CN117532968A - 一种层状梯度Ti-Ti基复合材料及其制备方法和应用 - Google Patents

一种层状梯度Ti-Ti基复合材料及其制备方法和应用 Download PDF

Info

Publication number
CN117532968A
CN117532968A CN202311242631.XA CN202311242631A CN117532968A CN 117532968 A CN117532968 A CN 117532968A CN 202311242631 A CN202311242631 A CN 202311242631A CN 117532968 A CN117532968 A CN 117532968A
Authority
CN
China
Prior art keywords
titanium
based composite
alloy
layer
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311242631.XA
Other languages
English (en)
Inventor
池海涛
黄小娟
张建雷
黄铁明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Xiangxin Light Alloy Manufacturing Co ltd
Original Assignee
Fujian Xiangxin Light Alloy Manufacturing Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Xiangxin Light Alloy Manufacturing Co ltd filed Critical Fujian Xiangxin Light Alloy Manufacturing Co ltd
Priority to CN202311242631.XA priority Critical patent/CN117532968A/zh
Publication of CN117532968A publication Critical patent/CN117532968A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0036Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/30Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being formed of particles, e.g. chips, granules, powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D55/00Endless track vehicles
    • B62D55/08Endless track units; Parts thereof
    • B62D55/18Tracks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D55/00Endless track vehicles
    • B62D55/08Endless track units; Parts thereof
    • B62D55/18Tracks
    • B62D55/26Ground engaging parts or elements
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • C22C1/0458Alloys based on titanium, zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/059Making alloys comprising less than 5% by weight of dispersed reinforcing phases
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0005Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with at least one oxide and at least one of carbides, nitrides, borides or silicides as the main non-metallic constituents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0031Matrix based on refractory metals, W, Mo, Nb, Hf, Ta, Zr, Ti, V or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0052Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides
    • C22C32/0057Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides based on B4C
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0052Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides
    • C22C32/0063Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides based on SiC
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0073Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only borides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • B32B2264/1023Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/105Metal
    • B32B2264/1052Aluminum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/105Metal
    • B32B2264/1058Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/554Wear resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2571/00Protective equipment
    • B32B2571/02Protective equipment defensive, e.g. armour plates or anti-ballistic clothing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/12Ships

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Dispersion Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Fluid Mechanics (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明属于粉末冶金复合材料技术领域,具体涉及一种层状梯度Ti‑Ti基复合材料及其制备方法和应用。所述材料包括基底层和复合增强层,所述基底层和复合增强层的体积之比为(6‑10):1;所述基底层为钛或钛合金层;所述复合增强层的成分包括:基体钛、中间合金B和颗粒增强体C,其中:所述中间合金B选自Al‑V合金、Al‑Mo合金、Al‑Sn合金中的一种或多种;所述颗粒增强体C选自TiB2、B4C、SiC、Al2O3中的一种或多种。通过添加颗粒增强体,有效提升了钛基复合材料的耐磨性,使所得材料接地面部分具备优良的耐磨性,用途广泛。通过两段压制成型过程,将颗粒增强体钛基复合材料与钛或钛合金结合,制作过程流程简单,可实现产业化生产。

Description

一种层状梯度Ti-Ti基复合材料及其制备方法和应用
技术领域
本发明属于粉末冶金复合材料技术领域,具体涉及一种层状梯度Ti-Ti基复合材料及其制备方法和应用。
背景技术
钛是20世纪50年代发展起来的一种重要的结构金属,具有比高强度、低密度、良好的耐蚀性及耐热性好等特点,被广泛用于各个领域。钛基复合材料的主要制备方法是用金属与金属粉末(或金属与非金属粉末)的混合物作为原料,经过加压成形和烧结过程,制造金属材料、复合材料以及各种类型制品的工艺技术。
近年来,随着国内航空、航天、军工等国家重大项目的实施,高端领域对钛、钛合金及钛基复合材料的应用提出了更高的技术要求。传统的钛与钛合金通过常规工艺制造的材料耐磨性能较差,无法满足履带板等零部件的材质要求,履带板是坦克、装甲车等行走系统的主要部件之一,其主要性能是降低车辆的行动阻力,保障车辆在无路地面的正常通行。由于其工作环境的特殊性,材料整体要求轻质高强度,且在下部接地面位置需具备高强度、高硬度及高耐磨性等特点。
发明内容
针对现有技术存在的问题,本发明提供了一种层状梯度Ti-Ti基复合材料及其制备方法和应用,将钛与钛合金与陶瓷增强钛基复合材料相结合,其中陶瓷增强钛基复合材料充当复合增强层,具有良好的耐磨性能;钛与钛合金充当基底层,满足材料整体轻质高强度。本发明所述材料整体轻质且具有高强度、高硬度、高耐磨性的特点,可广泛应用于航空、航天、舰船、兵器、生物医疗等领域。本发明具体包括以下内容:
一种层状梯度Ti-Ti基复合材料,包括基底层和复合增强层,所述基底层和复合增强层的体积之比为(6-10):1;所述基底层为钛或钛合金层;
所述复合增强层的成分包括:基体钛、中间合金B和颗粒增强体C,其中:
所述中间合金B选自Al-V合金、Al-Mo合金、Al-Sn合金中的一种或多种;
所述颗粒增强体C选自TiB2、B4C、SiC、Al2O3中的一种或多种。
优选的,所述复合增强层中各成分的重量百分比为:基体钛72-84%,中间合金B0-12%,颗粒增强体C 4-16%。
优选的,所述复合增强层中各成分的重量百分比为:基体钛75-80%,中间合金B5-10%,颗粒增强体C 8-12%。
一种层状梯度Ti-Ti基复合材料的制备方法,包括以下步骤:
(1)配料:按比例配制基体钛、中间合金B和颗粒增强体C的原料粉末,然后混合球磨,得到复合增强材料粉末;
(2)模压成型:将钛粉末或钛合金粉末、复合增强材料粉末按照比例模压成型,得到生坯;
(3)热压烧结:将生坯放入真空环境中热压烧结,得到烧结体;
(4)热处理:将烧结体进行热处理,得到层状梯度Ti-Ti基复合材料。
优选的,步骤(1)所述球磨的方法为:首先将配制好的原料粉末加入到高能球磨机中,然后按照球料比为(0.8-1.2):1的比例放入研磨球,通入氮气,接着开始球磨;所述研磨球包括等量的直径为8-12mm的研磨球和直径为3-5mm的研磨球;所述高能球磨机的转速设置为250-300r/min,球磨时间为3-3.5h。采用本发明限定的球磨参数,可以将粉末研磨到最佳粒径范围(50-100微米),达到最好的合金化和结合效果。
优选的,步骤(2)所述模压成型的方法为:首先,将复合增强材料粉末铺设在模具的下模板上,使用同下模板形状相同的上模板以0.5-0.8MPa压力将下模板上的复合增强材料粉末压制成型;然后,取出上模板,在压制成型的复合增强材料上铺设钛粉末或钛合金粉末,接着使用上模板以8-10MPa压力压制成型,得到生坯。
优选的,步骤(3)所述热轧烧结的方法为:将生坯置于真空热压烧结炉中,将炉内抽真空,当真空度达到10Pa以下时,开始加热,先以15-20℃/min的升温速率升温至500-600℃,保温0.5-1h;通入保护性气体,直至炉内压强达到0.03-0.05MPa;再以10-15℃/min的速率升温至1000-1200℃;然后加压至25-30MPa,保温保压3-4h;最后随炉冷却,得到烧结体。
优选的,步骤(4)所述热处理的方法为:将烧结体置于热处理炉内,以8-18℃/min的速率升温至900-1000℃并保温3-5h;再以5-10℃/min的速率降温至450-550℃;最后随炉冷却,得到层状梯度Ti-Ti基复合材料。
一种采用层状梯度Ti-Ti基复合材料制备的履带板或装甲板。
一种层状梯度Ti-Ti基复合材料在航空装备、航天装备、舰船、兵器或医疗器械中的应用。
本发明的有益效果:
(1)本发明公开的层状梯度Ti-Ti基复合材料,包括基底层和复合增强层其中,复合增强层是最重要的功能层,通过添加颗粒增强体,有效提升了钛基复合材料的耐磨性,使材料具有高硬度、高耐磨的特性,使所得材料接地面部分具备优良的耐磨性,用途广泛。钛或者钛合金基底层是主要的结构层,发挥着重要的强度特性。本发明在复合增强层中添加的增强体粉末含量较低,因此复合增强层与钛或者钛合金基底层没有明显的界面效应,可以有效提升两层之间的界面结合强度。在材料使用过程中,复合增强层不易脱落,使用寿命时间长,同时无需进行表面镀层处理或者是镶嵌不锈钢,产品制造工艺流程简单。本发明实现了高质量、多成分粉末冶金过程,同时所得材料接地面具有优良的耐磨性,是一种钢履带板的优良替代方案。
(2)本发明公开的层状梯度Ti-Ti基复合材料的制备方法,首先将原料粉末球磨,高能球磨机通过高速球磨混合过程将粉末破碎至纳米级别的尺寸,由于粉末尺寸减小,其表面积增加使得表面能提高,从而大大提升了粉末的表面活性,增加粉末间结合强度。同时由于球磨碰撞产生的热量即可提供粉末间相互反应所需的能量,进而使粉末间产生合金化反应。高能球磨可以保证复合材料中增强体和基体的界面结合效果,进而能够保证本发明所述材料综合品质优异。
(3)本发明公开的层状梯度Ti-Ti基复合材料的制备方法中涉及的成型工艺包括两段压制过程。首先,将复合增强材料粉末均匀铺设在模具下模板上,使用同下模板形状相同的上模板以0.5-0.8MPa压力压制成型,本过程通过施加一个较小的压力,使复合增强材料粉末在模具中完全填充且厚度均匀,同时又保证了材料的致密度较低。之后,取出上模板,铺设钛或钛合金粉末,使用模具上模板以8-10MPa压力压制成型,得到层状梯度Ti-Ti基复合材料生坯,填充第二层粉末后施加较大压力使材料的致密度较大,同时提高第一层粉末与第二层粉末界面间的结合强度,保证了层状Ti-Ti基复合材料中钛或钛合金与颗粒增强钛基复合材料之间呈牢固紧密的冶金结合状态。
(4)本发明公开的层状梯度Ti-Ti基复合材料的制备方法中,烧结体热处理是重要处理步骤,本方案中材料特性是层状梯度复合材料,虽然成分上已经比较相近,界面结合强度有一定的保证,然而,由成分不同所引发的界面不匹配性依旧是存在的,因此,通过热处理过程可以有效的降低层间的热错配应力,有效降低材料整体应力水平,保证材料的稳定性。
具体实施方式
下面结合具体实施方式对本发明进行详细说明。下面所示的实施例不对权利要求所记载的发明内容起任何限定作用。另外,下面实施例所表示的构成的全部内容不限于作为权利要求所记载的发明的解决方案所必需的。
一种层状梯度Ti-Ti基复合材料,包括基底层和复合增强层,所述基底层和复合增强层的体积之比为(6-10):1;所述基底层为钛或钛合金层;所述复合增强层的成分包括(质量百分含量):基体钛72-84%(例如75%、77%、79%、80%、82%、83%等)、中间合金B 0-12%(例如0、1%、2%、4%、6%、8%、10%等)、以及颗粒增强体C 4-16%(例如4.5%、5%、6%、8%、10%、12%、14%等),所述中间合金B选自Al-V合金、Al-Mo合金、Al-Sn合金中的一种或多种;所述颗粒增强体C选自TiB2、B4C、SiC、Al2O3中的一种或多种。本发明所述层状梯度Ti-Ti基复合材料可以用于制备履带板或装甲板。本发明所述层状梯度Ti-Ti基复合材料可以应用于航空装备、航天装备、舰船、兵器或医疗器械等各领域中。
一种层状梯度Ti-Ti基复合材料的制备方法,包括以下步骤:
(1)配料:按比例配制基体钛、中间合金B和颗粒增强体C的原料粉末,首先将配制好的原料粉末加入到高能球磨机中,然后按照球料比为(0.8-1.2):1(例如0.9:1、1:1、1.1:1等)的比例放入研磨球,通入氮气,接着开始球磨;所述研磨球包括等量的直径为8-12mm(例如9mm、10mm、11mm等)的研磨球和直径为3-5mm(例如3.5mm、4mm、4.5mm等)的研磨球;所述高能球磨机的转速设置为250-300r/min(例如260r/min、270r/min、280r/min、290r/min等),球磨时间为3-3.5h(例如3.1h、3.2h、3.3h、3.4h、3.5h等);
(2)模压成型:首先,将复合增强材料粉末铺设在模具的下模板上,使用同下模板形状相同的上模板以0.5-0.8MPa(例如0.55MPa、0.6MPa、0.65MPa、0.7MPa、0.75MPa等)压力将下模板上的复合增强材料粉末压制成型;然后,取出上模板,在压制成型的复合增强材料上铺设钛粉末或钛合金粉末,接着使用上模板以8-10MPa(例如8.5MPa、9MPa、9.5MPa、9.8MPa等)压力压制成型,得到生坯;
(3)热压烧结:将生坯置于真空热压烧结炉中,将炉内抽真空,当真空度达到10Pa以下(例如9Pa、8Pa、5Pa、2Pa、1Pa等)时,开始加热,先以15-20℃/min(例如16℃/min、17℃/min、18℃/min、19℃/min等)的升温速率升温至500-600℃(例如520℃、540℃、560℃、580℃等),保温0.5-1h(例如0.6h、0.7h、0.8h、0.9h等);通入保护性气体,直至炉内压强达到0.03-0.05MPa(例如0.035MPa、0.04MPa、0.045MPa等);再以10-15℃/min(例如11℃/min、12℃/min、13℃/min、14℃/min等)的速率升温至1000-1200℃(例如1020℃、1050℃、1100℃、1150℃等);然后加压至25-30MPa(例如26MPa、27MPa、28MPa、29MPa等),保温保压3-4h(例如3.2h、3.4h、3.6h、3.8h等);最后随炉冷却至室温,得到烧结体;
(4)热处理:将烧结体置于热处理炉内,以8-18℃/min(例如10℃/min、12℃/min、14℃/min、16℃/min等)的速率升温至900-1000℃(例如920℃、940℃、960℃、980℃等)并保温3-5h(例如3.2h、3.5h、4.0h、4.2h、4.5h、4.8h等);再以5-10℃/min(例如6℃/min、7℃/min、8℃/min、9℃/min等)的速率降温至450-550℃(例如460℃、480℃、500℃、520℃等);最后随炉冷却至室温,得到层状梯度Ti-Ti基复合材料。
实施例1
一种层状梯度Ti-Ti基复合材料,包括:第一层为颗粒增强钛基复合材料(即复合增强层,下同),第二层为钛或者钛合金(即基底层,下同),第一层与第二层的体积之比为1:8。
一种层状梯度Ti-Ti基复合材料的制备方法,包括以下步骤:
步骤1:第一层颗粒增强钛基复合材料成分设计:所述钛基复合材料成分包括基体钛A、中间合金B和颗粒增强体C。其中:中间合金B选自Al-V合金,颗粒增强体C选自B4C作为原料。第一层颗粒增强钛基复合材料成分的重量百分比为:基体钛A:83.3%,中间合金B:10.5%,颗粒增强体C:6.2%。
步骤2:第一层粉末高能球磨:按照步骤(1)所述质量百分比,将第一层粉末涉及原料基体钛、中间合金和颗粒增强体按比例加入高能球磨机,加入直径10mm和等量的直径4mm的ZrO2研磨球,球料比为1:1,通入N2,开始球磨。其中,球磨机的转速为250r/min,球磨时间为3.5h。经球磨混合得到第一层颗粒增强钛基复合材料粉末。
步骤3:模压成型:将第一层颗粒增强钛基复合材料粉末均匀铺设在模具下模板上,使用同下模板形状相同的上模板以0.6MPa压力压制成型;取出上模板,铺设第二层钛或钛合金粉末,使用模具上模板以10MPa压力压制成型,得到层状梯度Ti-Ti基复合材料生坯。
步骤4:热压烧结:将制备好的生坯置于真空热压烧结炉中,打开真空泵,将炉内空气抽出形成真空环境,当真空度达到10Pa以下时,开始加热,首先以18℃/min升温速率从室温升温至500℃,保温0.8h;通入保护性气体氩气,直至炉内压强为0.04MPa,以15℃/min再次升温至1100℃;启动压力机缓慢加压至25MPa,保温保压4h;随炉冷却至室温,得到层状梯度Ti-Ti基复合材料烧结体。
步骤5:烧结体热处理:将步骤(4)所得层状梯度Ti-Ti基复合材料烧结体置于热处理炉内,以15℃/min升温至1000℃并保温4h,再以5℃/min降温至500℃,后随炉冷却至室温,得到层状梯度Ti-Ti基复合材料。
实施例2
一种层状梯度Ti-Ti基复合材料,包括:第一层为颗粒增强钛基复合材料,第二层为钛或者钛合金,第一层与第二层的体积之比为1:9。
一种层状梯度Ti-Ti基复合材料的制备方法,包括以下步骤:
步骤1:第一层颗粒增强钛基复合材料成分设计:所述钛基复合材料成分包括基体钛A和颗粒增强体C。其中:颗粒增强体C选自TiB2作为原料。第一层颗粒增强钛基复合材料成分的重量百分比为:基体钛A:84%,颗粒增强体C:16%。
步骤2:第一层粉末高能球磨:按照步骤(1)所述质量百分比,将第一层粉末涉及原料基体钛、中间合金和颗粒增强体按比例加入高能球磨机,加入直径10mm和等量的直径4mm的ZrO2研磨球,球料比为1:1,通入N2,开始球磨。其中,球磨机的转速为300r/min,球磨时间为3.2h。经球磨混合得到第一层颗粒增强钛基复合材料粉末。
步骤3:模压成型:将第一层颗粒增强钛基复合材料粉末均匀铺设在模具下模板上,使用同下模板形状相同的上模板以0.5MPa压力压制成型;取出上模板,铺设第二层钛或钛合金粉末,使用模具上模板以9MPa压力压制成型,得到层状梯度Ti-Ti基复合材料生坯。
步骤4:热压烧结:将制备好的生坯置于真空热压烧结炉中,打开真空泵,将炉内空气抽出形成真空环境,当真空度达到10Pa以下时,开始加热,首先以15℃/min升温速率从室温升温至550℃,保温0.8h;通入保护性气体氩气,直至炉内压强为0.05MPa,以15℃/min再次升温至1150℃;启动压力机缓慢加压至26MPa,保温保压3.8h;随炉冷却至室温,得到层状梯度Ti-Ti基复合材料烧结体。
步骤5:烧结体热处理:将步骤(4)所得层状梯度Ti-Ti基复合材料烧结体置于热处理炉内,以12℃/min升温至980℃并保温4h,再以7℃/min降温至500℃,后随炉冷却至室温,得到层状梯度Ti-Ti基复合材料。
实施例3
一种层状梯度Ti-Ti基复合材料,包括:第一层为颗粒增强钛基复合材料,第二层为钛或者钛合金,第一层与第二层的体积之比为1:6。
一种层状梯度Ti-Ti基复合材料的制备方法,包括以下步骤:
步骤1:第一层颗粒增强钛基复合材料成分设计:所述钛基复合材料成分包括基体钛A、中间合金B和颗粒增强体C。其中:中间合金B选自Al-Mo合金和Al-Sn合金,颗粒增强体C选自TiB2作为原料。第一层颗粒增强钛基复合材料成分的重量百分比为:基体钛A::72.8%,中间合金B:Al-Mo合金2.4%,Al-Sn合金9.6%,颗粒增强体C:15.2%。
步骤2:第一层粉末高能球磨:按照步骤(1)所述质量百分比,将第一层粉末涉及原料基体钛、中间合金和颗粒增强体按比例加入高能球磨机,加入直径10mm和等量的直径4mm的ZrO2研磨球,球料比为1:1,通入N2,开始球磨。其中,球磨机的转速为260r/min,球磨时间为3.5h。经球磨混合得到第一层颗粒增强钛基复合材料粉末。
步骤3:模压成型:将第一层颗粒增强钛基复合材料粉末均匀铺设在模具下模板上,使用同下模板形状相同的上模板以0.5MPa压力压制成型;取出上模板,铺设第二层钛或钛合金粉末,使用模具上模板以8MPa压力压制成型,得到层状梯度Ti-Ti基复合材料生坯。
步骤4:热压烧结:将制备好的生坯置于真空热压烧结炉中,打开真空泵,将炉内空气抽出形成真空环境,当真空度达到10Pa以下时,开始加热,首先以15℃/min升温速率从室温升温至600℃,保温0.5h;通入保护性气体氩气,直至炉内压强为0.05MPa,以10℃/min再次升温至1000℃;启动压力机缓慢加压至28MPa,保温保压3h;随炉冷却至室温,得到层状梯度Ti-Ti基复合材料烧结体。
步骤5:烧结体热处理:将步骤(4)所得层状梯度Ti-Ti基复合材料烧结体置于热处理炉内,以18℃/min升温至950℃并保温4h,再以8℃/min降温至500℃,后随炉冷却至室温,得到层状梯度Ti-Ti基复合材料。
实施例4
一种层状梯度Ti-Ti基复合材料,包括:第一层为颗粒增强钛基复合材料,第二层为钛或者钛合金,第一层与第二层的体积之比为1:10。
一种层状梯度Ti-Ti基复合材料的制备方法,包括以下步骤:
步骤1:第一层颗粒增强钛基复合材料成分设计:所述钛基复合材料成分包括基体钛A、中间合金B和颗粒增强体C。其中:中间合金B选自Al-V合金和Al-Mo合金,颗粒增强体C选自SiC作为原料。第一层颗粒增强钛基复合材料成分的重量百分比为:基体钛A:83.8%,中间合金B:Al-V合金5%,Al-Mo合金5%,颗粒增强体C:6.2%。
步骤2:第一层粉末高能球磨:按照步骤(1)所述质量百分比,将第一层粉末涉及原料基体钛、中间合金和颗粒增强体按比例加入高能球磨机,加入直径10mm和等量的直径4mm的ZrO2研磨球,球料比为1:1,通入N2,开始球磨。其中,球磨机的转速为280r/min,球磨时间为3.3h。经球磨混合得到第一层颗粒增强钛基复合材料粉末。
步骤3:模压成型:将第一层颗粒增强钛基复合材料粉末均匀铺设在模具下模板上,使用同下模板形状相同的上模板以0.8MPa压力压制成型;取出上模板,铺设第二层钛或钛合金粉末,使用模具上模板以9MPa压力压制成型,得到层状梯度Ti-Ti基复合材料生坯。
步骤4:热压烧结:将制备好的生坯置于真空热压烧结炉中,打开真空泵,将炉内空气抽出形成真空环境,当真空度达到10Pa以下时,开始加热,首先以20℃/min升温速率从室温升温至550℃,保温1h;通入保护性气体氩气,直至炉内压强为0.03MPa,以12℃/min再次升温至1200℃;启动压力机缓慢加压至30MPa,保温保压3.5h;随炉冷却至室温,得到层状梯度Ti-Ti基复合材料烧结体。
步骤5:烧结体热处理:将步骤4所得层状梯度Ti-Ti基复合材料烧结体置于热处理炉内,以8℃/min升温至900℃并保温4h,再以10℃/min降温至500℃,后随炉冷却至室温,得到层状梯度Ti-Ti基复合材料。
对比例1
对比例1与实施例1不同的是:第一层颗粒增强钛基复合材料成分设计。本对比例中复合材料的粉末均选自钛或钛合金,其中钛合金选自Ti-6Al-4V,其余模压成型、烧结及烧结体热处理参数与实施例1相同。
对比例2
对比例2与实施例1不同的是:第一层粉末高能球磨。将步骤2称取的粉末加入到高能球磨机球磨罐中,向球磨罐中加入直径10mm和等量的直径4mm的ZrO2研磨球,球料比为1:1,装好粉末后通入N2。开始球磨,其中,球磨机的转速为200r/min,球磨时间为3h,得到第一层粉末。其余与实施例1相同。
对比例3
对比例3与实施例1不同的是:模压成型。将第一层颗粒增强钛基复合材料粉末和第二层钛或钛合金粉末按体积比例均匀铺设在模具中,其中材料下部接地面部分为第一层粉末,以9MPa压力压制成型,得到层状梯度Ti-Ti基复合材料生坯。其余与实施例1相同。
表1所示分别为本发明实施例1-4和对比例1-3中制备的层状梯度Ti-Ti基复合材料的力学性能、致密度等综合结果比较结果。
表1层状梯度Ti-Ti基复合材料的力学性能、致密度等性能参数
从表1中可以看出,实施例1-4中得到的Ti-Ti基复合材料的硬度和强度均较高,可见合金的成分设计、高能球磨、热压烧结、烧结体热处理过程是合理的,技术方案是可行的。与实施例1相比,对比例1复合材料的粉末均选自钛或钛合金,因未加入颗粒增强体,其强度和硬度很低,不能满足相关材料的使用要求。与实施例1相比,对比例2中第一层粉末高能球磨步骤,由于采用低速球磨处理,其粉末尺寸较大,表面积减小使表面能降低,从而降低了粉末的表面活性,粉末间结合强度不够,导致材料致密度、强度和硬度受到较大影响。与实施例1相比,对比例3中模压成型步骤,由于取消了第一层颗粒增强钛基复合材料粉末低压成型过程,将第一层粉末与第二层粉末按体积比例均匀铺设在模具中,经一次性高压成型,可能出现下模具凹处填充不满或致密度较低的情况,导致材料的强度和硬度明显降低。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

1.一种层状梯度Ti-Ti基复合材料,其特征在于,包括基底层和复合增强层,所述基底层和复合增强层的体积之比为(6-10):1;所述基底层为钛或钛合金层;
所述复合增强层的成分包括:基体钛、中间合金B和颗粒增强体C,其中:
所述中间合金B选自Al-V合金、Al-Mo合金、Al-Sn合金中的一种或多种;
所述颗粒增强体C选自TiB2、B4C、SiC、Al2O3中的一种或多种。
2.根据权利要求1所述的一种层状梯度Ti-Ti基复合材料,其特征在于,所述复合增强层中各成分的重量百分比为:基体钛72-84%,中间合金B 0-12%,颗粒增强体C 4-16%。
3.根据权利要求1所述的一种层状梯度Ti-Ti基复合材料,其特征在于,所述复合增强层中各成分的重量百分比为:基体钛75-80%,中间合金B 5-10%,颗粒增强体C 8-12%。
4.一种权利要求1-3任一项所述的层状梯度Ti-Ti基复合材料的制备方法,其特征在于,包括以下步骤:
(1)配料:按比例配制基体钛、中间合金B和颗粒增强体C的原料粉末,然后混合球磨,得到复合增强材料粉末;
(2)模压成型:将钛粉末或钛合金粉末、复合增强材料粉末按照比例模压成型,得到生坯;
(3)热压烧结:将生坯放入真空环境中热压烧结,得到烧结体;
(4)热处理:将烧结体进行热处理,得到层状梯度Ti-Ti基复合材料。
5.根据权利要求4所述的一种层状梯度Ti-Ti基复合材料的制备方法,其特征在于,步骤(1)所述球磨的方法为:首先将配制好的原料粉末加入到高能球磨机中,然后按照球料比为(0.8-1.2):1的比例放入研磨球,通入氮气,接着开始球磨;所述研磨球包括等量的直径为8-12mm的研磨球和直径为3-5mm的研磨球;所述高能球磨机的转速设置为250-300r/min,球磨时间为3-3.5h。
6.根据权利要求4所述的一种层状梯度Ti-Ti基复合材料的制备方法,其特征在于,步骤(2)所述模压成型的方法为:首先,将复合增强材料粉末铺设在模具的下模板上,使用同下模板形状相同的上模板以0.5-0.8MPa压力将下模板上的复合增强材料粉末压制成型;然后,取出上模板,在压制成型的复合增强材料上铺设钛粉末或钛合金粉末,接着使用上模板以8-10MPa压力压制成型,得到生坯。
7.根据权利要求4所述的一种层状梯度Ti-Ti基复合材料的制备方法,其特征在于,步骤(3)所述热轧烧结的方法为:将生坯置于真空热压烧结炉中,将炉内抽真空,当真空度达到10Pa以下时,开始加热,先以15-20℃/min的升温速率升温至500-600℃,保温0.5-1h;通入保护性气体,直至炉内压强达到0.03-0.05MPa;再以10-15℃/min的速率升温至1000-1200℃;然后加压至25-30MPa,保温保压3-4h;最后随炉冷却,得到烧结体。
8.根据权利要求4所述的一种层状梯度Ti-Ti基复合材料的制备方法,其特征在于,步骤(4)所述热处理的方法为:将烧结体置于热处理炉内,以8-18℃/min的速率升温至900-1000℃并保温3-5h;再以5-10℃/min的速率降温至450-550℃;最后随炉冷却,得到层状梯度Ti-Ti基复合材料。
9.一种采用权利要求1-3任一项所述的层状梯度Ti-Ti基复合材料制备的履带板或装甲板。
10.一种权利要求1-3任一项所述的层状梯度Ti-Ti基复合材料在航空装备、航天装备、舰船、兵器或医疗器械中的应用。
CN202311242631.XA 2023-09-25 2023-09-25 一种层状梯度Ti-Ti基复合材料及其制备方法和应用 Pending CN117532968A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311242631.XA CN117532968A (zh) 2023-09-25 2023-09-25 一种层状梯度Ti-Ti基复合材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311242631.XA CN117532968A (zh) 2023-09-25 2023-09-25 一种层状梯度Ti-Ti基复合材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN117532968A true CN117532968A (zh) 2024-02-09

Family

ID=89792548

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311242631.XA Pending CN117532968A (zh) 2023-09-25 2023-09-25 一种层状梯度Ti-Ti基复合材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN117532968A (zh)

Similar Documents

Publication Publication Date Title
CN110846538B (zh) 一种Ti2AlC增强铝基复合材料及其制备方法
CN111516314A (zh) 一种aba型三明治复合材料及其制备方法
CN114318038B (zh) 一种硼化物改性Mo2FeB2基金属陶瓷的制备方法
CN111217611B (zh) 一种氮化铝氮化硼复合陶瓷材料及其制备方法
CN110330345B (zh) 氮化硅陶瓷材料及其制备方法和陶瓷模具
CN110484795B (zh) 一种碳化硅基复合防弹陶瓷及其制备工艺
CN110759735A (zh) 一种碳化硼陶瓷复合材料及其制备方法
CN111304479A (zh) 一种VCrNbMoW难熔高熵合金制备方法
CN113620713A (zh) 一种WC/VCx硬质材料及其制备方法和应用
CN113373359A (zh) 一种层状梯度结构颗粒增强镁基复合材料及其制备方法
CN112662930A (zh) 一种高熵模具钢材料及其制备方法
CN112456987B (zh) 仿生叠层石墨烯复合陶瓷刀具及其制备方法
CN113880557A (zh) AL2O3-cBN基陶瓷刀具材料及其制备方法
CN117532968A (zh) 一种层状梯度Ti-Ti基复合材料及其制备方法和应用
CN115353395B (zh) 一种制备Ti2AlC/B4C复相陶瓷的方法
CN112481518A (zh) 一种高强高导铜钛合金材料及其制备方法
CN113199026B (zh) 硼化钛增强钛基复合材料及其制备方法
CN113444949A (zh) 一种高密度W-Ta-Nb系难熔固溶体合金及其制备方法
CN111020279B (zh) 一种高强高导铜-石墨复合材料及其制备方法
CN111961900A (zh) 一种新型钛铝基复合材料及其制备方法
CN112609106A (zh) 一种Zr-Ti-Nb合金及其制备方法
CN112453398B (zh) 一种增强镁基复合材料界面结合的方法
CN114653936B (zh) 一种双层包覆的金刚石工具烧结方法
CN114959358B (zh) 一种钛铝基金属间化合物材料及其制备方法
KR102176183B1 (ko) Pva 및 peg가 함유된 텅스텐 섬유강화 텅스텐 기지 복합재료

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination