2:
(1)、将石墨烯纳米片0.25g在100ml无水乙醇中超声分散1h,得到分散均匀的石墨烯分散液;将石墨烯分散液倒入装有亚微米氧化铝78.9g,硼化钛21g,氧化镁0.6g,氧化钇0.4g的球磨罐中高能球磨36h;经干燥、过筛得到表层复合原始粉末;
(2)、将含有亚微米氧化铝79.5g,氮化钛19g,氧化镁0.4g,氧化钇0.6g的混合分散液倒入到球磨罐中高能球磨48h;经干燥、过筛得到基体层复合原始粉末;
(3)、将表层复合原始粉末和基体层复合原始粉末依次交替铺叠在石墨模具中,每铺一层预压一次;取叠层层数为7层,层厚比为4,表层层厚为0.25mm;
(4)将石墨模具放入到放电等离子烧结炉中进行烧结,烧结温度为1525℃,保温时间为5min,烧结压力为30MPa;其中,烧结过程中的升温速率:800℃以前100℃/min,800℃-1200℃之间80℃/min,1200℃-1525℃之间50℃/min;
(5)、烧结后冷却至室温,取出叠层陶瓷试样,对试样表面进行磨削、研磨和抛光,即可制备出叠层陶瓷刀具。
实施例3:
(1)、将石墨烯纳米片0.3g在100ml无水乙醇中超声分散1h,得到分散均匀的石墨烯分散液;将石墨烯分散液倒入装有亚微米氧化铝78.7g,硼化钛20g,氧化镁0.5g,氧化钇0.5g的球磨罐中高能球磨36h;经干燥、过筛得到表层复合原始粉末;
(2)、将含有亚微米氧化铝79g,氮化钛20g,氧化镁0.5g,氧化钇0.5g的混合分散液倒入到球磨罐中高能球磨48h;经干燥、过筛得到基体层复合原始粉末;
(3)、将表层复合原始粉末和基体层复合原始粉末依次交替铺叠在石墨模具中,每铺一层预压一次;取叠层层数为7层,层厚比为6,表层层厚为0.18mm;
(4)、将石墨模具放入到放电等离子烧结炉中进行烧结,烧结温度为1525℃,保温时间为5min,烧结压力为30MPa;其中,烧结过程中的升温速率:800℃以前100℃/min,800℃-1200℃之间80℃/min,1200℃-1525℃之间50℃/min;
(5)、烧结后冷却至室温,取出叠层陶瓷试样,对试样表面进行磨削、研磨和抛光,即可制备出叠层陶瓷刀具。
对比实施例1:
(1)、将石墨烯0.3g在100ml无水乙醇中超声分散1小时,得到分散均匀的石墨烯分散液;将石墨烯分散液倒入装有亚微米氧化铝78.7g,硼化钛20g,氧化镁0.5g,氧化钇0.5g的球磨罐中高能球磨36小时;经干燥、过筛得到复合原始粉末;
(2)、称取混合原始粉末,将混合原始粉末填铺到石墨模具中并预压;
(3)、将石墨模具放入到放电等离子烧结炉中,烧结过程中的升温速率:800℃以前100℃/min,800℃-1200℃之间80℃/min,1200℃-1525℃之间50℃/min;在最高温度下保温5分钟,烧结压力为30MPa;
(4)、烧结后冷却至室温,取出陶瓷试样,对试样表面进行磨削、研磨和抛光,即可制备出复合陶瓷刀具。
对比实施例2:
(1)、将含有亚微米氧化铝79g,氮化钛20g,氧化镁0.5g,氧化钇0.5g的混合分散液倒入球磨罐中高能球磨48小时;经干燥、过筛得到复合原始粉末;
(2)、称取混合原始粉末,将混合原始粉末填铺到石墨模具中并预压;
(3)、将石墨模具放入到放电等离子烧结炉中,烧结过程中的升温速率:800℃以前100℃/min,800℃-1200℃之间80℃/min,1200℃-1525℃之间50℃/min;在最高温度下保温5分钟,烧结压力为30MPa;
(4)、烧结后冷却至室温,取出陶瓷试样,对试样表面进行磨削、研磨和抛光,即可制备出复合陶瓷刀具。
通过上述过程制备的复合陶瓷刀具的力学性能如下表所示:
项目 断裂韧性(MPa.m1/2) 维氏硬度(GPa) 抗弯强度(MPa)
实施例1 8.3 19 731
实施例2 8 18.8 736
实施例3 8.65 18.7 760
对比实施例1 7.35 18.2 661
对比实施例2 4.62 19.1 670
由上表可知,叠层结构能够提高复合陶瓷刀具的断裂韧性以及抗弯强度等力学性能,进而增加刀具的使用寿命。同时叠层结构能够保证陶瓷刀具表层具有较高的维氏硬度,保证刀具的力学性能。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

1.一种仿生叠层石墨烯复合陶瓷刀具,其特征在于,该刀具是将表层与基体层按照不同层数和层厚比依次交替铺叠而成,表层采用氧化铝-硼化钛-石墨烯纳米片复合材料,基体层采用氧化铝-氮化钛复合材料;其中,表层和基体层的总层数不少于3层且表层与基体层的层厚比至少为2。
2.根据权利要求1所述的仿生叠层石墨烯复合陶瓷刀具,其特征在于,所述氧化铝-硼化钛-石墨烯纳米片复合材料主要由以下重量配比的原料混合而成:亚微米氧化铝75-80份,硼化钛18-22份,石墨烯纳米片0.1-0.5份,氧化镁0.3-0.7份,氧化钇0.3-0.7份。
3.根据权利要求2所述的仿生叠层石墨烯复合陶瓷刀具,其特征在于,所述氧化铝-硼化钛-石墨烯纳米片复合材料主要由以下重量配比的原料混合而成:亚微米氧化铝78.7份,硼化钛20份,石墨烯纳米片0.3份,氧化镁0.5份,氧化钇0.5份。
4.根据权利要求1-3中任一所述的仿生叠层石墨烯复合陶瓷刀具,其特征在于,所述氧化铝-氮化钛复合材料主要由以下重量配比的原料混合而成:亚微米氧化铝77-81份,氮化钛18-22份,氧化镁0.3-0.7份,氧化钇0.3-0.7份。
5.根据权利要求4所述的仿生叠层石墨烯复合陶瓷刀具,其特征在于,所述氧化铝-氮化钛复合材料主要由以下重量配比的原料混合而成:亚微米氧化铝79份,氮化钛20份,氧化镁0.5份,氧化钇0.5份。
6.根据权利要求5所述的仿生叠层石墨烯复合陶瓷刀具,其特征在于,所述氧化铝-硼化钛-石墨烯纳米片复合材料中亚微米氧化铝和硼化钛的比例为7-8:2-3;
所述亚微米氧化铝的平均粒径为0.2μm;硼化钛的平均粒径为0.5-1μm;氧化镁的平均粒径为0.5-2μm;氧化钇的平均粒径为0.5-2μm;氮化钛的平均粒径为0.02-1μm。
7.一种仿生叠层石墨烯复合陶瓷刀具的制备方法,其特征在于,该制备方法具体如下:
(1)、制备薄层混合原始粉末:将石墨烯纳米片0.1-0.5份分散于100ml无水乙醇溶液中,超声分散1-2h后得到石墨烯分散液;将石墨烯分散液加入到亚微米氧化铝75-80份,硼化钛18-22份,氧化镁0.3-0.7份和氧化钇0.3-0.7份的混合分散液中,继续超声分散1h;将混合分散液倒入球磨罐中高速球磨36-48h,干燥、过筛得到表层混合原始粉末;
(2)、制备氧化铝-氮化钛混合原始粉末:将亚微米氧化铝77-81份,氮化钛18-22份,氧化镁0.3-0.7份,氧化钇0.3-0.7份的混合液超声处理1-2h,将混合分散液倒入球磨罐中高速球磨36-48h,干燥、过筛得到氧化铝-氮化钛混合原始粉末;
(3)、铺叠:按照不同的层数和层厚比将表层混合原始粉末和基体层混合原始粉末依次交替铺叠到石墨磨具中,每铺叠一层预压一次;
(4)、烧结:将石墨磨具放入到放电等离子烧结炉中进行烧结,烧结温度为1525℃,保温时间为5min,烧结压力为30MPa;
(5)、制备出叠层陶瓷刀具:烧结后冷却至室温,取出叠层陶瓷试样,对试样表面进行磨削、研磨和抛光,即可制备出叠层陶瓷刀具。
8.根据权利要求7所述的仿生叠层石墨烯复合陶瓷刀具的制备方法,其特征在于,所述步骤(3)中表层层厚为0.14-0.5mm;表层和基体层的总层数为3、5、7或9层且表层与基体层的层厚比为2、4、6或8。
9.根据权利要求7所述的仿生叠层石墨烯复合陶瓷刀具的制备方法,其特征在于,所述步骤(4)中放电等离子烧结炉中烧结过程中升温速率包括如下三个阶段:
①、800℃以下升温速率为:100℃/min;
②、800℃-1200℃之间升温速率为:80℃/min;
③、1200℃-1525℃之间升温速率为:50℃/min。
10.根据权利要求7-9中任一所述的仿生叠层石墨烯复合陶瓷刀具的制备方法,其特征在于,所述氧化铝-硼化钛-石墨烯纳米片复合材料中亚微米氧化铝和硼化钛的比例为7-8:2-3;
所述亚微米氧化铝的平均粒径为0.2μm;硼化钛的平均粒径为0.5-1μm;氧化镁的平均粒径为0.5-2μm;氧化钇的平均粒径为0.5-2μm;氮化钛的平均粒径为0.02-1μm。
CN202011465351.1A 2020-12-14 2020-12-14 仿生叠层石墨烯复合陶瓷刀具及其制备方法 Active CN112456987B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011465351.1A CN112456987B (zh) 2020-12-14 2020-12-14 仿生叠层石墨烯复合陶瓷刀具及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011465351.1A CN112456987B (zh) 2020-12-14 2020-12-14 仿生叠层石墨烯复合陶瓷刀具及其制备方法

Publications (2)

Publication Number Publication Date
CN112456987A true CN112456987A (zh) 2021-03-09
CN112456987B CN112456987B (zh) 2022-07-12

Family

ID=74804195

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011465351.1A Active CN112456987B (zh) 2020-12-14 2020-12-14 仿生叠层石墨烯复合陶瓷刀具及其制备方法

Country Status (1)

Country Link
CN (1) CN112456987B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114773038A (zh) * 2022-05-10 2022-07-22 燕山大学 温度传感和切削功能一体化的陶瓷刀具及制备方法与应用
CN116854451A (zh) * 2023-06-26 2023-10-10 山东大学 一种仿生陶瓷刀具及其分散制备工艺

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2845339A1 (en) * 2011-09-02 2013-03-07 Baker Hughes Incorporated Method to generate and disperse nanostructures in a composite material
CN106007680A (zh) * 2016-05-23 2016-10-12 齐鲁工业大学 石墨烯增韧A12O3/Ti(C,N)纳米复合陶瓷刀具材料及其制备方法
CN107586116A (zh) * 2017-03-07 2018-01-16 鲁东大学 一种基于冲击波传导理论的层状陶瓷刀具制备方法
CN107619263A (zh) * 2017-10-13 2018-01-23 齐鲁工业大学 一种添加氧化石墨烯包覆Si3N4复合粉体的Al2O3基陶瓷刀具材料及其制备方法
CN110330318A (zh) * 2019-08-14 2019-10-15 山东大学 一种微纳复合陶瓷刀具材料及其制备方法
CN110483059A (zh) * 2019-09-02 2019-11-22 山东大学 一种表面具有压应力的石墨烯自润滑梯度陶瓷刀具材料及其制备方法
CN110698198A (zh) * 2019-11-06 2020-01-17 中南大学深圳研究院 一种石墨烯增强陶瓷基复合材料及其制备方法
CN111499385A (zh) * 2020-03-19 2020-08-07 武汉理工大学 一种碳化硼-石墨烯微叠层复合材料及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2845339A1 (en) * 2011-09-02 2013-03-07 Baker Hughes Incorporated Method to generate and disperse nanostructures in a composite material
CN106007680A (zh) * 2016-05-23 2016-10-12 齐鲁工业大学 石墨烯增韧A12O3/Ti(C,N)纳米复合陶瓷刀具材料及其制备方法
CN107586116A (zh) * 2017-03-07 2018-01-16 鲁东大学 一种基于冲击波传导理论的层状陶瓷刀具制备方法
CN107619263A (zh) * 2017-10-13 2018-01-23 齐鲁工业大学 一种添加氧化石墨烯包覆Si3N4复合粉体的Al2O3基陶瓷刀具材料及其制备方法
CN110330318A (zh) * 2019-08-14 2019-10-15 山东大学 一种微纳复合陶瓷刀具材料及其制备方法
CN110483059A (zh) * 2019-09-02 2019-11-22 山东大学 一种表面具有压应力的石墨烯自润滑梯度陶瓷刀具材料及其制备方法
CN110698198A (zh) * 2019-11-06 2020-01-17 中南大学深圳研究院 一种石墨烯增强陶瓷基复合材料及其制备方法
CN111499385A (zh) * 2020-03-19 2020-08-07 武汉理工大学 一种碳化硼-石墨烯微叠层复合材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
颜景润等: "机床用Al2O3/TiB2复相陶瓷刀具材料的研究", 《中国陶瓷》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114773038A (zh) * 2022-05-10 2022-07-22 燕山大学 温度传感和切削功能一体化的陶瓷刀具及制备方法与应用
CN116854451A (zh) * 2023-06-26 2023-10-10 山东大学 一种仿生陶瓷刀具及其分散制备工艺

Also Published As

Publication number Publication date
CN112456987B (zh) 2022-07-12

Similar Documents

Publication Publication Date Title
CN111848198B (zh) 一种氧化铝陶瓷阀芯瓷片的制备方法及其产品
CN112456987B (zh) 仿生叠层石墨烯复合陶瓷刀具及其制备方法
CN110818428B (zh) 一种共晶增强增韧氮化硅陶瓷的制备方法
US20230303453A1 (en) Crack self-healing functionally gradient material for ceramic cutting tools and preparation method thereof
CN107937792B (zh) 一种梯度复合陶瓷刀具材料及其制备方法
CN115365504B (zh) 一种B4C/Al仿贝壳梯度装甲及其制备方法
CN110759735A (zh) 一种碳化硼陶瓷复合材料及其制备方法
CN110846538A (zh) 一种Ti2AlC增强铝基复合材料及其制备方法
CN115636674A (zh) 一种高硬度和高韧性的氮化硅轴承球及其制备方法和应用
CN113699410B (zh) 基于二步法增材的仿蜂窝结构抗冲击钛基体复合材料
CN110483059A (zh) 一种表面具有压应力的石墨烯自润滑梯度陶瓷刀具材料及其制备方法
CN104329988A (zh) 一种防弹陶瓷片及其制备方法
CN113981290A (zh) 陶瓷颗粒及其制备方法和应用
CN112919915A (zh) 一种sps有压烧结粉末压制氮化硅陶瓷异形刀具的方法
CN115536369B (zh) 一种自增韧氧化铝陶瓷材料的制备方法
CN113896537B (zh) 一种碳化硼与碳化硅复合陶瓷的制备方法
KR20190029140A (ko) 고강도 및 고경도 와이어본딩용 캐필러리 및 그 제조방법
CN112897988B (zh) 一种用于固态氧控的聚乙烯醇缩丁醛溶液粘结氧化铅陶瓷及其制备方法
CN114591086A (zh) 一种纳米粉体改性碳化硅-碳化硼复相陶瓷及其制备方法
CN113444949A (zh) 一种高密度W-Ta-Nb系难熔固溶体合金及其制备方法
CN112159242A (zh) 基于石墨烯纳米片增韧氧化铝-硼化钛复合陶瓷材料及制备方法
CN115196973B (zh) 多层氮化硅陶瓷植入物及其制作方法
RU2514041C2 (ru) Углеродсодержащая композиция для получения реакционно-связанного карбида кремния
CN115521134B (zh) 一种贝壳仿生陶瓷刀具的制备方法及贝壳仿生陶瓷刀具
CN117532968A (zh) 一种层状梯度Ti-Ti基复合材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant