CN112447953B - 一种金属硒硫化物纳米晶@多孔碳球材料及其制备和在锂金属电池中的应用 - Google Patents

一种金属硒硫化物纳米晶@多孔碳球材料及其制备和在锂金属电池中的应用 Download PDF

Info

Publication number
CN112447953B
CN112447953B CN201910825732.7A CN201910825732A CN112447953B CN 112447953 B CN112447953 B CN 112447953B CN 201910825732 A CN201910825732 A CN 201910825732A CN 112447953 B CN112447953 B CN 112447953B
Authority
CN
China
Prior art keywords
porous carbon
metal
lithium
selenide
carbon sphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910825732.7A
Other languages
English (en)
Other versions
CN112447953A (zh
Inventor
洪波
赖延清
高春晖
姜怀
张治安
张凯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN201910825732.7A priority Critical patent/CN112447953B/zh
Publication of CN112447953A publication Critical patent/CN112447953A/zh
Application granted granted Critical
Publication of CN112447953B publication Critical patent/CN112447953B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明属于锂金属电池材料技术领域,具体一种金属硒硫化物纳米晶@多孔碳球材料,包括带有装填腔室的多孔碳球,以及负载在多孔碳球碳壁以及装填腔室内的金属硒硫化物纳米晶,所述的金属硒硫化物纳米晶的化学式为M’(SexS1‑x)、M”2(SeyS1‑y)3中的至少一种;所述的M’为锌和/或镁;M”为铝和/或铟;0<x<1;0<y<1本发明还包含所述材料的制备,以及由所述的材料制得的复合集流体、负极以及锂金属电池。本发明创新地利用所述的金属硒硫化物纳米晶诱导锂金属选择性沉积,可以改善锂金属电池的首圈效率以及循环稳定性。

Description

一种金属硒硫化物纳米晶@多孔碳球材料及其制备和在锂金 属电池中的应用
技术领域
本发明涉及一种锂金属电池电极材料领域,具体涉及一种锂金属电池负极材料。
背景技术
金属锂电池的负极通常为金属锂单质,在电池中的作用机制是金属锂的沉积和溶解,其充放电机制为:充电:Li++e=Li;放电:Li-e=Li+;不同于常规的锂离子电池的负极发生的是锂离子在石墨负极中的嵌入和脱出。锂金属电池和锂离子电池为机制不同的全新电池体系。
金属锂负极以极高的容量和较负的电化学势而被称为二次电池中“圣杯级”负极材料,以金属锂为负极的电池是极具前景的下一代高比能电池。但是,金属锂负极在反应沉积/溶解的过程中容易长枝晶,并发生粉化,大大降低了电池的库伦效率,严重还会引起爆炸等安全问题。
金属锂负极由于无宿主沉积,理论上具有无限的体积膨胀,因而长远来看,金属锂负极要想实现产业化,一定要有沉积骨架。目前的三维骨架主要分为金属基集流体和碳基集流体,但是金属基集流体密度较大,因而质量比能量较低,严重影响大电池的能量密度,而且金属集流体成本较高、价格昂贵;碳基集流体价格低廉、制作工艺成熟,但仍存在碳基三维集流体中存在空间利用率不高的问题。
发明内容
针对现有锂金属负极材料循环过程锂金属沉积不均匀,电学性能特别是循环性能差的问题,本发明提供了一种金属硒硫化物纳米晶@多孔碳球材料,旨在选择性诱导锂均匀沉积,改善在大电流下存在锂沉积均匀性,降低体积效应和界面副反应,提升锂金属负极的循环性能。
本发明第二目的在于,提供一种所述的金属硒硫化物纳米晶@多孔碳球材料的制备方法。
本发明第三目的在于,提供了一种包含所述的金属硒硫化物纳米晶@多孔碳球材料的复合集流体。
本发明第四目的在于,提供所述的复合集流体的制备方法。
本发明第五目的在于,提供一种包含所述的金属硒硫化物纳米晶@多孔碳球材料的锂金属负极活性材料(本发明也称为锂活性材料)。
本发明第六目的在于,提供所述的锂金属负极活性材料的制备方法。
本发明第七目的在于,提供包含所述的锂金属负极活性材料的锂金属负极。
本发明第八目的在于,提供锂金属负极(本发明也称为锂负极)的制备方法。
本发明第九目的在于,提供一种包含所述锂金属负极的锂金属电池。
一种金属硒硫化物纳米晶@多孔碳球材料,包括带有装填腔室的多孔碳球 (本发明也称为碳空心球),以及负载在多孔碳球碳壁以及装填腔室内的金属硒硫化物纳米晶,所述的金属硒硫化物纳米晶的化学式为M’(SexS1-x)、M”2(SeyS1-y)3中的至少一种;
所述的M’为锌和/或镁;M”为铝和/或铟;
0<x<1;0<y<1。
由于金属锂负极的本征特性,电沉积过程中极易出现枝晶状生长,充放电过程中锂沉积的枝晶问题会造成电池库伦效率降低。为克服该技术问题,本发明创新地利用所述的金属硒硫化物纳米晶,其为硫掺杂的所述的金属的硒化物;其能够诱导锂金属选择性沉积,不仅极大改善了金属锂的沉积位置,同时也改变了金属锂的沉积形貌,此外,纳米尺度的金属硒硫化物纳米晶可以作为锂沉积的形核位点,降低锂沉积形核势垒,多且均匀分散的形核位点使得金属锂的沉积形貌更加平整,平整的锂沉积形貌不仅减少了活性锂损失,也降低了锂沉积的体积膨胀。本发明所述的材料,可以改善金属锂负极的循环性能和安全性能。
本发明中,所述的金属硒硫化物纳米晶的纳米颗粒形态以及所述的Se、S 的晶格互掺协同性是诱导锂金属选择性沉积、改善循环性能的关键。
作为优选,所述的x为0.1-0.9;进一步优选为0.1~0.5。
作为优选,所述的y为0.1-0.9;进一步优选为0.1~0.3。
本发明所述的金属硒硫化物纳米晶的负载量可根据需要进行调整,例如可以为0.01-10wt.%,优选为1-9wt.%,进一步优选为1-7wt.%。
本发明所述的多孔碳球为碳空心球,所述的碳空心球的球壁为多孔碳,例如所述的多孔碳的孔径为0.2-50nm。
研究还发现,控制多孔碳球的结构特性,例如球壁厚度、比表面积、内部腔室体积等,有助于进一步协同于所述的金属硒硫化物纳米晶,进一步改善材料的电学性能。
作为优选,所述的多孔碳球的比表面积为50-1000m2/g,优选为70-700m2/g,进一步优选为100-300m2/g。
作为优选,所述的多孔碳球的球壁厚度为1-500nm,优选为3-250nm,进一步优选为10-100nm。
作为优选,多孔碳球的内部腔室的体积占比为40-99%;优选为60-97%;进一步优选为80-95%。
本发明提供了一种所述的金属硒硫化物纳米晶@多孔碳球材料的制备方法,将M’和/或M”金属的硒化物源通过纳米化处理,制得纳米金属硒化物@多孔碳球,随后再与硫源在200-500℃的温度下进行硫化反应,在硒化物中掺入硫元素,得到所述的金属硒硫化物纳米晶@多孔碳球材料。
本发明所述的制备方法,创新地利用水热反应将所述的硒化物进行纳米化,并使其在所述的碳球的装填腔室内进行负载,再进一步配合后续的低温硫化操作,使所述的硫对硒化物进行晶格互掺,从而协同诱导锂金属的沉积,改善材料的电学性能。
本发明所述的制备方法,关键在于需要通过硫对硒化物进行掺杂这一特殊处理方式以及硫化过程的温度的控制,如此方可制得在锂金属电池中具有优异电学性能的材料。
作为优选,所述的硒化物源为硒化锌、硒化镁、硒化铝、硒化铟中的一种或几种。
优选地,水热温度为120-240℃,优选为140-220℃,进一步优选为160-210℃;水热时间为1-120h;优选为5-100h,进一步优选为10-96h。
所述的硫源为硫单质。
硫化反应采用在双温区管式炉中进行;其中,硫源的加热温度为150-400℃;纳米金属硒化物@多孔碳球所处的区域的温度为200-500℃(硫化过程的温度);升温速率为0.1-15℃/min,保温时间为10-600min,降温速率为0.1-15℃/min。
作为优选,硫化的温度为200-350℃。
本发明还提供了一种所述的金属硒硫化物纳米晶@碳空心球材料的应用,将其用于制备锂负极活性材料,或者复合集流体。
本发明还提供了一种锂金属负极复合集流体,包括集流体,以及复合在所述的集流体表面的活性层;所述的活性层包含所述的金属硒硫化物纳米晶@碳空心球材料以及粘结剂。
优选地,所述的复合集流体中,所述的活性层的厚度为1-1000μm,优选为 20-500μm,进一步优选为50-300μm;其中粘结剂占比为1-50%,优选为2-20%;
优选地,所述的平面金属集流体的材料为铜、钛、镍、铁、钴中的至少一种;其厚度优选为2-200μm;
优选地,所述的粘结剂为聚乙烯醇、聚四氟乙烯、羧甲基纤维素钠、聚乙烯、聚丙烯、聚偏氯乙烯、SBR橡胶、氟化橡胶、聚胺酯中的至少一种。
所述的粘结剂的用量可根据行业内熟知的使用习惯进行调整,例如,其占活性层的含量为1~10wt.%。
本发明还提供了一种锂金属负极活性材料,向所述的金属硒硫化物纳米晶@ 多孔碳球材料中填充锂金属,即得。
本发明还提供了一种锂金属负极,包括所述的锂金属负极复合集流体,以及填充在所述的复合集流体活性层的金属硒硫化物纳米晶@多孔碳球材料中的锂金属单质。
所述的锂金属负极有所述的复合集流体经填充锂得到。
作为优选,所述的锂金属负极,填充的金属锂量为0.4~200mAh/cm2;进一步优选为5~160mAh/cm2;更进一步优选为30~100mAh/cm2
本发明还提供了一种金属锂电池,装配有所述的金属锂电池阳极;优选地,所述的金属锂电池为锂硫电池、锂氧电池、锂碘电池、锂硒电池、锂碲电池或锂二氧化碳电池。
有益效果:
1、本发明提供了一种全新的金属硒硫化物纳米晶@多孔碳球材料,其所述的形貌以及包含的金属硒硫化物纳米晶能够诱导锂金属单质的成核,能够有效解决锂沉积不均匀、容易产生枝晶的问题,可以有效提升容量和循环性能。
2、本发明提供了一种通过水热纳米化以及低温原位硫化方法制备所述的金属硒硫化物纳米晶@多孔碳球材料,且研究发现,控制特殊的互掺方式以及硫化条件,可以制得性能优异的材料。
附图说明
图1为负载纳米粒子多孔碳球的示意图
图2为实施例1中未掺杂之前的碳球的SEM图
具体实施方式
以下实施例旨在对本发明内容做进一步详细说明;而本发明权利要求的保护范围不受实施例限制。
实施例1
将0.12g多孔碳球(比表面积100m2/g,碳壁厚度为5nm,内部腔体体积占总体积的90%)、2.38g硒化镁粉末、50mL去离子水混合后加入水热反应釜中,在180℃下保温80小时,将此材料清洗、过滤、烘干得硒化镁@多孔碳球,随后以单质硫为硫源(用量为3.2g),在双温区管式炉进行硫化掺杂,硫源温度为 200℃,样品区温度(硒化镁@多孔碳球区域的温度,也即是硫化温度)为250℃,升温速率3℃/min,保温时间30min,降温速率5℃/min,得到的即为负载硒硫化镁纳米粒子(MgS0.16Se0.84)的多孔碳球材料(MgS0.16Se0.84@多孔碳球)。随后与聚偏氟乙烯按照质量比9:1进行混合,用NMP浆化后涂覆在铜箔上(厚度为10μm),涂覆厚度为20μm。将该电极(复合铜箔集流体)作为工作电极,以金属锂片为对电极,以1M LiTFSI/DOL:DME(体积比1:1)含1wt.%LiNO3为电解液进行扣式电池组装,在3mA/cm2的电流密度下,进行充放电循环测试。测试的结果如表1所示。
对比例1
以纯铜箔为工作电极,以金属锂片为对电极,以1M LiTFSI/DOL:DME(体积比1:1)含2wt.%LiNO3为电解液组装扣式电池,在2mA/cm2的电流密度下进行充放电循环测试。测试的相关结果如表1所示。
对比例2
以纯铜箔为工作电极,以金属锂片为对电极,以1M LiTFSI/DOL:DME(体积比1:1)含2wt.%LiNO3为电解液进行软包电池组装,在2mA/cm2的电流密度下进行充放电循环测试。测试的相关结果如表1所示。
对比例3
将乙炔黑与聚偏氟乙烯按照质量比9:1进行混合,用NMP浆化后涂覆在铜箔上(厚度为10μm),涂覆厚度为20μm。将该电极作为工作电极,以金属锂片为对电极,以1M LiTFSI/DOL:DME(体积比1:1)含2wt.%LiNO3为电解液进行扣式电池组装,在2mA/cm2的电流密度下,进行充放电循环测试。测试的结果如表1所示。
对比例4
将多孔碳球(比表面积100m2/g,碳壁厚度为5nm,内部腔体体积占总体积的90%),与聚偏氟乙烯按照质量比9:1进行混合,用NMP浆化后涂覆在铜箔上(厚度为10μm),涂覆厚度为20μm。将该电极作为工作电极,以金属锂片为对电极,以1M LiTFSI/DOL:DME(体积比1:1)含2wt.%LiNO3为电解液进行扣式电池组装,在2mA/cm2的电流密度下,进行充放电循环测试。测试的结果如表1所示。
对比例5
硫化镁@多孔碳球的制备:
将0.12g多孔碳球(比表面积100m2/g,碳壁厚度为5nm,内部腔体体积占总体积的90%)、0.16g硫化镁粉末、50mL去离子水混合后加入水热反应釜中,在180℃下保温80小时,得到的即为负载硫化镁纳米粒子的多孔碳球材料。随后与聚偏氟乙烯按照质量比9:1进行混合,用NMP浆化后涂覆在铜箔上(厚度为10μm),涂覆厚度为20μm。将该电极作为工作电极,以金属锂片为对电极,以1M LiTFSI/DOL:DME(体积比1:1)含1wt.%LiNO3为电解液进行扣式电池组装,在3mA/cm2的电流密度下,进行充放电循环测试。测试的结果如表1所示。
对比例6
硒化镁@多孔碳球的制备:
将0.12g多孔碳球(比表面积100m2/g,碳壁厚度为5nm,内部腔体体积占总体积的90%)、2.38g硒化镁粉末、50mL去离子水混合后加入水热反应釜中,在180℃下保温80小时,得到的即为负载硒化镁纳米粒子的多孔碳球材料。随后与聚偏氟乙烯按照质量比9:1进行混合,用NMP浆化后涂覆在铜箔上(厚度为10μm),涂覆厚度为20μm。将该电极作为工作电极,以金属锂片为对电极,以1M LiTFSI/DOL:DME(体积比1:1)含1wt.%LiNO3为电解液进行扣式电池组装,在3mA/cm2的电流密度下,进行充放电循环测试。测试的结果如表1所示。
对比例7
硒化物对硫化物进行掺杂的案例,具体为:
将0.12g多孔碳球(比表面积100m2/g,碳壁厚度为5nm,内部腔体体积占总体积的90%)、0.16g硫化镁粉末、50mL去粒子水混合后加入水热反应釜中,在180℃下保温80小时,将此材料清洗、过滤、烘干,以单质硒为硒源,在双温区管式炉进行硒掺杂,硒源温度400℃,样品区温度为350℃,升温速率3℃/min,保温时间30min,降温速率5℃/min,得到的即为负载硒硫化镁纳米粒子的多孔碳球材料。随后与聚偏氟乙烯按照质量比9:1进行混合,用NMP浆化后涂覆在铜箔上(厚度为10μm),涂覆厚度为20μm。将该电极作为工作电极,以金属锂片为对电极,以1M LiTFSI/DOL:DME(体积比1:1)含1wt.%LiNO3为电解液进行扣式电池组装,在3mA/cm2的电流密度下,进行充放电循环测试。测试的结果如表1所示。
实施例2
全电池案例:
将0.3多孔碳球(比表面积150m2/g,碳壁厚度为25nm,内部腔体体积占总体积的78%),0.81g硒化锌粉末、60mL去离子水混合后加入水热反应釜中,在160℃下保温75小时,将此材料清洗、过滤、烘干得硒化锌@多孔碳球,以单质硫为硫源,在双温区管式炉进行硫掺杂,硫源温度为180℃,样品区温度(硫化温度)为200℃,升温速率1℃/min,保温时间550min,降温速率3℃/min,得到的即为负载硒硫化锌纳米粒子(ZnS0.81Se0.19)的多孔碳球材料(ZnS0.81Se0.19@ 多孔碳球)。随后与聚偏氟乙烯按照质量比9:1进行混合,用NMP浆化后涂覆在铜箔上(厚度为10μm),涂覆厚度为20μm。然后通过电化学沉积向空心碳球腔室内沉积50mAh/cm2的金属锂,将该电极作为负极,以硫正极(载硫量52%) 为正极,以1M LiTFSI/DOL:DME(体积比1:1)含1wt.%LiNO3为电解液(E/S=20) 进行全电池组装,在3mA/cm2的电流密度下,进行充放电循环测试。测试的结果如表1所示。
实施例3
将0.3g多孔碳球(比表面积146m2/g,碳壁厚度为12nm,内部腔体体积占总体积的81%)、2.77g硒化铟粉末、55mL去离子水混合后加入水热反应釜中,在170℃下保温72小时,将此材料清洗、过滤、烘干,在双温区管式炉进行硫掺杂,硫源温度为250℃,样品区温度为200℃,升温速率3℃/min,保温时间 450min,降温速率6℃/min,得到的即为负载硒硫化铟纳米粒子(In2(S0.74Se0.26)3) 的多孔碳球材料。随后与聚偏氟乙烯按照质量比9:1进行混合,用NMP浆化后涂覆在铜箔上(厚度为10μm),涂覆厚度为50μm。然后通过电化学沉积向多孔碳球腔室内沉积50mAh/cm2的金属锂,将该电极作为负极,以三元材料(811) 为正极,以1.0M LiPF6in EC:DMC:DEC=1:1:1Vol%with 1.0%VC为电解液 (E/S=5)进行全电池组装,在1C电流下,进行充放电循环测试。测试的结果如表1所示。
实施例4
多孔碳球(比表面积205m2/g,碳壁厚度为20nm,内部腔体体积占总体积的83%),0.15g硒化铝粉末、50mL去离子水混合后加入水热反应釜中,在140℃下保温84小时,将此材料清洗、过滤、烘干,在双温区管式炉进行硫掺杂,硫源温度为270℃,样品区温度为280℃,升温速率4℃/min,保温时间420min,降温速率10℃/min,得到的即为负载硒硫化铝纳米粒子(Al2(S0.71Se0.29)3)的多孔碳球材料。随后与聚偏氟乙烯按照质量比9:1进行混合,用NMP浆化后涂覆在铜箔上(厚度为10μm),涂覆厚度为40μm。然后通过电化学沉积向空心碳球腔室内沉积50mAh/cm2的金属锂,将该电极作为负极,以空气为正极,以1.0M LiClO4in DMSO为电解液(E/S=10)进行全电池组装,在1C的电流下,进行充放电循环测试。测试的结果如表1所示。
表1
Figure BDA0002188957670000091
对比实施例1~4和对比例1~7,本发明所涉及的一种负载金属硒硫化物纳米粒子的复合平面金属锂阳极具有最好的循环性能。
实施例5
0.3g多孔碳球(比表面积224m2/g,碳壁厚度为32nm,内部腔体体积占总体积的78%),1.64g硒化锌粉末、50mL去离子水混合后加入水热反应釜中,在 150℃下保温24小时,将此材料清洗、过滤、烘干,在双温区管式炉进行硫掺杂,硫源温度为300℃,样品区温度为320℃,升温速率5℃/min,保温时间300min,降温速率8℃/min,得到的即为负载硒硫化锌纳米粒子(ZnS0.69Se0.31)的多孔碳球材料。随后与聚偏氟乙烯按照质量比9:1进行混合,用NMP浆化后涂覆在铜箔上(厚度为10μm),涂覆厚度为40μm。将该电极作为工作电极,以金属锂片为对电极,以1M LiTFSI/DOL:DME(体积比1:1)含2wt.%LiNO3为电解液进行扣式电池组装,在4mA/cm2的电流密度下,进行充放电循环测试。测试的结果如表2所示。
实施例6
将0.3g空心碳球(比表面积150m2/g,碳壁厚度分别为30nm,内部腔体体积占总体积的90%),1.03g硒化镁粉末、50mL去离子水混合后加入水热反应釜中,在120℃下保温96小时,将此材料清洗、过滤、烘干,在双温区管式炉进行硫掺杂,硫源温度为200℃,样品区温度为250℃,升温速率2℃/min,保温时间200min,降温速率12℃/min,得到的即为负载硒硫化镁纳米粒子(ZnS0.81Se0.19) 的多孔碳球材料。随后与聚偏氟乙烯按照质量比9:1进行混合,用NMP浆化后涂覆在铜箔上(厚度为10μm),涂覆厚度为30μm。将该电极作为工作电极,以金属锂片为对电极,以1M LiTFSI/DOL:DME(体积比1:1)含1wt.%LiNO3为电解液进行扣式电池组装,在5mA/cm2的电流密度下,进行充放电循环测试。测试的结果如表2所示。
实施例7
将0.3g多孔碳球(比表面积250m2/g,碳壁厚度为85nm,内部腔体体积分别占总体积的90%)、1.42g硒化铝粉末、50mL去离子水混合后加入水热反应釜中,在160℃下保温48小时,将此材料清洗、过滤、烘干,在双温区管式炉进行硫掺杂,硫源温度为280℃,样品区温度为360℃,升温速率4℃/min,保温时间180min,降温速率8℃/min,得到的即为负载硒硫化铝纳米粒子(Al2(S0.86Se0.14)3) 的多孔碳球材料。随后与聚偏氟乙烯按照质量比9:1进行混合,用NMP浆化后涂覆在铜箔上(厚度为10μm),涂覆厚度为30μm。将该电极作为工作电极,以金属锂片为对电极,以1M LiTFSI/DOL:DME(体积比1:1)含1wt.%LiNO3为电解液进行扣式电池组装,在2mA/cm2的电流密度下,进行充放电循环测试。测试的结果如表2所示。
表2
Figure BDA0002188957670000111
实施例8
将0.3g多孔碳球(比表面积210m2/g,碳壁厚度为25nm,内部腔体体积占比88%)、1.2g硒化铟粉末、50mL去离子水混合后加入水热反应釜中,在120℃下保温84小时,将此材料清洗、过滤、烘干,在双温区管式炉进行硫掺杂,硫源温度为260℃,样品区温度为250℃,升温速率2℃/min,保温时间30min,降温速率2℃/min,得到的即为负载硒硫化铟纳米粒子(Al2(S0.86Se0.14)3)的多孔碳球材料。随后与聚偏氟乙烯按照质量比9:1进行混合,用NMP浆化后涂覆在铜箔上(厚度为10μm),涂覆厚度为40μm。将该电极作为工作电极,以金属锂片为对电极,以1M LiTFSI/DOL:DME(体积比1:1)含1wt.%LiNO3为电解液进行扣式电池组装,在8mA/cm2的电流密度下,进行充放电循环测试。测试的结果如表3所示。
实施例9
将0.3g多孔碳球(比表面积250m2/g,碳壁厚度为25nm,内部腔体体积占比92%),0.91g硒化锌粉末、50mL去离子水混合后加入水热反应釜中,在150℃下保温72小时,将此材料清洗、过滤、烘干,在双温区管式炉进行硫掺杂,硫源温度为300℃,样品区温度为200℃,升温速率8℃/min,保温时间100min,降温速率8℃/min,得到的即为负载硒硫化锌纳米粒子(ZnS0.47Se0.53)的多孔碳球材料。。随后与聚偏氟乙烯按照质量比9:1进行混合,用NMP浆化后涂覆在铜箔上(厚度为10μm),涂覆厚度为40μm。将该电极作为工作电极,以金属锂片为对电极,以1M LiTFSI/DOL:DME(体积比1:1)含1wt.%LiNO3为电解液进行扣式电池组装,在5mA/cm2的电流密度下,进行充放电循环测试。测试的结果如表3所示。
实施例10
将0.3g多孔碳球(比表面积240m2/g,碳壁厚度为24nm,内部腔体体积占比86%),3g硒化铝粉末、50mL去离子水混合后加入水热反应釜中,在140℃下保温60小时,将此材料清洗、过滤、烘干,在双温区管式炉进行硫掺杂,硫源温度为320℃,样品区温度为480℃,升温速率10℃/min,保温时间30min,降温速率12℃/min,得到的即为负载硒硫化铝纳米粒子(Al2(S0.24Se0.76)3)的多孔碳球材料。随后与聚偏氟乙烯按照质量比9:1进行混合,用NMP浆化后涂覆在铜箔上(厚度为10μm),涂覆厚度为200μm。将该电极作为工作电极,以金属锂片为对电极,以1M LiTFSI/DOL:DME(体积比1:1)含1wt.%LiNO3为电解液进行扣式电池组装,在4mA/cm2的电流密度下,进行充放电循环测试。测试的结果如表3所示。
表3
Figure BDA0002188957670000121
采用本发明所述的材料,通过所述的硫对硒化物的掺杂,得到的共掺的化合物具有良好的诱导锂沉积效果,能够改善李金书电池的首圈库伦效率以及循环容量。

Claims (28)

1.一种用于金属锂电池的金属硒硫化物纳米晶@多孔碳球材料,其特征在于,包括带有装填腔室的多孔碳球,以及负载在多孔碳球碳壁以及装填腔室内的金属硒硫化物纳米晶,所述的金属硒硫化物纳米晶的化学式为M’(SexS1-x)、M”2(SeyS1-y)3中的至少一种;
所述的M’为锌和/或镁;M”为铝和/或铟;
0<x<1;0<y<1;
所述的金属硒硫化物纳米晶@多孔碳球材料通过以下步骤制备:
利用水热反应将所述的将M’和/或M”金属的硒化物源进行纳米化,并使其在所述的带有装填腔室的多孔碳球的装填腔室内进行负载,制得纳米金属硒化物@多孔碳球,随后再与硫源在200-500℃的温度下进行硫化反应,在硒化物中掺入硫元素,得到所述的金属硒硫化物纳米晶@多孔碳球材料;
所述的多孔碳球球壁厚度为1-500nm;比表面积为50-1000m2/g;
多孔碳球的内部腔室的体积占比为40-99%。
2.如权利要求1所述的金属硒硫化物纳米晶@多孔碳球材料,其特征在于,所述的多孔碳球球壁厚度为3-250nm;比表面积为70-700m2/g。
3.如权利要求1所述的金属硒硫化物纳米晶@多孔碳球材料,其特征在于,
多孔碳球的内部腔室的体积占比为60-97%。
4.如权利要求1所述的金属硒硫化物纳米晶@多孔碳球材料,其特征在于,所述的x为0.1-0.9;所述的y为0.1-0.9。
5.一种权利要求1~4任一项所述的金属硒硫化物纳米晶@多孔碳球材料的制备方法,其特征在于,利用水热反应将所述的将M’和/或M”金属的硒化物源进行纳米化,并使其在所述的带有装填腔室的多孔碳球的装填腔室内进行负载,制得纳米金属硒化物@多孔碳球,随后再与硫源在200-500℃的温度下进行硫化反应,在硒化物中掺入硫元素,得到所述的金属硒硫化物纳米晶@多孔碳球材料。
6.如权利要求5所述的金属硒硫化物纳米晶@多孔碳球材料的制备方法,其特征在于,所述的硒化物源为硒化锌、硒化镁、硒化铝、硒化铟中的一种或几种。
7.如权利要求5所述的金属硒硫化物纳米晶@多孔碳球材料的制备方法,其特征在于,水热温度为120-240℃。
8.如权利要求5所述的金属硒硫化物纳米晶@多孔碳球材料的制备方法,其特征在于,水热温度为140-220℃。
9.如权利要求5所述的金属硒硫化物纳米晶@多孔碳球材料的制备方法,其特征在于,水热温度为160-210℃。
10.如权利要求5所述的金属硒硫化物纳米晶@多孔碳球材料的制备方法,其特征在于,水热时间为1-120h。
11.如权利要求5所述的金属硒硫化物纳米晶@多孔碳球材料的制备方法,其特征在于,水热时间为5-100h。
12.如权利要求5所述的金属硒硫化物纳米晶@多孔碳球材料的制备方法,其特征在于,水热时间为10-96h。
13.如权利要求5所述的金属硒硫化物纳米晶@多孔碳球材料的制备方法,其特征在于,所述的硫源为硫单质。
14.如权利要求5所述的金属硒硫化物纳米晶@多孔碳球材料的制备方法,其特征在于,硫化反应采用在双温区管式炉中进行;其中,硫源的加热温度为150-400℃;纳米金属硒化物@多孔碳球所处的区域的温度为200-500℃;升温速率为0.1-15℃/min,保温时间为10-600min,降温速率为0.1-15℃/min。
15.一种锂金属负极活性材料,其特征在于,向权利要求1~4任一项所述的金属硒硫化物纳米晶@多孔碳球材料,或者向权利要求5~14任一项制备方法制得的金属硒硫化物纳米晶@多孔碳球材料中填充锂金属,即得。
16.一种锂金属负极复合集流体,其特征在于,包括集流体,以及复合在所述的集流体表面的活性层;所述的活性层包含权利要求1~4任一项所述的金属硒硫化物纳米晶@多孔碳球材料,或者向权利要求5~14任一项制备方法制得的金属硒硫化物纳米晶@多孔碳球材料以及粘结剂。
17.如权利要求16所述的锂金属负极复合集流体,其特征在于,所述的活性层的厚度为1-1000μm。
18.如权利要求16所述的锂金属负极复合集流体,其特征在于,所述的活性层的厚度为20-500μm。
19.如权利要求16所述的锂金属负极复合集流体,其特征在于,所述的活性层的厚度为50-300μm。
20.如权利要求16所述的锂金属负极复合集流体,其特征在于,活性层中粘结剂占比为1-50%。
21.如权利要求16所述的锂金属负极复合集流体,其特征在于,平面金属集流体的材料为铜、钛、镍、铁、钴中的至少一种。
22.如权利要求21所述的锂金属负极复合集流体,其特征在于,所述的平面金属集流体的厚度为2-200μm。
23.如权利要求21所述的锂金属负极复合集流体,其特征在于,所述的粘结剂为聚乙烯醇、聚四氟乙烯、羧甲基纤维素钠、聚乙烯、聚丙烯、聚偏氯乙烯、SBR橡胶、氟化橡胶、聚胺酯中的至少一种。
24.一种锂金属负极,其特征在于,包括权利要求16~23任一项所述的锂金属负极复合集流体,以及填充在所述的复合集流体活性层的金属硒硫化物纳米晶@多孔碳球材料中的锂金属单质;
填充的金属锂量为0.4~200mAh/cm2
25.如权利要求24所述的锂金属负极,其特征在于,填充的金属锂量为5~160mAh/cm2
26.如权利要求24所述的锂金属负极,其特征在于,填充的金属锂量为30~100mAh/cm2
27.一种金属锂电池,其特征在于,装配有权利要求24~26任一项所述的锂金属负极。
28.如权利要求27所述的金属锂电池,其特征在于,所述的金属锂电池为锂硫电池、锂氧电池、锂碘电池、锂硒电池、锂碲电池或锂二氧化碳电池。
CN201910825732.7A 2019-09-03 2019-09-03 一种金属硒硫化物纳米晶@多孔碳球材料及其制备和在锂金属电池中的应用 Active CN112447953B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910825732.7A CN112447953B (zh) 2019-09-03 2019-09-03 一种金属硒硫化物纳米晶@多孔碳球材料及其制备和在锂金属电池中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910825732.7A CN112447953B (zh) 2019-09-03 2019-09-03 一种金属硒硫化物纳米晶@多孔碳球材料及其制备和在锂金属电池中的应用

Publications (2)

Publication Number Publication Date
CN112447953A CN112447953A (zh) 2021-03-05
CN112447953B true CN112447953B (zh) 2022-03-18

Family

ID=74734385

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910825732.7A Active CN112447953B (zh) 2019-09-03 2019-09-03 一种金属硒硫化物纳米晶@多孔碳球材料及其制备和在锂金属电池中的应用

Country Status (1)

Country Link
CN (1) CN112447953B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113620258B (zh) * 2021-07-14 2022-11-01 江苏晨牌邦德药业有限公司 一种洗发水去屑止痒洗护试剂添加剂
CN115084509A (zh) * 2022-06-27 2022-09-20 山东大学 钾离子电池用硒硫化铟/碳负极材料的制备方法及应用
WO2024000102A1 (zh) * 2022-06-27 2024-01-04 宁德时代新能源科技股份有限公司 负极极片及其制备方法、二次电池、电池模块、电池包和用电装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105624643A (zh) * 2016-01-06 2016-06-01 天津大学 一种大面积硒掺杂二硫化钼薄膜材料的制备方法
CN105932252A (zh) * 2016-06-03 2016-09-07 东华大学 一种硫硒化钼/碳纳米管复合材料及其制备和应用
CN106654221A (zh) * 2017-01-14 2017-05-10 复旦大学 用于锂离子电池负极的三维多孔碳包覆硒化锌材料及其制备方法
CN107204437A (zh) * 2016-03-16 2017-09-26 华中科技大学 一种锂硒电池正极材料的制备方法
CN108292759A (zh) * 2015-09-14 2018-07-17 纳米技术仪器公司 具有高体积能量密度和重量能量密度的碱金属或碱离子电池
CN109616634A (zh) * 2018-11-30 2019-04-12 南昌大学 一种基于杂原子化硫属固溶体TexSeySz的锂二次电池正极材料及制备方法
CN109652762A (zh) * 2018-11-29 2019-04-19 华中科技大学 一种锑硫硒合金薄膜的制备方法
CN109935791A (zh) * 2017-12-15 2019-06-25 北京大学 碳球包裹的硒化钴纳米复合材料及其制备方法和应用
CN110021757A (zh) * 2019-03-14 2019-07-16 天津大学 一种生长于泡沫镍表面的硫硒化镍薄膜包裹的纳米棒材料的制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108292759A (zh) * 2015-09-14 2018-07-17 纳米技术仪器公司 具有高体积能量密度和重量能量密度的碱金属或碱离子电池
CN105624643A (zh) * 2016-01-06 2016-06-01 天津大学 一种大面积硒掺杂二硫化钼薄膜材料的制备方法
CN107204437A (zh) * 2016-03-16 2017-09-26 华中科技大学 一种锂硒电池正极材料的制备方法
CN105932252A (zh) * 2016-06-03 2016-09-07 东华大学 一种硫硒化钼/碳纳米管复合材料及其制备和应用
CN106654221A (zh) * 2017-01-14 2017-05-10 复旦大学 用于锂离子电池负极的三维多孔碳包覆硒化锌材料及其制备方法
CN109935791A (zh) * 2017-12-15 2019-06-25 北京大学 碳球包裹的硒化钴纳米复合材料及其制备方法和应用
CN109652762A (zh) * 2018-11-29 2019-04-19 华中科技大学 一种锑硫硒合金薄膜的制备方法
CN109616634A (zh) * 2018-11-30 2019-04-12 南昌大学 一种基于杂原子化硫属固溶体TexSeySz的锂二次电池正极材料及制备方法
CN110021757A (zh) * 2019-03-14 2019-07-16 天津大学 一种生长于泡沫镍表面的硫硒化镍薄膜包裹的纳米棒材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Porous hollow carbon spheres decorated withmolybdenum diselenide nanosheets as anodes for highly reversible lithium andsodium storage;Xing Yang, et al.;《Nanoscale》;20150531(第7期);第10198-10201页和Supporting Information第1-2页 *

Also Published As

Publication number Publication date
CN112447953A (zh) 2021-03-05

Similar Documents

Publication Publication Date Title
KR101309152B1 (ko) 리튬 이차 전지용 음극 활물질 및 이를 포함하는 리튬 이차 전지
KR101126202B1 (ko) 리튬 이차 전지용 음극 활물질 및 이를 포함하는 리튬 이차 전지
KR101030041B1 (ko) 리튬 이차 전지용 음극 활물질 및 이를 포함하는 리튬 이차 전지
KR101256067B1 (ko) 리튬 이차 전지용 음극, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
KR101084076B1 (ko) 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지
CN112151799B (zh) 一种三维多孔互联骨架锂金属电池负极材料及其制备方法
KR101702980B1 (ko) 리튬 이차 전지용 음극 활물질 및 이를 포함하는 리튬 이차 전지
JP5669143B2 (ja) リチウム2次電池用陰極活物質およびこれを含むリチウム2次電池
CN107848809B (zh) 多孔硅颗粒及生产硅颗粒的方法
CN112447953B (zh) 一种金属硒硫化物纳米晶@多孔碳球材料及其制备和在锂金属电池中的应用
CN105914369B (zh) 一种纳米级碳包覆硫化锂复合材料及其制备方法和应用
KR20160149862A (ko) 실리콘 산화물-탄소-고분자 복합체, 및 이를 포함하는 음극 활물질
KR20100073506A (ko) 음극 활물질, 이를 포함하는 음극, 음극의 제조 방법 및 리튬 전지
KR20100062297A (ko) 음극 활물질, 이를 포함하는 음극, 음극의 제조 방법 및 리튬 전지
CN102386382A (zh) Cmk-5型介孔炭-纳米无机物复合材料、制法及应用
CN103346304A (zh) 一种用于锂二次电池负极的锡碳复合材料及其制备方法
CN108281627B (zh) 一种锂离子电池用锗碳复合负极材料及其制备方法
CN104716307A (zh) 负极活性物质、其制备方法以及包含它的可再充电锂电池
CN108767203B (zh) 一种二氧化钛纳米管-石墨烯-硫复合材料及其制备方法和应用
KR20120092918A (ko) 리튬 이차 전지용 고분자 복합 전해질 및 이를 포함하는 리튬 이차 전지
KR101692330B1 (ko) 리튬 이차 전지용 음극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
CN113113586B (zh) 一种锂离子电池用正极及其制备方法和应用
CN108110231B (zh) 一种碳包覆Fe4N纳米复合材料、制备方法及其应用
Liu et al. SnO 2 nanoparticles anchored on graphene oxide as advanced anode materials for high-performance lithium-ion batteries
CN113410459A (zh) 一种内嵌MoSx纳米片的三维有序大孔类石墨烯炭材料、制备与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant