CN112390647A - 一种紫外激发实现光谱拓展的核壳荧光陶瓷粉体及其制备方法 - Google Patents

一种紫外激发实现光谱拓展的核壳荧光陶瓷粉体及其制备方法 Download PDF

Info

Publication number
CN112390647A
CN112390647A CN201910740308.2A CN201910740308A CN112390647A CN 112390647 A CN112390647 A CN 112390647A CN 201910740308 A CN201910740308 A CN 201910740308A CN 112390647 A CN112390647 A CN 112390647A
Authority
CN
China
Prior art keywords
powder
core
mixed solution
equal
shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910740308.2A
Other languages
English (en)
Other versions
CN112390647B (zh
Inventor
丁慧
秦海明
江宏涛
冯少尉
花蕙
杜启萍
蒋俊
江浩川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Institute of Material Technology and Engineering of CAS
Original Assignee
Ningbo Institute of Material Technology and Engineering of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Institute of Material Technology and Engineering of CAS filed Critical Ningbo Institute of Material Technology and Engineering of CAS
Priority to CN201910740308.2A priority Critical patent/CN112390647B/zh
Publication of CN112390647A publication Critical patent/CN112390647A/zh
Application granted granted Critical
Publication of CN112390647B publication Critical patent/CN112390647B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • C04B35/505Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds based on yttrium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/20Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in magnesium oxide, e.g. forsterite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/62807Silica or silicates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7774Aluminates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7784Chalcogenides
    • C09K11/7787Oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/443Nitrates or nitrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明涉及一种紫外激发实现光谱拓展的核壳荧光陶瓷粉体及其制备方法。具体地,本发明公开了一种核壳荧光陶瓷粉体及其制备方法,所述粉体具有优异的发光性能。

Description

一种紫外激发实现光谱拓展的核壳荧光陶瓷粉体及其制备 方法
技术领域
本发明涉及发光材料技术领域,具体地涉及一种紫外激发实现光谱拓展的核壳荧光陶瓷粉体及其制备方法。
背景技术
稀土发光材料已经成为一类重要的光电功能材料,近年来,随着高清显示如CRT、PDP、FED等的发展,对荧光粉的形貌的要求越来越高,通常认为粒径分布均匀、单分散、球形荧光粉应用性能较好,因为这样的荧光粉具有高的堆积密度、较低的光散射、分辨率高、发光亮度高等优点。
目前,核壳型材料的制备方法主要是溶胶-凝胶法,但溶胶凝胶法制备的核壳荧光材料,其存在的不足是工艺复杂,得到的荧光粉材料的发光性能较弱。
核壳荧光材料的制备已成为一个重要的研究热点,但目前所得到的核壳型荧光材料的发光性能还不是很理想,发光强度还需进一步提高。
发明内容
本发明的目的在于提供一种具有优异的发光性能的核壳荧光陶瓷粉体及其制备方法。
本发明的第一方面,提供了一种核壳荧光陶瓷粉体,所述粉体具有核壳结构,且所述粉体的核具有式I所示组成,所述粉体的壳具有式II所示组成,
式I:(R3-xCexAl3O12)m(Y4-yCeyMgSi3O13)n
式II:Y2O3:Eu
其中,0.005≤x≤0.05,0.05≤y≤0.15,0.2≤n/m≤2;
R选自下组:Y、Lu、或其组合。
在另一优选例中,0.008≤x≤0.03,较佳地,0.008≤x≤0.02。
在另一优选例中,0.05≤y≤0.1。
在另一优选例中,0.3≤n/m≤1.5,较佳地,0.4≤n/m≤1.2。
在另一优选例中,以粉体颗粒数计,40-80%的所述粉体的粒径为3.8-4.2um。
在另一优选例中,以粉体颗粒数计,70-80%的所述粉体的粒径为4-4.2um。
在另一优选例中,所述粉体的形状为球形或类球形。
在另一优选例中,所述粉体的核的粒径为1-3um,较佳地1.50-2.80um,更佳地2-2.5um;和/或
所述粉体的壳的厚度为1.00-1.80um,较佳地1.20-1.50um,更佳地1.30-1.5um。
在另一优选例中,所述粉体中,所述粉体的核与所述粉体的壳的摩尔比为1-20,较佳地5-18,更佳地6-10。
在另一优选例中,所述粉体的壳以层状形式包覆于所述粉体的核。
在另一优选例中,所述粉体具有选自下组的一个或多个特征:
1)当激发波长为330nm时,所述粉体的发光量子效率>40%,较佳地>60%,更佳地>80%;
2)所述粉体的激发波长为300-700nm,较佳地310-650nm,更佳地320-600nm。
本发明的第二方面,提供了一种本发明第一方面所述核壳荧光陶瓷粉体的制备方法,包括如下步骤:
1)提供第一混合液和第二混合液,其中,所述第一混合液包含第一溶剂、Y的盐和Eu的盐,所述第二混合液包含第二溶剂和式I所示物质;
2)混合所述第一混合液和所述第二混合液,得到第三混合液,在第一温度下使所述第三混合液反应第一时间,冷却至室温,得到第四混合液;
3)抽滤所述第四混合液,将所得固体产物干燥处理,得到前驱体;
4)煅烧处理所述前驱体,得到所述核壳荧光陶瓷粉体。
在另一优选例中,所述第一溶剂选自下组:硝酸、水、或其组合。
在另一优选例中,所述Y的盐为硝酸钇。
在另一优选例中,所述Eu的盐为硝酸铕。
在另一优选例中,所述第一混合液中,Y的盐和Eu的盐的摩尔比为1:1。
在另一优选例中,所述第二溶剂为水。
在另一优选例中,在所述第三混合液中,Y的盐与式I所示物质的摩尔比为1:1-1:10,较佳地1:3-1:7,更佳地1:2-1:5。
在另一优选例中,所述第一温度为70-100℃,较佳地75-95℃,更佳地80-92℃;和/或
所述第一时间为0.5-3.5h,较佳地0.8-3.3h,更佳地1-3.2h。
在另一优选例中,所述干燥处理的处理温度为50-120℃,较佳地55-105℃,更佳地60-100℃;和/或
所述干燥处理的处理时间为4-15h,较佳地6-14h,更佳地8-12h。
在另一优选例中,所述煅烧处理的处理温度为600-1300℃,较佳地650-1200℃,更佳地700-1150℃;和/或
所述煅烧处理的处理时间为0.5-10h,较佳地0.8-8h,更佳地1-6h。
应理解,在本发明范围内中,本发明的上述各技术特征和在下文(如实施例)中具体描述的各技术特征之间都可以互相组合,从而构成新的或优选的技术方案。限于篇幅,在此不再一一累述。
附图说明
图1是本发明实施例1制备的Y2.99Ce0.01Al3O12和Y3.92Ce0.08MgSi3O13复合相为核,以Y2O3:Eu为壳的核壳结构荧光粉1的发射光谱图。
图2为Y2O3:Eu球形颗粒的形貌。
图3是核壳荧光陶瓷粉体1的粒径分布图。
图4是本发明实施例2、3、4制备的核壳结构荧光粉2、3、4的发射光谱对比图。
图5是本发明实施例1所得粉体1和对比例1所得粉体C1的发射光谱对比图。
具体实施方式
本发明人经过长期而深入的研究,通过调整粉体组成和制备工艺制得了一种发光性能优异的核壳结构荧光材料。在此基础上,发明人完成了本发明。
术语
如本文所用,术语“室温”是指10-45℃,较佳地15-35℃。
粉体
本发明提供了一种核壳荧光陶瓷粉体,所述荧光陶瓷粉体的内核是化学式表示为(R1-x,Cex)5Al3O12和(Y1-yCey)4MgSi3O13复合相的荧光粉,R为Y、Lu或两者的组合,0.02≤x≤0.1,0.02≤y≤0.1。包覆在核外表面的为Y2O3:Eu外壳。
在另一优选例中,所述外壳以层状形式包覆于所述内核表面,所述紫外激发具有光谱拓展的核壳荧光陶瓷粉体是球形或者类球形颗粒结构。
在另一优选例中,所述Y2O3:Eu是以尿素沉淀法的方式包覆在所述(R1-x,Cex)5Al3O12和(Y1-yCey)4MgSi3O13,R为Y、Lu或两者的组合,0.02≤x≤0.1,0.02≤y≤0.1复合相的荧光粉的表面形成核壳结构。
在另一优选例中,所述荧光陶瓷粉体的激发波长为330nm。
在另一优选例中,所述荧光陶瓷粉体的激发波长为340nm~700nm。
制法
本发明还提供了所述粉体的制备方法,包括以下步骤:
(1)新制硝酸钇和硝酸铕的混合溶液:将Y2O3:Eu溶于浓硝酸中,加入50-80ml去离子水,在50-70℃搅拌条件下,得到硝酸钇和硝酸铕的混合溶液A;
(2)(R1-x,Cex)5Al3O12和(Y1-yCey)4MgSi3O13,R为Y、Lu或两者的组合,0.02≤x≤0.1,0.02≤y≤0.1复合相核的制备:将摩尔比为1:(0.5~1.5)的(R1-x,Cex)5Al3O12和(Y1-yCey)4MgSi3O13,R为Y、Lu或两者的组合,0.02≤x≤0.1,0.02≤y≤0.1放置于氧化铝球磨罐中,加入200-300g氧化铝球和60-100ml乙醇,球磨转速250-350转/分,球磨8-12h,乙醇洗涤数次,然后干燥得到(R1-x,Cex)5Al3O12和(Y1-yCey)4MgSi3O13,R为Y、Lu或两者的组合,0.02≤x≤0.1,0.02≤y≤0.1复合相核粉末;
(3)核壳结构荧光陶瓷粉体的合成:
(a)取步骤(2)制备的(R1-x,Cex)5Al3O12和(Y1-yCey)4MgSi3O13,R为Y、Lu或两者的组合,0.02≤x≤0.1,0.02≤y≤0.1复合相粉末溶于去离子水中,超声5-15min,得到溶液B;
(b)取步骤(2)制备的硝酸钇和硝酸铕的混合溶液A和溶液B,倒入三口烧瓶中,采用加热套进行85-95℃恒温反应2-4小时,实现Y2O3:Eu在所述(R1-x,Cex)5Al3O12和(Y1-yCey)4MgSi3O13,R为Y、Lu或两者的组合,0.02≤x≤0.1,0.02≤y≤0.1复合相核上的包覆:然后自然冷却至室温后,即得所述核壳荧光陶瓷溶液,所述溶液经酒精、去离子水淋洗数遍,抽滤,然后干燥箱烘干得到前驱体,将前驱体煅烧处理,便得到所述紫外激发具有光谱拓展的核壳荧光陶瓷粉体;所述紫外激发具有光谱拓展的核壳荧光陶瓷粉体具有以(R1-x,Cex)5Al3O12和(Y1-yCey)4MgSi3O13,R为Y、Lu或两者的组合,0.02≤x≤0.1,0.02≤y≤0.1复合相为核,以Y2O3:Eu为壳的核壳结构。
在另一优选例中,进一步将所述得到复合核荧光粉的步骤重复多次,获得所需厚度的荧光粉外壳。
在另一优选例中,步骤(1)中所述的搅拌方式包括磁力搅拌和/或电动搅拌。
在另一优选例中,所述煅烧处理为将得到的核壳荧光陶瓷粉体前驱体在900℃~1200℃温度下煅烧1h~4h。
本发明中采用尿素沉淀方法对(R1-x,Cex)5Al3O12和(Y1-yCey)4MgSi3O13,R为Y、Lu或两者的组合,0.02≤x≤0.1,0.02≤y≤0.1包覆Y2O3:Eu,该方法操作简单,工艺成熟,保证(R1-x,Cex)5Al3O12和(Y1-yCey)4MgSi3O13,R为Y、Lu或两者的组合,0.02≤x≤0.1,0.02≤y≤0.1包覆Y2O3:Eu均具有球形或近球形的形貌。
与现有技术相比,本发明具有以下主要优点:
(1)所述粉体颗粒均匀(所述粉体的粒径分布窄,故粒径均匀)、核粒度和壳厚度可控和发光量子效率高(如可高达68.4±5%);
(2)所述粉体调节荧光粉方案补全缺少光谱部分,不但增强光谱连续性,提高了平均显色指数,使光质量更接近于全光谱太阳光,还能通过微调荧光粉来达到不同色温、不同光效的产品需求;
(3)所述粉体制备工艺简单、成本低;
(4)所述粉体纯度高(杂质含量低)、产品质量高,可广泛用于发光材料的制造。
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的实验方法,通常按照常规条件或按照制造厂商所建议的条件。除非另外说明,否则百分比和份数按重量计算。
除非另行定义,文中所使用的所有专业与科学用语与本领域熟练人员所熟悉的意义相同。此外,任何与所记载内容相似或均等的方法及材料皆可应用于本发明方法中。文中所述的较佳实施方法与材料仅作示范之用。
通用测试方法
发射光谱
发射光谱是指发光的能量按波长或频率的分布。通常实验测量的是发光的相对能量。发射光谱中,横坐标为波长,纵坐标为发光相对强度。从150W氙灯光源发出的紫外和可见光经过激发单色器分光后,再经分束器照到样品表面,样品受到该激发光照射后发出的荧光经发射单色器分光,再经荧光端光电倍增管倍增后由探测器接收。另有一个光电倍增管位于监测端,用以倍增激发单色器分出的经分束后的激发光。光源发出的紫外-可见光经过激发单色器分光后,照到荧光池中的被测样品上,样品受到该激发光照射后发出的荧光经发射单色器分光,由光电倍增管转换成相应电信号,再经放大器放大反馈进入A/D转换单元,将模拟电信号转换成相应数字信号,并通过显示器或打印机显示和记录被测样品谱图。利用F-4600型荧光分光光度计(F-4600,Hitachi,Japan)对荧光粉末进行发射光谱测量,激发波长为330nm。
粒度
使用动态激光粒度分析仪(Zetasizer Nano ZS,Malvern Instruments Ltd.,UK)在去离子水中测定平均粒度和粒度分布。
形态
通过场发射扫描电子显微镜(FE-SEM,Hitachi,S4800,Tokyo,Japan)观察粉末的形态。
量子效率
使用QE-2100荧光光谱仪(日本Qtsuka electronics公司)测试样品的荧光量子效率,在积分球中测量,测试误差通常约为±5%。
实施例1
将Y2O3:Eu 0.1335g溶于1.6ml浓硝酸中,加入60ml去离子水,在60℃搅拌条件下,得到硝酸钇和硝酸铕的混合溶液A;
将摩尔比为1:0.5的Y2.99Ce0.01Al3O12和Y3.92Ce0.08MgSi3O13放置于氧化铝球磨罐中,加入200g氧化铝球和65ml乙醇,球磨转速280转/分min,球磨8h,乙醇洗涤数次,然后干燥得到Y2.99Ce0.01Al3O12和Y3.92Ce0.08MgSi3O13复合相核粉末;
取制备的Y2.99Ce0.01Al3O12和Y3.92Ce0.08MgSi3O13复合相粉末0.4354g溶于20ml去离子水中,超声5min,得到溶液B;
取硝酸钇和硝酸铕的混合溶液A和溶液B,倒入三口烧瓶中,采用加热套进行88℃恒温反应3小时,实现Y2O3:Eu在所述Y2.99Ce0.01Al3O12和Y3.92Ce0.08MgSi3O13复合相核上的包覆:然后自然冷却至室温后,即得所述核壳荧光陶瓷溶液,所述溶液经酒精、去离子水淋洗数遍,抽滤,然后干燥箱烘干(65℃,12h)得到前驱体,将前驱体煅烧处理(800℃,6h),便得到所述紫外激发具有光谱拓展的核壳荧光陶瓷粉体1。
图1是本发明实施例1制备的Y2.99Ce0.01Al3O12和Y3.92Ce0.08MgSi3O13复合相为核,以Y2O3:Eu为壳的核壳结构荧光粉1的发射光谱图,图中激发波长是330nm。
激发波长330nm测试的发射光谱图,可以观察到三个明显的峰,500-550nm的峰强度超过仪器检测限,可以通过调节仪器光栅大小进行调节。
经测试,粉体1在上述激发波长下的发光量子效率为68.4±5%。
图2显示通过尿素沉淀法制备的约200nm的Y2O3:Eu球形颗粒。
从图2中可以看出,所有粒子均匀,具有良好的分散特性。这表明可以涂覆在复合相的表面上,以均匀地形成外层。
图3是核壳荧光陶瓷粉体1的粒径分布图。
从图3中可以看出粉体粒径分布均匀,粒径在2.80-4.80um范围内。
经测定,粉体1的核的粒径为1.8-2.2um。
实施例2
将Y2O3:Eu 0.4005g溶于2.8ml浓硝酸中,加入60ml去离子水,在60℃搅拌条件下,得到硝酸钇和硝酸铕的混合溶液A;
将摩尔比为1:0.5的Lu2.99Ce0.01Al3O12和Y3.92Ce0.08MgSi3O13放置于氧化铝球磨罐中,加入200g氧化铝球和65ml乙醇,球磨转速280转/分min,球磨8h,乙醇洗涤数次,然后干燥得到Lu2.99Ce0.01Al3O12和Y3.92Ce0.08MgSi3O13复合相核粉末;
取制备的Lu2.99Ce0.01Al3O12和Y3.92Ce0.08MgSi3O13复合相粉末0.4354g溶于20ml去离子水中,超声5min,得到溶液B;
取硝酸钇和硝酸铕的混合溶液A和溶液B,倒入三口烧瓶中,采用加热套进行88℃恒温反应3小时,实现Y2O3:Eu在所述Lu2.99Ce0.01Al3O12和Y3.92Ce0.08MgSi3O13复合相核上的包覆:然后自然冷却至室温后,即得所述核壳荧光陶瓷溶液,所述溶液经酒精、去离子水淋洗数遍,抽滤,然后干燥箱烘干(80℃,8h)得到前驱体,将前驱体煅烧处理(850℃,5h),便得到所述紫外激发具有光谱拓展的核壳荧光陶瓷粉体2。
实施例3
将Y2O3:Eu 0.6675g溶于3.5ml浓硝酸中,加入60ml去离子水,在60℃搅拌条件下,得到硝酸钇和硝酸铕的混合溶液A;
将摩尔比为1:0.5的Y2.985Ce0.015Al3O12和Y3.92Ce0.08MgSi3O13放置于氧化铝球磨罐中,加入200g氧化铝球和65ml乙醇,球磨转速280转/分min,球磨8h,乙醇洗涤数次,然后干燥得到Y2.985Ce0.015Al3O12和Y3.92Ce0.08MgSi3O13复合相核粉末;
取制备的Y2.985Ce0.015Al3O12和Y3.92Ce0.08MgSi3O13复合相粉末0.4354g溶于20ml去离子水中,超声5min,得到溶液B;
取硝酸钇和硝酸铕的混合溶液A和溶液B,倒入三口烧瓶中,采用加热套进行88℃恒温反应3小时,实现Y2O3:Eu在所述Y2.985Ce0.015Al3O12和Y3.92Ce0.08MgSi3O13复合相核上的包覆:然后自然冷却至室温后,即得所述核壳荧光陶瓷溶液,所述溶液经酒精、去离子水淋洗数遍,抽滤,然后干燥箱烘干(65℃,12h)得到前驱体,将前驱体煅烧处理(850℃,5h),便得到所述紫外激发具有光谱拓展的核壳荧光陶瓷粉体3。
实施例4
将Y2O3:Eu 0.5003g溶于3.0ml浓硝酸中,加入60ml去离子水,在60℃搅拌条件下,得到硝酸钇和硝酸铕的混合溶液A;
将摩尔比为1:1的Y2.99Ce0.01Al3O12和Y3.92Ce0.08MgSi3O13放置于氧化铝球磨罐中,加入200g氧化铝球和65ml乙醇,球磨转速280转/分min,球磨8h,乙醇洗涤数次,然后干燥得到Y2.99Ce0.01Al3O12和Y3.92Ce0.08MgSi3O13复合相核粉末;
取制备的Y2.99Ce0.01Al3O12和Y3.92Ce0.08MgSi3O13复合相粉末0.1631g溶于10ml去离子水中,超声5min,得到溶液B;
取硝酸钇和硝酸铕的混合溶液A和溶液B,倒入三口烧瓶中,采用加热套进行88℃恒温反应3小时,实现Y2O3:Eu在所述Y2.99Ce0.01Al3O12和Y3.92Ce0.08MgSi3O13复合相核上的包覆:然后自然冷却至室温后,即得所述核壳荧光陶瓷溶液,所述溶液经酒精、去离子水淋洗数遍,抽滤,然后干燥箱烘干(65℃,12h)得到前驱体,将前驱体煅烧处理(800℃,6h),便得到所述紫外激发具有光谱拓展的核壳荧光陶瓷粉体4。
图4是本发明实施例2、3、4制备的核壳结构荧光粉2、3、4的发射光谱对比图,图中激发波长是330nm。
与实施例1在同样条件下进行的测试,实施例4的三个峰强度大小相当,是理想的全光谱发射。
经测试,粉体4在上述激发波长下的发光量子效率为60.3±5%。
对比例1粉体C1
同实施例1,区别在于:实施例1中,加热套进行88℃恒温反应3小时,实现Y2O3:Eu在所述Y2.99Ce0.01Al3O12和Y3.92Ce0.08MgSi3O13复合相核上的包覆;而对比例1中,加热套进行88℃恒温反应4小时,实现Y2O3:Eu在所述Y2.99Ce0.01Al3O12和Y3.92Ce0.08MgSi3O13复合相核上的包覆。
图5是本发明实施例1所得粉体1和对比例1所得粉体C1的发射光谱对比图,图中激发波长是330nm。可以看出测试条件相同的情况下,500-550nm的发射峰强度超出仪器检测限,对比例1在610nm附近的发射强度高于实施例1,说明壳厚度大。经测试,粉体C1在上述激发波长下的发光量子效率为58.6±5%。
对比例1的红光(610nm左右)强度较实施例1更好,但是量子效率降低了。
在本发明提及的所有文献都在本申请中引用作为参考,就如同每一篇文献被单独引用作为参考那样。此外应理解,在阅读了本发明的上述讲授内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。

Claims (10)

1.一种核壳荧光陶瓷粉体,其特征在于,所述粉体具有核壳结构,且所述粉体的核具有式I所示组成,所述粉体的壳具有式II所示组成,
式I:(R3-xCexAl3O12)m(Y4-yCeyMgSi3O13)n
式II:Y2O3:Eu
其中,0.005≤x≤0.05,0.05≤y≤0.15,0.2≤n/m≤2;
R选自下组:Y、Lu、或其组合。
2.如权利要求1所述的粉体,其特征在于,以粉体颗粒数计,40-80%的所述粉体的粒径为3.8-4.2um。
3.如权利要求1所述的粉体,其特征在于,所述粉体的形状为球形或类球形。
4.如权利要求1所述的粉体,其特征在于,所述粉体的核的粒径为1-3um;和/或
所述粉体的壳的厚度为1.00-1.80um。
5.如权利要求1所述的粉体,其特征在于,所述粉体中,所述粉体的核与所述粉体的壳的摩尔比为1-20。
6.如权利要求1所述的粉体,其特征在于,所述粉体具有选自下组的一个或多个特征:
1)当激发波长为330nm时,所述粉体的发光量子效率>40%;
2)所述粉体的激发波长为300-700nm。
7.一种权利要求1所述核壳荧光陶瓷粉体的制备方法,其特征在于,包括如下步骤:
1)提供第一混合液和第二混合液,其中,所述第一混合液包含第一溶剂、Y的盐和Eu的盐,所述第二混合液包含第二溶剂和式I所示物质;
2)混合所述第一混合液和所述第二混合液,得到第三混合液,在第一温度下使所述第三混合液反应第一时间,冷却至室温,得到第四混合液;
3)抽滤所述第四混合液,将所得固体产物干燥处理,得到前驱体;
4)煅烧处理所述前驱体,得到所述核壳荧光陶瓷粉体。
8.如权利要求7所述的方法,其特征在于,所述第一温度为70-100℃;和/或
所述第一时间为0.5-3.5h。
9.如权利要求7所述的方法,其特征在于,所述干燥处理的处理温度为50-120℃;和/或
所述干燥处理的处理时间为4-15h。
10.如权利要求7所述的方法,其特征在于,所述煅烧处理的处理温度为600-1300℃;和/或
所述煅烧处理的处理时间为0.5-10h。
CN201910740308.2A 2019-08-12 2019-08-12 一种紫外激发实现光谱拓展的核壳荧光陶瓷粉体及其制备方法 Active CN112390647B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910740308.2A CN112390647B (zh) 2019-08-12 2019-08-12 一种紫外激发实现光谱拓展的核壳荧光陶瓷粉体及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910740308.2A CN112390647B (zh) 2019-08-12 2019-08-12 一种紫外激发实现光谱拓展的核壳荧光陶瓷粉体及其制备方法

Publications (2)

Publication Number Publication Date
CN112390647A true CN112390647A (zh) 2021-02-23
CN112390647B CN112390647B (zh) 2023-05-05

Family

ID=74602272

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910740308.2A Active CN112390647B (zh) 2019-08-12 2019-08-12 一种紫外激发实现光谱拓展的核壳荧光陶瓷粉体及其制备方法

Country Status (1)

Country Link
CN (1) CN112390647B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101294071A (zh) * 2008-06-17 2008-10-29 浙江大学 发光可调的核-壳结构荧光颗粒材料及其制备方法
US20130020534A1 (en) * 2010-04-28 2013-01-24 Ocean's King Lighting Science & Technlogy Co., Ltd. Silicate luminescent material and production method thereof
CN103484116A (zh) * 2013-07-25 2014-01-01 厦门通士达新材料有限公司 核壳结构的红色荧光粉及其制备方法
CN104804738A (zh) * 2015-05-18 2015-07-29 厦门砺德光电科技有限公司 一种近紫外激发白光led荧光粉及其制备方法
CN108530071A (zh) * 2018-05-23 2018-09-14 中国科学院福建物质结构研究所 一种yag荧光陶瓷及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101294071A (zh) * 2008-06-17 2008-10-29 浙江大学 发光可调的核-壳结构荧光颗粒材料及其制备方法
US20130020534A1 (en) * 2010-04-28 2013-01-24 Ocean's King Lighting Science & Technlogy Co., Ltd. Silicate luminescent material and production method thereof
CN103484116A (zh) * 2013-07-25 2014-01-01 厦门通士达新材料有限公司 核壳结构的红色荧光粉及其制备方法
CN104804738A (zh) * 2015-05-18 2015-07-29 厦门砺德光电科技有限公司 一种近紫外激发白光led荧光粉及其制备方法
CN108530071A (zh) * 2018-05-23 2018-09-14 中国科学院福建物质结构研究所 一种yag荧光陶瓷及其制备方法和应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
F. XIAO ET AL.: "Y4MgSi3O13:RE3+ (RE=Ce, Tb and Eu) nanophosphors for a full-color display", 《PHYSICA B》 *
HAIPENG JI ET AL.: "New garnet structure phosphors, Lu3−xYxMgAl3SiO12:Ce3+ (x = 0–3), developed by solid solution design", 《JOURNAL OF MATERIALS CHEMISTRY C》 *
QIPING DU ET AL.: "Massive red-shifting of Ce3+ emission by Mg2+ and Si4+ doping of YAG:Ce transparent ceramic phosphors", 《JOURNAL OF MATERIALS CHEMISTRY C》 *
杨秋红等: "《无机材料物理化学》", 31 August 2013, 同济大学出版社 *

Also Published As

Publication number Publication date
CN112390647B (zh) 2023-05-05

Similar Documents

Publication Publication Date Title
Gai et al. Monodisperse Gd2O3: Ln (Ln= Eu3+, Tb3+, Dy3+, Sm3+, Yb3+/Er3+, Yb3+/Tm3+, and Yb3+/Ho3+) nanocrystals with tunable size and multicolor luminescent properties
Zhang et al. The new red luminescent Sr3Al2O6: Eu2+ phosphor powders synthesized via sol–gel route by microwave-assisted
CN112457499B (zh) 一种稀土基金属有机框架荧光纳米材料及其制备方法与应用
CN106928997A (zh) 发光颗粒及包含其的发光器件
CN108046236A (zh) 一种高量子产率红色碳量子点的制备方法和应用
KR101316955B1 (ko) 서브마이크론 바륨 및 마그네슘 알루미네이트, 그의 제조 방법 및 인광체로서의 용도
Yang et al. Effect of the different concentrations of Eu3+ ions on the microstructure and photoluminescent properties of Zn2SiO4: xEu3+ phosphors and synthesized with TEOS solution as silicate source
Bohus et al. Structural and luminescence properties of Y2O3: Eu3+ core–shell nanoparticles
Gong et al. Preparation and photoluminescence properties of ZrO2 nanotube array-supported Eu3+ doped ZrO2 composite films
CN112390647B (zh) 一种紫外激发实现光谱拓展的核壳荧光陶瓷粉体及其制备方法
EP1052278B1 (en) Fluorescent material and manufacturing method therefor
JP2014506266A (ja) コアシェルアルミン酸塩を含む組成物、この組成物から得られる蛍りん光体、及び製造方法
CN108531180B (zh) 一种荧光可调型核壳纳米晶及其制备方法
Rucheng et al. Photoluminescence study of SiO2 coated Eu3+: Y2O3 core-shells under high pressure
Chakradhar et al. Effect of particle size and dopant concentration on photophysical properties of Eu3+-doped rare earth oxysulphide phosphor coatings
CN113481008B (zh) 一种等离激元增强上转换发光纳米粒子及其制备方法和应用
US20220333009A1 (en) Carbon Dots Emitting Light Having Multiple Colors and Method of Fabricating the Same
CN112662201B (zh) 一种云母基荧光珠光颜料的制备方法
CN112592711B (zh) 一种远红光荧光粉及其制备和改性方法
CN110055070B (zh) 一种比率型绿光发射荧光材料
Wang et al. The synthesis of BaMgAl10O17: Eu2+ nanorods and their luminescence properties under UV and VUV excitation
CN112251224A (zh) 一种长余辉发光材料表面负载CsPbX3的制备方法
CN102533270A (zh) 制造荧光粉的方法及该方法所制得的荧光粉
De-Hui et al. Synthesis and Characterization of [Eu (DBM) 3phen] Cl3@ SiO2–NH2 Composite Nanoparticles
CN108659845B (zh) 一种YF3:Eu3+纳米颗粒荧光体及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant