CN112439444A - 一种负载型多级孔固体酸双功能催化剂的制备方法及应用 - Google Patents

一种负载型多级孔固体酸双功能催化剂的制备方法及应用 Download PDF

Info

Publication number
CN112439444A
CN112439444A CN202011397362.0A CN202011397362A CN112439444A CN 112439444 A CN112439444 A CN 112439444A CN 202011397362 A CN202011397362 A CN 202011397362A CN 112439444 A CN112439444 A CN 112439444A
Authority
CN
China
Prior art keywords
molecular sieve
zeolite molecular
solid acid
bifunctional catalyst
precipitate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011397362.0A
Other languages
English (en)
Other versions
CN112439444B (zh
Inventor
亢玉红
张啸杞
刘光辉
李彦军
高勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yulin University
Original Assignee
Yulin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yulin University filed Critical Yulin University
Priority to CN202011397362.0A priority Critical patent/CN112439444B/zh
Publication of CN112439444A publication Critical patent/CN112439444A/zh
Application granted granted Critical
Publication of CN112439444B publication Critical patent/CN112439444B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • B01J29/14Iron group metals or copper
    • B01J29/146Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • B01J29/12Noble metals
    • B01J29/126Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/16Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J29/166Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/617500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/30Ion-exchange
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • C07C1/22Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms by reduction
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/12Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/16After treatment, characterised by the effect to be obtained to increase the Si/Al ratio; Dealumination
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • C07C2529/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • C07C2529/12Noble metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • C07C2529/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • C07C2529/14Iron group metals or copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • C07C2529/16Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2602/00Systems containing two condensed rings
    • C07C2602/02Systems containing two condensed rings the rings having only two atoms in common
    • C07C2602/14All rings being cycloaliphatic
    • C07C2602/26All rings being cycloaliphatic the ring system containing ten carbon atoms
    • C07C2602/28Hydrogenated naphthalenes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明提出了一种负载型多级孔固体酸双功能催化剂的制备方法,包括NaY沸石分子筛经梯度离子交换得到HY沸石分子筛;HY沸石分子筛经高温蒸汽脱铝获得超稳Y沸石分子筛;超稳Y沸石分子筛经NH4F和碱处理得到多级孔沸石分子筛;利用改性沉积‑沉淀法将过渡金属分散在多级孔沸石分子筛的表面和孔道织构上,经空气预氧化和H2气氛还原,获得负载型多级孔固体酸双功能催化剂。还提出了一种负载型多级孔固体酸双功能催化剂及其应用,应用于低阶煤可溶物的高效加氢转化,其中低阶煤可溶物中的芳烃、含氧化合物和含氮化合物被全部转化为链烷烃、环烷烃和脱氢芳烃,其中加氢转化后族组分中链烷烃和环烷烃的总量为76.8wt%。

Description

一种负载型多级孔固体酸双功能催化剂的制备方法及应用
技术领域
本发明涉及催化剂技术领域,特别涉及一种负载型多级孔固体酸双功能催化剂的制备方法及应用。
背景技术
随着人口的增长和经济社会的快速发展,清洁能源的需求量日益紧迫,特别是中国处于快速发展的当下,资源整体储量不足,人均资源占有量更是严重不足,随着逐年攀升的石油对外依存度,给能源的战略安全带来了巨大的挑战。通过对低阶煤(主要是次烟煤和褐煤)高值高效转化,获取高品质的清洁能源和高值有机精细化学品,是一种重要的工艺路径。
基于上述能源现状和市场需求的实际,发展温和条件下煤中大分子有机化合物的催化加氢转化,选择性断裂>C-X(X代表O、NH和S)桥键并脱除杂原子,同时高效氢化芳环是低阶煤清洁高效转化的技术关键。基于此,开发具有多级孔固体酸催化功能的双功能催化剂是在温和条件下实现低阶煤清洁高效转化的关键技术。
发明内容
为解决上述技术问题,本发明提出一种负载型多级孔固体酸双功能催化剂的制备方法及应用。
本发明的技术方案是这样实现的:
一种负载型多级孔固体酸双功能催化剂的制备方法,包括:
NaY沸石分子筛经梯度离子交换得到HY沸石分子筛;
HY沸石分子筛经高温蒸汽脱铝获得超稳Y沸石分子筛;
超稳Y沸石分子筛经NH4F和碱处理得到多级孔沸石分子筛;
利用改性沉积-沉淀法将过渡金属分散在多级孔沸石分子筛的表面和孔道织构上,经空气预氧化和H2气氛还原,获得负载型多级孔固体酸双功能催化剂。
可选地,具体包括以下步骤:
a、制备HY沸石分子筛
a1、将NaY沸石分子筛加入到0.5mol/L的NH4NO3溶液中,在40℃条件下进行三次离子交换后,离心沉淀获得固体沉淀物;
a2、将步骤a1制得的固体沉淀物在100℃条件下干燥6h,将干燥后的固体粉末置于空气气氛的马弗炉中焙烧,制得具有固体酸酸性的HY沸石分子筛;
b、制备超稳Y沸石分子筛
b1、将步骤a制得的HY沸石分子筛置于气氛管式炉,在He气氛环境下适量通入水蒸气,控制升温速率2-3℃/min,升温至600-700℃,维持3-5h,HY沸石分子筛经骨架脱铝、硅迁移方式制得超稳Y沸石分子筛;
c、制备多级孔沸石分子筛
c1、取步骤b制得的超稳Y沸石分子筛,置于0.65mol/L的NH4F溶液中,在90℃的条件下恒定转速搅拌,后将悬浮液离心得到沉淀物;
c2、将步骤c1制得的沉淀物在100℃条件下干燥10h,将干燥的固体沉淀物置于通水蒸气的He气氛管式炉焙烧,得固体粉末;
c3、将步骤c2焙烧后的固体粉末,加入到0.45mol/L的NaOH溶液中,在70℃条件下密闭搅拌,得沉淀物;
c4、将步骤c3制得的沉淀物置于0.5mol/L的NH4NO3溶液中,所述沉淀物与NH4NO3溶液的固液质量比例为1:20,40℃同样的条件下,通过三次离子交换,离心得沉淀物;
c5、将步骤c4制得的沉淀物在100℃条件下干燥6h,后置于气氛管式炉通空气制得多级孔沸石分子筛;
d、制备负载型多级孔固体酸双功能催化剂
d1、以步骤c制得的多级孔沸石分子筛为载体置于容器内,加入去离子水,再缓慢加入双过渡金属盐,以恒定转速搅拌均匀,升温至50-60℃,密闭维持搅拌30-60min;
d2、配置3wt%的氨水逐滴加入d1所述容器内,调整pH为9-11,继续搅拌30-60min,维持温度为50-60℃,倒掉上清液得沉淀物,后经过滤、干燥得负载型多级孔固体酸双功能催化剂前体;
d3、将步骤d2制得的负载型多级孔固体酸双功能催化剂前体置于H2气氛还原炉中,控制升温速率2-3℃/min,升温至400-500℃,恒温3-5h,制备得到负载型多级孔固体酸双功能催化剂。
可选地,步骤a1中,所述NaY沸石分子筛与NH4NO3溶液的固液质量比例为1:10,每次离子交换时间为30min。
可选地,步骤a2中,焙烧温度为550℃,控制升温速率为5℃/min,维持2-3h。
可选地,步骤c1中,超稳Y沸石分子筛USY与NH4F溶液固液质量比例为1:10,搅拌速率为30-50rpm,搅拌时间为4-5h;步骤c3中,固体粉末与NaOH溶液固液质量比例为1:10,搅拌速率为30-50rpm,搅拌时间为4-5h。
可选地,步骤c2中,在He气氛围内通入水蒸气加热,控制升温速率为5℃/min,升温至600-700℃,维持3-5h。
可选地,步骤c5中,焙烧温度为550℃,控制升温速率为5℃/min,维持2-3h。
可选地,所述双过渡金属盐为Pd、Pt、Mo、Co和Ni中的一种或几种金属盐,且金属负载量为3-20wt%。
本发明还提供了一种利用上述方法制得的负载型多级孔固体酸双功能催化剂。
本发明还提供了上述催化剂的应用,用于加氢转化过程中>C-X桥键选择性断裂和脱除杂原子,以及高效氢化芳环。
本发明的有益效果是:
1、本发明超稳Y沸石分子筛USY前体是以NaY沸石分子筛经水蒸气脱铝产生制得,骨架结构稳定,具有较高BET比表面积、较强水热稳定性和优异得可接近酸性位点。
2、本发明以超稳Y沸石分子筛USY为前体,经NH4F和碱处理组合改性处理,高效脱除骨架少量Si和大量Al物种,骨架Si/Al比显著提高,形成多级孔骨架结构,孔道结构更加合理,有机大分子可接近酸性位点分布更加均匀。
3、本发明以多级孔沸石分子筛HPZY作为载体,有序负载呈纳米颗粒分布的双金属,制得高活性负载型双金属固体酸双功能催化剂,在多级孔固体酸性载体和双金属协同作用下,可实现低阶煤有机大分子结构中>C-X桥键的选择性断裂,深度脱除杂原子,且能保持催化剂不中毒,同时在低温反应条件下高效氢化芳环,获得清洁液体燃料,进而实现低阶煤向清洁液体然俩转变的目的。
4、本发明制得的负载型多级孔固体酸双功能催化剂,应用于低阶煤可溶物的高效加氢转化,其中低阶煤可溶物中的芳烃、含氧化合物和含氮化合物被全部转化为链烷烃、环烷烃和脱氢芳烃,其中加氢转化后族组分中链烷烃和环烷烃的总量为76.8wt%。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例1双功能催化剂10Ni-3Co/HPZY的N2-吸附-脱附等温曲线图以及孔径分布图;
图2为本发明实施例1双功能催化剂10Ni-3Co/HPZY催化加氢转化低阶煤醇解部分获得清洁液体燃料族组分分布图。
具体实施方式
为使本领域具有普通知识的人员可了解本发明的特点及效果,以下谨就说明书及申请专利范围中提及的术语及用语进行一般性的说明及定义。除非另有指明,否则文中使用的所有技术及科学上的字词,皆具有本领域技术人员对于本发明所了解的通常意义,当有冲突情形时,应以本说明书的定义为准。
在本文中,用语“包含”、“包括”、“具有”、“含有”或其他任何类似用语均属于开放性连接词(open-ended transitional phrase),其意欲涵盖非排他性的包括物。举例而言,含有复数要素的一组合物或制品并不仅限于本文所列出的这些要素而已,而是还可包括未明确列出但却是该组合物或制品通常固有的其他要素。除此之外,除非有相反的明确说明,否则用语“或”是指涵盖性的“或”,而不是指排他性的“或”。例如,以下任何一种情况均满足条件“A或B”:A为真(或存在)且B为伪(或不存在)、A为伪(或不存在)且B为真(或存在)、A和B均为真(或存在)。此外,在本文中,用语“包含”、“包括”、“具有”、“含有”的解读应视为已具体公开并同时涵盖“由…所组成”及“实质上由…所组成”等封闭式或半封闭式连接词。
在本文中,所有以数值范围或百分比范围形式界定的特征或条件仅是为了简洁及方便。据此,数值范围或百分比范围的描述应视为已涵盖且具体公开所有可能的次级范围及范围内的个别数值,特别是整数数值。举例而言,“1至8”的范围描述应视为已经具体公开如1至7、2至8、2至6、3至6、4至8、3至8等等所有次级范围,特别是由所有整数数值所界定的次级范围,且应视为已经具体公开范围内如1、2、3、4、5、6、7、8等个别数值。除非另有指明,否则前述解释方法适用于本发明全文的所有内容,不论范围广泛与否。
若数量或其他数值或参数是以范围、较佳范围或一系列上限与下限表示,则其应理解成是本文已特定公开了由任一对该范围的上限或较佳值与该范围的下限或较佳值构成的所有范围,不论这些范围是否有分别公开。此外,本文中若提到数值的范围时,除非另有说明,否则该范围应包括其端点以及范围内的所有整数与分数。
在本文中,在可实现发明目的的前提下,数值应理解成具有该数值有效位数的精确度。举例来说,数字40.0则应理解成涵盖从39.50至40.49的范围。在本文中,对于使用马库什群组(Markush group)或选项式用语以描述本发明特征或实例的情形,本领域技术人员应了解马库什群组或选项列表内所有要素的次级群组或任何个别要素亦可用于描述本发明。举例而言,若X描述成“选自于由X1、X2及X3所组成的群组”,亦表示已经完全描述出X为X1的主张与X为X1及/或X2的主张。再者,对于使用马库什群组或选项式用语以描述本发明的特征或实例的情况,本领域技术人员应了解马库什群组或选项列表内所有要素的次级群组或个别要素的任何组合亦可用于描述本发明。据此,举例而言,若X描述成“选自于由X1、X2及X3所组成的群组”,且Y描述成“选自于由Y1、Y2及Y3所组成的群组”,则表示已经完全描述出X为X1或X2或X3而Y为Y1或Y2或Y3的主张。
以下具体实施方式本质上仅是例示性,且并不欲限制本发明及其用途。此外,本文并不受前述现有技术或发明内容或以下具体实施方式或实施例中所描述的任何理论的限制。
实施例1
一种负载型多级孔固体酸双功能催化剂的制备方法,具体包括以下步骤:
1、将NaY沸石分子筛加入到0.5mol/L的NH4NO3溶液中,其中NaY沸石分子筛与NH4NO3溶液的固液质量比例为1:10,在40℃条件下进行三次离子交换后,每次离子交换时间为30min,离心沉淀获得固体沉淀物;
2、将上述沉淀物在100℃条件下干燥6h,后将干燥后的固体粉末置于空气气氛的马弗炉中于550℃焙烧,升温速率5℃/min,焙烧2h,制得具有固体酸酸性的HY沸石分子筛;
3、将步骤2制得的HY沸石分子筛置于气氛管式炉,在He气氛环境下适量通入水蒸气,控制升温速率2-3℃/min,升温至600-700℃,维持3-5h,HY沸石分子筛经骨架脱铝、硅迁移的方式制得超稳Y沸石分子筛USY;
4、将步骤3制得的超稳Y沸石分子筛USY,置于0.65mol/L的NH4F溶液中,超稳Y沸石分子筛USY与NH4F溶液固液质量比例为1:10,在90℃的条件下恒定转速搅拌,后将悬浮液离心得到沉淀物,搅拌速率为30-50rpm,搅拌时间为4-5h;
5、将步骤4制得的沉淀物于100℃条件下干燥10h,将干燥的固体沉淀物置于通水蒸气的He气氛管式炉焙烧,得固体粉末,在He气氛围内通入水蒸气加热,控制升温速率为5℃/min,升温至600-700℃,维持3-5h;
6、将步骤5焙烧后的固体粉末,加入到0.45mol/L的NaOH溶液中,固体粉末与NaOH溶液固液质量比例为1:10,在70℃条件下密闭搅拌,搅拌速率为30rmp,搅拌5h,得固体沉淀物;
7、将步骤6制得的固体沉淀物加入到0.5mol/L NH4NO3溶液中,所述沉淀物与NH4NO3溶液的固液质量比例为1:20,40℃条件下进行三次离子交换,得固体沉淀物;
8、将步骤7制得的沉淀物在100℃条件下干燥6h,后置于气氛管式炉通空气被烧,焙烧温度为550℃,升温速率5℃/min,焙烧时间为2h,制得具有孔道结构优异、BET比表面积较高、水热稳定性较强和酸催化大分子物质活性突出的多级孔沸石分子筛HPZY;
9、取质量为2g HPZY,置于去离子水中,分别加入1.02g六水合硝酸镍和0.3g六水合硝酸钴,搅拌均匀,升温至55℃,密闭搅拌60min;
10、将3wt%的氨水逐滴加入到上述步骤9的混合溶液中,调整pH为9-11,继续搅拌60min,维持温度为55℃;
11、将上述步骤10的混合液过滤获得固体沉淀物,置于80℃下干燥6h,烘干后待用;
12、将烘干的固体沉淀物置于H2气氛还原炉,在H2气氛下,升温速率2℃/min,升温至450℃,维持5h,即得负载型多级孔固体酸双功能催化剂10Ni-3Co/HPZY,N2-吸附-脱附等温曲线图以及孔径分布图如图1所示,10Ni-3Co/HPZY的BET比表面积为547.9m2g-1,中孔比表面积为229.4m2g-1,中孔孔容为0.13m3g-1,Ni和Co的实际负载量分别为9.8wt%和2.9wt%。
实施例2
与实施例1不同之处在于:六水合硝酸钴的加入量为0.508g,制得Ni负载量为5%的负载型多级孔固体酸双功能催化剂5Ni/HPZY。
实施例3
与实施例1不同之处在于:六水合硝酸镍的加入量为1.32g,制得Ni负载量为13%的负载型多级孔固体酸双功能催化剂13Ni/HPZY。
实施例4
与实施例1不同之处在于:六水合硝酸镍的加入量为2.03g,制得Ni负载量为20%的负载型多级孔固体酸双功能催化剂20Ni/HPZY。
实施例5
与实施例1不同之处在于:六水合硝酸钴的加入量为1.32g,制得Co负载量为13%的负载型多级孔固体酸双功能催化剂13Co/HPZY。
实施例6
与实施例1不同之处在于:六水合硝酸镍的加入量为0.3g,六水合硝酸钴加入量为1.02g,制得Ni负载量为3%,Co负载量为10%的负载型多级孔固体酸双功能催化剂3Ni-10Co/HPZY。
实施例7
与实施例1不同之处在于:六水合硝酸镍的加入量为0.3g,四水合钼酸铵加入量为0.51g g,制得Ni负载量为5%,Co负载量为5%的负载型多级孔固体酸双功能催化剂5Ni-5Co/HPZY。
实施例8
与实施例1不同之处在于:六水合硝酸镍的加入量为1.32g,四水合钼酸铵加入量为0.11g g,制得Ni负载量为10%,Mo负载量为3%的负载型多级孔固体酸双功能催化剂10Ni-3Mo/HPZY。
实施例9
与实施例1不同之处在于:氯化钯的加入量为0.1g,制得Pd负载量为3%的负载型多级孔固体酸双功能催化剂3Pd/HPZY。
实施例10
与实施例1不同之处在于:氯化铂的加入量为0.11g,制得Pt负载量为3%的负载型多级孔固体酸双功能催化剂3Pt/HPZY。
应用例1
将实施例1-10制得的催化剂应用于二萘基醚催化加氢转化反应。
反应条件:在程序式温控高压机械搅拌微型反应釜评价催化剂。
以二萘基醚为反应底物,反应条件为起始氢压为4Mpa,反应温度为150℃,反应时间为2h,取反应底物为100μL,溶剂选择正己烷为溶剂,加入量为20mL,催化剂的加入量为0.05g。
以此来评价催化剂的催化加氢能力与断裂>C-O-桥键的能力。
加氢产物分析方法:采用Agilent7890/5973四极杆气相色谱/质谱联用仪对催化加氢转化产物的组成进行分析,色谱柱为60m×0.25mm×0.25μm的HP-5MS毛细管交联柱。
在不同时间下,实施1-10制得的10种双功能催化剂,在相同的条件下件下,对煤的模型化合物二萘基醚进行催化加氢转化,获得二萘基醚的转化率和产物的摩尔转化率如表1所示。
表1二萘基醚的转化率和产物的摩尔转化率表
Figure BDA0002815680750000081
Figure BDA0002815680750000091
表1可以看出,负载不同量的金属Ni和Co,在模型化合物二萘基醚的催化加氢反应中,10Ni-3Co/HPZ更具有优势;从应用例1中可以看出10Ni-3Co/HPZY、10Ni-3Co/HPZY、3Pd/HPZY和3Pt/HPZY在催化加氢转化反应中可以高效地裂断>C-O-桥键并脱除含O杂原子,同时饱和萘环获得全氢萘,从价格来讲,10Ni-3Co/HPZY和10Ni-3Co/HPZY更具有竞争优势。
应用例2
将实施例1制得的催化剂应用于低阶煤醇解组分的催化加氢转化反应。
反应条件:在程序式温控高压机械搅拌微型反应釜评价催化剂。
以低阶煤醇解组分为反应底物,反应条件为起始氢压为4Mpa,反应温度为150℃,反应时间为12h,取反应底物为0.1g,溶剂选择正己烷为溶剂,加入量为20mL,催化剂的加入量为0.1g。
以此来评价催化剂的催化加氢能力与断裂>C-X桥键的能力。
加氢产物分析方法:采用Agilent7890/5973四极杆气相色谱/质谱联用仪对催化加氢转化产物的组成进行分析,色谱柱为60m×0.25mm×0.25μm的HP-5MS毛细管交联柱。
实施实例1制得的双功能催化剂,采用GC/MS定量分析低阶煤醇解组分和清洁液体燃料的族组分,获得各族组分的相对含量如表2所示。
表2低阶煤醇解组分和清洁液体燃料的族组分表
Figure BDA0002815680750000092
实例2表明,10Ni-3Co/HPZY在复杂的低阶煤醇解组分反应体系中,效果良好,且相比于3Pd/HPZY和3Pt/HPZY具有更加明显的价格优势;除此之外,如图2所示,通过低温热溶处理低阶煤,获得可溶组分;低阶煤醇解组分含有丰富的缩合芳环和不同种类的杂原子,在温和条件下,通过10Ni-3Co/HPZY催化加氢转化获得富含烷烃的液体燃料,对清洁液体燃料进行组分分析,发现杂原子被彻底脱除,芳环被高度饱和,说明以10Ni-3Co/HPZY为催化剂,是转化煤基可溶组分获得超清洁液体燃料的可行性方法。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种负载型多级孔固体酸双功能催化剂的制备方法,其特征在于,包括:
NaY沸石分子筛经梯度离子交换得到HY沸石分子筛;
HY沸石分子筛经高温蒸汽脱铝获得超稳Y沸石分子筛;
超稳Y沸石分子筛经NH4F和碱处理得到多级孔沸石分子筛;
利用改性沉积-沉淀法将过渡金属分散在多级孔沸石分子筛的表面和孔道织构上,经空气预氧化和H2气氛还原,获得负载型多级孔固体酸双功能催化剂。
2.根据权利要求1所述的一种负载型多级孔固体酸双功能催化剂的制备方法,其特征在于,
具体包括以下步骤:
a、制备HY沸石分子筛
a1、将NaY沸石分子筛加入到0.5mol/L的NH4NO3溶液中,在40℃条件下进行三次离子交换后,离心沉淀获得固体沉淀物;
a2、将步骤a1制得的固体沉淀物在100℃条件下干燥6h,将干燥后的固体粉末置于空气气氛的马弗炉中焙烧,制得具有固体酸酸性的HY沸石分子筛;
b、制备超稳Y沸石分子筛
b1、将步骤a制得的HY沸石分子筛置于气氛管式炉,在He气氛环境下适量通入水蒸气,控制升温速率2-3℃/min,升温至600-700℃,维持3-5h,HY沸石分子筛经骨架脱铝、硅迁移方式制得超稳Y沸石分子筛;
c、制备多级孔沸石分子筛
c1、取步骤b制得的超稳Y沸石分子筛,置于0.65mol/L的NH4F溶液中,在90℃的条件下恒定转速搅拌,后将悬浮液离心得到沉淀物;
c2、将步骤c1制得的沉淀物在100℃条件下干燥10h,将干燥的固体沉淀物置于通水蒸气的He气氛管式炉焙烧,得固体粉末;
c3、将步骤c2焙烧后的固体粉末,加入到0.45mol/L的NaOH溶液中,在70℃条件下密闭搅拌,得沉淀物;
c4、将步骤c3制得的沉淀物置于0.5mol/L的NH4NO3溶液中,所述沉淀物与NH4NO3溶液的固液质量比例为1:20,40℃同样的条件下,通过三次离子交换,离心得沉淀物;
c5、将步骤c4制得的沉淀物在100℃条件下干燥6h,后置于气氛管式炉通空气制得多级孔沸石分子筛;
d、制备负载型多级孔固体酸双功能催化剂
d1、以步骤c制得的多级孔沸石分子筛为载体置于容器内,加入去离子水,再加入双过渡金属盐,以恒定转速搅拌均匀,升温至50-60℃,密闭维持搅拌30-60min;
d2、配置3wt%的氨水逐滴加入d1所述容器内,调整pH为9-11,继续搅拌30-60min,维持温度为50-60℃,倒掉上清液得沉淀物,后经过滤、干燥得负载型多级孔固体酸双功能催化剂前体;
d3、将步骤d2制得的负载型多级孔固体酸双功能催化剂前体置于H2气氛还原炉中,控制升温速率2-3℃/min,升温至400-500℃,恒温3-5h,制备得到负载型多级孔固体酸双功能催化剂。
3.根据权利要求2所述的一种负载型多级孔固体酸双功能催化剂的制备方法,其特征在于,
步骤a1中,所述NaY沸石分子筛与NH4NO3溶液的固液质量比例为1:10,每次离子交换时间为30min。
4.根据权利要求2所述的一种负载型多级孔固体酸双功能催化剂的制备方法,其特征在于,
步骤a2中,焙烧温度为550℃,控制升温速率为5℃/min,维持2-3h。
5.根据权利要求2所述的一种负载型多级孔固体酸双功能催化剂的制备方法,其特征在于,
步骤c1中,超稳Y沸石分子筛与NH4F溶液固液质量比例为1:10,搅拌速率为30-50rpm,搅拌时间为4-5h;步骤c3中,固体粉末与NaOH溶液固液质量比例为1:10,搅拌速率为30-50rpm,搅拌时间为4-5h。
6.根据权利要求2所述的一种负载型多级孔固体酸双功能催化剂的制备方法,其特征在于,
步骤c2中,在He气氛围内通入水蒸气加热,控制升温速率为5℃/min,升温至600-700℃,维持3-5h。
7.根据权利要求2所述的一种负载型多级孔固体酸双功能催化剂的制备方法,其特征在于,
步骤c5中,焙烧温度为550℃,控制升温速率为5℃/min,维持2-3h。
8.根据权利要求2所述的一种负载型多级孔固体酸双功能催化剂的制备方法,其特征在于,
所述双过渡金属盐为Pd、Pt、Mo、Co和Ni中的一种或几种金属盐,且金属负载量为3-20wt%。
9.根据权利要求1-8任一所述的方法制得的负载型多级孔固体酸双功能催化剂。
10.如权利要求9所述催化剂的应用,其特征在于,
所述催化剂用于催化加氢转化过程中>C-X桥键选择性断裂,以及氢化芳环。
CN202011397362.0A 2020-12-03 2020-12-03 一种负载型多级孔固体酸双功能催化剂的制备方法及应用 Active CN112439444B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011397362.0A CN112439444B (zh) 2020-12-03 2020-12-03 一种负载型多级孔固体酸双功能催化剂的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011397362.0A CN112439444B (zh) 2020-12-03 2020-12-03 一种负载型多级孔固体酸双功能催化剂的制备方法及应用

Publications (2)

Publication Number Publication Date
CN112439444A true CN112439444A (zh) 2021-03-05
CN112439444B CN112439444B (zh) 2023-07-04

Family

ID=74740441

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011397362.0A Active CN112439444B (zh) 2020-12-03 2020-12-03 一种负载型多级孔固体酸双功能催化剂的制备方法及应用

Country Status (1)

Country Link
CN (1) CN112439444B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1042523A (zh) * 1989-06-15 1990-05-30 中国石油化工总公司兰州炼油化工总厂 一种制备高硅y沸石的方法
CN1042558A (zh) * 1989-05-26 1990-05-30 中国石油化工总公司兰州炼油化工总厂 含新型高硅y沸石的裂化催化剂
CN1803612A (zh) * 2006-01-25 2006-07-19 中国石油天然气集团公司 一种y分子筛的改性方法
CN101254471A (zh) * 2008-04-17 2008-09-03 中国石油天然气集团公司 一种改性分子筛基贵金属柴油深度加氢脱芳催化剂及其制备方法
CN101767027A (zh) * 2008-12-31 2010-07-07 中国石油化工股份有限公司 一种含超稳分子筛的裂化催化剂的制备方法
CN106745031A (zh) * 2016-11-28 2017-05-31 中海亚环保材料有限公司 一种高硅铝比ssz‑39沸石及其合成和应用
CN107344112A (zh) * 2016-05-05 2017-11-14 中国石油化工股份有限公司 一种生产优质催化重整原料的加氢裂化催化剂及其制备方法和应用
CN109718834A (zh) * 2017-10-30 2019-05-07 中国石油化工股份有限公司 改性分子筛及其制备方法和应用
CN111097507A (zh) * 2018-10-26 2020-05-05 中国石油化工股份有限公司 催化剂及其制备方法和应用及含硫轻质原料油吸附脱硫和烃类转化的方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1042558A (zh) * 1989-05-26 1990-05-30 中国石油化工总公司兰州炼油化工总厂 含新型高硅y沸石的裂化催化剂
CN1065253A (zh) * 1989-05-26 1992-10-14 中国石油化工总公司兰州炼油化工总厂 新型高硅y沸石的制备方法
CN1042523A (zh) * 1989-06-15 1990-05-30 中国石油化工总公司兰州炼油化工总厂 一种制备高硅y沸石的方法
CN1803612A (zh) * 2006-01-25 2006-07-19 中国石油天然气集团公司 一种y分子筛的改性方法
CN101254471A (zh) * 2008-04-17 2008-09-03 中国石油天然气集团公司 一种改性分子筛基贵金属柴油深度加氢脱芳催化剂及其制备方法
CN101767027A (zh) * 2008-12-31 2010-07-07 中国石油化工股份有限公司 一种含超稳分子筛的裂化催化剂的制备方法
CN107344112A (zh) * 2016-05-05 2017-11-14 中国石油化工股份有限公司 一种生产优质催化重整原料的加氢裂化催化剂及其制备方法和应用
CN106745031A (zh) * 2016-11-28 2017-05-31 中海亚环保材料有限公司 一种高硅铝比ssz‑39沸石及其合成和应用
CN109718834A (zh) * 2017-10-30 2019-05-07 中国石油化工股份有限公司 改性分子筛及其制备方法和应用
CN111097507A (zh) * 2018-10-26 2020-05-05 中国石油化工股份有限公司 催化剂及其制备方法和应用及含硫轻质原料油吸附脱硫和烃类转化的方法

Non-Patent Citations (16)

* Cited by examiner, † Cited by third party
Title
DORIEN KERSTENS ET AL.: "State of the Art and Perspectives of Hierarchical Zeolites: Practical Overview of Synthesis Methods and Use in Catalysis", STATE OF THE ART AND PERSPECTIVES OF HIERARCHICAL ZEOLITES: PRACTICAL OVERVIEW OF SYNTHESIS METHODS AND USE IN CATALYSIS, vol. 32, no. 44, pages 216 *
KONG XIAOJUN: "Catalytic upgrading of coal gaseous tar over Y-type zeolites", 《FUEL》 *
KONG XIAOJUN: "Catalytic upgrading of coal gaseous tar over Y-type zeolites", 《FUEL》, vol. 180, 2 April 2016 (2016-04-02), pages 205 - 210 *
SHENYONG REN: "Preparation of Mesoporous Zeolite Y by Fluorine-Alkaline Treatment for Hydrocracking Reaction of Naphthalene", 《INDUSTRIAL AND ENGINEERING CHEMISTRY RESEARCH》 *
SHENYONG REN: "Preparation of Mesoporous Zeolite Y by Fluorine-Alkaline Treatment for Hydrocracking Reaction of Naphthalene", 《INDUSTRIAL AND ENGINEERING CHEMISTRY RESEARCH》, vol. 58, no. 19, 19 April 2019 (2019-04-19), pages 1 - 2 *
YU-HONG KANG ET AL.: "Catalytic Hydroconversion of Ethanol-Soluble Portion from the Ethanolysis of Hecaogou Subbituminous Coal Extraction Residue to Clean Liquid Fuel over a Zeolite Y/ZSM-5 Composite Zeolite-Supported Nickel Catalyst", 《ENERGY FUELS》 *
YU-HONG KANG ET AL.: "Catalytic Hydroconversion of Ethanol-Soluble Portion from the Ethanolysis of Hecaogou Subbituminous Coal Extraction Residue to Clean Liquid Fuel over a Zeolite Y/ZSM-5 Composite Zeolite-Supported Nickel Catalyst", 《ENERGY FUELS》, vol. 34, 27 December 2019 (2019-12-27), pages 4799 *
YU-HONG KANG: "Deep hydroconversion of ethanol-solution portion from the ethanolysis of Hecaogou subbituminous coal to ultra-clean liquid fuel over hierarchical porous zeolite Y supported Ni-Co nanoparticles", 《JOURNAL OF THE ENERGY INSTITUTE》 *
YU-HONG KANG: "Deep hydroconversion of ethanol-solution portion from the ethanolysis of Hecaogou subbituminous coal to ultra-clean liquid fuel over hierarchical porous zeolite Y supported Ni-Co nanoparticles", 《JOURNAL OF THE ENERGY INSTITUTE》, vol. 99, 23 August 2021 (2021-08-23), pages 88 - 96 *
ZHAOXIANG YU: "Hydrocracking of AATO on Ni/USY and Ni-Co/USY zeolite catalysts", 《ADVANCED MATERIALS RESEARCH》 *
ZHAOXIANG YU: "Hydrocracking of AATO on Ni/USY and Ni-Co/USY zeolite catalysts", 《ADVANCED MATERIALS RESEARCH》, vol. 347, 7 October 2011 (2011-10-07), pages 3700 *
亢玉红: "双功能催化剂的制备及对陕北禾草沟次烟煤的催化加氢转化", 《中国博士学位论文全文数据库 工程科技Ⅰ辑》 *
亢玉红: "双功能催化剂的制备及对陕北禾草沟次烟煤的催化加氢转化", 《中国博士学位论文全文数据库 工程科技Ⅰ辑》, no. 2, 15 February 2022 (2022-02-15), pages 016 - 130 *
亢玉红等: "多级纳米孔分子筛在非均相催化中的应用现状及发展前景", 《工业催化》 *
亢玉红等: "多级纳米孔分子筛在非均相催化中的应用现状及发展前景", 《工业催化》, vol. 24, no. 1, 15 January 2016 (2016-01-15), pages 7 - 14 *
郑发元等, 东北师范大学出版社 *

Also Published As

Publication number Publication date
CN112439444B (zh) 2023-07-04

Similar Documents

Publication Publication Date Title
CN101254471B (zh) 一种改性分子筛基贵金属柴油深度加氢脱芳催化剂及其制备方法
CN104549476A (zh) 一种镍金属负载微介孔分子筛催化剂前驱体及制备方法及用途
CN109529853B (zh) 一种用于催化改质煤焦油的多级孔碳基催化剂的制备方法
CN107345161B (zh) 一种煤焦油的加氢裂化方法
CN107344720B (zh) 一种y型分子筛及其制备方法
CN108262065A (zh) 一种加氢催化剂及其制备方法
CN107345155B (zh) 一种加氢裂化方法
CN112439444A (zh) 一种负载型多级孔固体酸双功能催化剂的制备方法及应用
CN109833906A (zh) 一种制取低凝点生物柴油的双功能催化剂及其制备方法与应用
CN107344106B (zh) 一种加氢裂化催化剂及其制备方法
CN112191252A (zh) 一种纳米镍颗粒分散于二氧化铈修饰的管状四氧化三钴催化剂及其制备方法与应用
CN108262063A (zh) 一种加氢催化剂及其制备方法
CN107008489B (zh) 用于木质素加氢解聚的分子筛负载钒基催化剂及其制备方法
CN112058304B (zh) 一种可调变固体酸性的双功能催化剂、制备方法及其应用
CN1916121B (zh) 一种汽油双烯选择加氢催化剂的制备方法
CN114931971A (zh) 一种镍纳米团簇负载晶间中孔沸石催化剂及其制备方法和应用
CN106669821A (zh) 一种钴基费托合成催化剂及其制备方法和应用
CN107345154B (zh) 一种劣质柴油的加氢裂化方法
CN102441388B (zh) 一种高稳定性钴基费托合成催化剂的制备方法
CN112058306B (zh) 一种高活性负载型双功能催化剂、制备方法及其应用
CN108262067A (zh) 一种加氢催化剂及其制备方法
CN109078652B (zh) 一种金属Ni掺杂的多级孔ZSM-5分子筛的制备方法及应用
CN107345159B (zh) 一种生产低凝柴油的加氢裂化方法
CN110292947A (zh) 一种mcm-41/sapo-11复合分子筛负载贵金属催化剂及其制备方法和应用
CN114931972B (zh) 一种高分散度Ni/Mo团簇负载中孔Beta催化剂、制备方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant