CN112342530B - 一种重力驱动空间分辨粉末原子层沉积设备、方法及应用 - Google Patents

一种重力驱动空间分辨粉末原子层沉积设备、方法及应用 Download PDF

Info

Publication number
CN112342530B
CN112342530B CN202011131633.8A CN202011131633A CN112342530B CN 112342530 B CN112342530 B CN 112342530B CN 202011131633 A CN202011131633 A CN 202011131633A CN 112342530 B CN112342530 B CN 112342530B
Authority
CN
China
Prior art keywords
heatable
cavity
powder
gas
precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011131633.8A
Other languages
English (en)
Other versions
CN112342530A (zh
Inventor
董红
冯泽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nankai University
Original Assignee
Nankai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nankai University filed Critical Nankai University
Priority to CN202011131633.8A priority Critical patent/CN112342530B/zh
Publication of CN112342530A publication Critical patent/CN112342530A/zh
Application granted granted Critical
Publication of CN112342530B publication Critical patent/CN112342530B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4417Methods specially adapted for coating powder
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

本发明属于原子层沉积技术领域,公开了一种重力驱动空间分辨粉末原子层沉积设备、方法及应用,粉末原子层沉积设备设置有可加热式主腔体;多级可加热式主腔体之间设置有可动密封结构,并通过橡胶‑金属/橡胶密封;每级可加热式主腔体两端固定有可加热式气体管道,并在连接处设置有粉末过滤器;每级可加热式主腔体一端通过可加热式气体管道连接前驱体和载气,并由电磁阀控制开关;每级可加热式主腔体的另一端通过可加热式气体管道与真空泵连接,由电磁或气动阀门控制开关,在此阀门两端可设置有剩余气体分析器或真空计;设备整体可设置有震动器。本发明采用连续式生长模式设计腔体,明显提高镀膜的效率,降低粉末镀膜的成本。

Description

一种重力驱动空间分辨粉末原子层沉积设备、方法及应用
技术领域
本发明属于原子层沉积技术领域,尤其涉及一种重力驱动空间分辨粉末原子层沉积设备、方法及应用。
背景技术
目前,锂电、氢能源电池等能源领域的电极材料通常为粉体,大量文献报道了利用ALD对粉末电极材料的表面包覆改性,能够延缓枝晶出现,延长电池使用寿命。实验室级别粉末表面镀膜技术已经大量报道,但是在原理上能够大规模工业化生产的还不成熟,因为粉末样品通常容易团聚,前驱体气压不高,即便通过传统流化床等方案也很难实现高包覆率。对于现有的流床式粉末ALD生长设备,粉末被装在一个容器(单腔室)内搅动或转动以实现单个脉冲气体的吸附反应。通常对粉体ALD需要多个循环,因此对样品的吹扫时间提出挑战。此外,每一个反应腔室完成多个循环达到镀膜目的后,需要将反应停止,整个反应腔体降温等待,直到室温再打开腔体将样品取出。下一锅样品再装入,加热,泵抽,吹扫等步骤完成才能实现下一锅生长。这极大地降低了镀膜效率,提升了镀膜成本,不利于工业化生产。因此亟需连续化生长作业方式。
通过上述分析,现有技术存在的问题及缺陷为:
(1)现有技术无法避免打开腔体进样,浪费了时间,提高了镀膜成本。
(2)现有技术中当增加效率时,需加大腔体体积,增加吹扫时间。
(3)现有技术中易出现样品团聚,造成薄膜覆盖率降低。
解决以上问题及缺陷的难度为:现有技术如何提高薄膜的生长效率;无法避免降温、开腔体、取出样品、放入样品的步骤所造成大量的时间浪费。亟需连续式生长作业、避免开腔体以极大地增加镀膜效率。如何实现提升镀膜率,防止样品团聚。
解决以上问题及缺陷的意义为:本发明采用连续式生长模式设计腔体,明显提高镀膜的效率,降低粉末镀膜的成本。本发明采用连级腔体设计,镀膜过程中,在某一前驱体氛围内,粉末样品从狭缝处在重力驱动下持续流动、撞击下面粉末,充分分散于前驱体气体氛围中,因此相比于传统流床式生长设备提升了镀膜率。同时本发明的连级腔体结构将样品在重力驱动下,每过一次狭缝经历ALD一个步骤,并且相邻上下腔体通过狭缝密封装置隔离,互不干扰,可以实现连续式工业化生产。
发明内容
针对现有技术存在的问题,本发明提供了一种重力驱动空间分辨粉末原子层沉积设备、方法及应用。
本发明是这样实现的,一种粉末原子层沉积设备,所述粉末原子层沉积设备设置有可加热式主腔体;
多级可加热式主腔体之间通过橡胶-金属/橡胶密封,多级可加热式主腔体之间设置有可动密封结构;
每级可加热式主腔体两端固定有可加热式气体管道,可加热式气体管道与可加热式主腔体连接处设置有粉末过滤器;
每级可加热式主腔体一端与可加热式气体管道连接前驱体和载气,并分别由电磁阀控制开关;
每级可加热式主腔体另一端通过可加热式气体管道与真空泵连接,由电磁或气动阀门控制开关。
进一步,所述可加热式主腔体安装有震动器。
进一步,所述可加热式气体管道通过VCR接头与ALD阀连接,ALD阀通过VCR接头和管道与前驱体源瓶连接。
进一步,所述可加热式气体管道设置有载气进气口。
进一步,所述可动密封结构设置有控制杆,控制杆通过可转零件固定在腔体上;
控制杆端部固定有尖状橡胶,尖状橡胶下端固定有带孔裙状板。
进一步,所述可转零件为胶圈、波纹管或其他真空密封,并可以转动。
本发明的另一目的在于提供一种所述粉末原子层沉积设备的粉末原子层沉积方法,所述粉末原子层沉积方法,具体包括以下步骤:
步骤一,确定粉末样品的20℃~350℃生长温度,使反应腔体保持在相应的生长温度;
步骤二,封闭上下级反应腔体,在下反应腔体通入生长薄膜的前驱体一,使腔体气压响应可以检测;打开狭缝使粉末样品流下,前驱体一以化学吸附的形式吸附在粉末样品表面;
步骤三,待样品全部流下,打开上下腔体泵抽阀门,打开上下腔体载气阀门通入载气,抽离过量前驱体一;也可以在粉末样品全部流下后,将狭缝密封,将上下腔体泵抽,将下腔体与其下的狭缝打开,载气和泵抽阀门打开,在样品流动过程将样品内前驱体吹扫干净;
步骤四,反复步骤二,将第二种前驱体与样品表面反应;
步骤五,反复步骤三,完成粉体内前驱体残余气体吹扫,完成二相化合物生长流程。
本发明的另一目的在于提供一种搭载有所述粉末原子层沉积设备的氮化物薄膜制备装置,所述氮化物薄膜制备装置设置有:
可加热式多级真空腔体;
上下级腔体之间通过橡胶-金属/橡胶密封,各级腔体可安装有震动器;
每一级腔体腔体两端固定有可加热式气体管道,可加热式气体管道与可加热式主腔体连接处设置有粉末过滤器;
每一级腔体一端与可加热式气体管道连接前驱体和载气,并由电磁阀控制开关;
每一级腔体另一端通过可加热式气体管道与真空泵连接,由电磁或气动阀门控制开关。
进一步,所述可加热式气体管道通过VCR接头与ALD阀连接,ALD阀通过VCR接头和管道与前驱体源瓶连接,可加热式气体管道设置有载气进气口;
每一级腔体在进气端或腔体内部安装有等离子体发生器,通入氮气和氨气等含氮/氢气体,在等离子体打开气体作为前驱体二,在粉体流下过程中等离子体持续打开;
可加热式气体管道通过VCR接头与ALD阀连接,ALD阀通过VCR接头和管道与前驱体源瓶连接,可加热式气体管道设置有氮气和氨气等含氮/氢气体进气口。
本发明的另一目的在于提供一种所述氮化物薄膜制备装置的氮化物薄膜制备方法,所述氮化物薄膜制备方法包括:
步骤A,确定粉末样品20℃~450℃生长温度,使可加热式主腔体保持在相应的生长温度;
步骤B,通入生长薄膜的前驱体一,使腔体气压响应被检测到,打开相邻连接狭缝使粉末样品流下,前驱体一以化学吸附的形式吸附在粉末表面;前驱体一为金属有机配体或Si等其他元素;
步骤C,待样品全部流下,打开上下腔体泵抽阀门,打开上下腔体载气阀门通入载气以彻底吹扫前驱体;也可以在粉末样品全部流下后,将狭缝密封,将上下腔体泵抽,将下腔体与其下的狭缝打开,将载气和泵抽阀门打开,在样品流动过程将样品内前驱体吹扫干净;
步骤D,反复步骤A,确保通入氮气和氨气等含氮/氢气体,在等离子体作用下分解为氮元素活性原子或基团,以作为前驱体二,在粉体流下过程中等离子体持续打开;
步骤E,反复步骤C,完成粉体内前驱体残余气体吹扫,完成二相氮化物生长流程。
结合上述的所有技术方案,本发明所具备的优点及积极效果为:本发明可以实现锂电池电极等粉体颗粒表面均匀包覆镀膜,本原子层沉积设备利用了重力作为粉体移动的驱动力,将多级反应腔体分别利用可控制密封和打开的狭缝连接,生长过程全腔体加热并维持一定生长温度。每一级腔体都设置进气和抽气的管路,可加热式腔体两端固定有可加热式气体管道,可加热式气体管道与可加热式主腔体连接处设置有粉末过滤器;并在靠近腔体处有电磁脉冲阀门控制开关。可加热式气体管道通过卡套或VCR与电磁阀连接,电磁阀通过可加热式气体管道与真空泵连接,电磁阀上端可以设置有剩余气体分析器或真空计。设备整体可以设置有震动器用于将粉体充分震动而防止其堆积于密封接口处;可实现大量粉体样品表面不同薄膜材料的生长,提高粉体样品稳定性。
同时本发明采用连续式生长模式设计腔体,明显提高镀膜的效率,降低粉末镀膜的成本。本发明采用连级腔体设计,镀膜过程中,在某一前驱体氛围内,粉末样品从狭缝处在重力驱动下持续流动、撞击下面粉末,充分分散于前驱体气体氛围中,因此相比于传统流床式生长设备会提升镀膜率。本发明的连级腔体结构将样品在重力驱动下,每过一次狭缝经历ALD一个步骤,并且相邻上下腔体通过狭缝密封装置隔离,互不干扰,可以实现连续式工业化生产。本发明的连级式多腔体设备,粉体可以连续式镀膜,薄膜生长效率高,并可实现不同薄膜材料的生长,如无机材料和有机材料的混合生长;生长的薄膜材料稳定性高;镀膜成本低。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图做简单的介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的粉末原子层沉积设备结构示意图。
图2是本发明实施例提供的粉体在腔体内密封和流动沉积过程原理示意图。
图3是本发明实施例提供的粉末原子层沉积方法流程图。
图4是本发明实施例提供的氮化物薄膜制备方法流程图。
图中:1、第一可加热式气体管道;2、第一电磁阀控制开关;3、第二电磁阀控制开关;4、第三电磁阀控制开关;5、第四电磁阀控制开关;6、第二可加热式气体管道;7、第五电磁阀控制开关;8、第六电磁阀控制开关;9、第七电磁阀控制开关;10、第八电磁阀控制开关;11、第一橡胶-金属/橡胶密封圈;12、第一可加热式主腔体;13、第二橡胶-金属/橡胶密封圈;14、第二可加热式主腔体;15、第三橡胶-金属/橡胶密封圈;16、第三可加热式主腔体;17、第四橡胶-金属/橡胶密封圈;18、第四可加热式主腔体;19、第五橡胶-金属/橡胶密封圈;20、控制杆;21、可转零件;22、腔体;23、尖状橡胶;24、带孔裙状板。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
针对现有技术存在的问题,本发明提供了一种重力驱动空间分辨粉末原子层沉积设备、方法及应用,下面结合附图对本发明作详细的描述。
本发明粉末原子层沉积设备设置有可加热式主腔体;多级可加热式主腔体之间设置有可动密封结构,并通过橡胶-金属/橡胶密封;每级可加热式主腔体两端固定有可加热式气体管道,并在连接处设置有粉末过滤器;每级可加热式主腔体一端通过可加热式气体管道连接前驱体和载气,并由电磁阀控制开关;每级可加热式主腔体的另一端通过可加热式气体管道与真空泵连接,由电磁或气动阀门控制开关,在此阀门两端可设置有剩余气体分析器或真空计;设备整体可设置有震动器。本发明采用连续式生长模式设计腔体,明显提高镀膜的效率,降低粉末镀膜的成本。
具体地,如图1-图2所示,本发明实施例提供的粉末原子层沉积设备设置有上下连接多级可加热式主腔体,上下级腔体之间通过橡胶-金属/橡胶密封;其中,各级腔体可安装有震动器;每一级腔体两端固定有可加热式气体管道,可加热式气体管道与可加热式主腔体连接处设置有粉末过滤器;每一级腔体一端与可加热式气体管道连接前驱体和载气,并分别由电磁阀控制开关;每一级腔体另一端通过可加热式气体管道与真空泵连接,由电磁或气动阀门控制开关。
可加热式气体管道通过VCR接头与ALD阀连接,ALD阀通过VCR接头和管道与前驱体源瓶连接,可加热式气体管道设置有载气进气口。样品在相邻腔体狭缝处流下的动态过程中,分散并落于充满前驱体氛围的下腔体中,从而实现前驱体在样品表面的吸附。如图1所示,本发明实施例中第一可加热式气体管道1通过第一电磁阀控制开关2与第一可加热式主腔体12连接,第一可加热式主腔体12上侧固定有第一橡胶-金属/橡胶密封圈11,下侧固定有第二橡胶-金属/橡胶密封圈13;第二可加热式主腔体14下侧固定有第三橡胶-金属/橡胶密封圈15,第三橡胶-金属/橡胶密封圈15下侧固定有第三可加热式主腔体16连接,第三可加热式主腔体16下侧固定有第四橡胶-金属/橡胶密封圈17,第四橡胶-金属/橡胶密封圈17下侧固定有第四可加热式主腔体18,第四可加热式主腔体18下侧固定有第五橡胶-金属/橡胶密封圈19。其中,第一可加热式主腔体12通过第一电磁阀控制开关2与第一可加热式气体管道1连接;第一可加热式主腔体12通过第五电磁阀控制开关7与第二可加热式气体管道6连接;第二可加热式主腔体14通过第二电磁阀控制开关3与第一可加热式气体管道1连接;第二可加热式主腔体14通过第六电磁阀控制开关8与第二可加热式气体管道6连接;第三可加热式主腔体16通过第三电磁阀控制开关4与第一可加热式气体管道1连接;第三可加热式主腔体16通过第七电磁阀控制开关9与第二可加热式气体管道6连接;第四可加热式主腔体18通过第四电磁阀控制开关5与第一可加热式气体管道1连接;第四可加热式主腔体18通过第八电磁阀控制开关10与第二可加热式气体管道6连接。
如图2所示,本发明实施例中上下腔体之间设置有可动密封结构,包括:控制杆20、可转零件21、腔体22、尖状橡胶23、带孔裙状板24。多级可加热式主腔体设置有腔体,腔体上通过可转零件21固定有控制杆20,控制杆20端部固定有尖状橡胶23,尖状橡胶23下端固定有带孔裙状板24;其中,可转零件21为胶圈、波纹管或其他真空密封,并可以转动;带孔裙状板24将粉体在孔内和板边缘滑落,以降低粉体团聚现象。下压控制杆20以将尖状橡胶23向上压住腔体下边缘,从而密封上下腔体。
如图3所示,本发明实施例提供的粉末原子层沉积方法,具体包括以下步骤:
S101:确定粉末样品的20℃~350℃生长温度,使反应腔体保持在相应的生长温度。
S102:封闭上下级反应腔体,在下反应腔体通入生长薄膜的前驱体一,使腔体气压响应可以检测;打开狭缝使粉末样品流下,前驱体一以化学吸附的形式吸附在粉末样品表面。
S103:待样品全部流下,打开上下腔体泵抽阀门,打开上下腔体载气阀门通入载气,抽离过量前驱体一。
S104:反复S102,将第二种前驱体与样品表面反应。
S105:反复S103,完成粉体内前驱体残余气体吹扫,完成二相化合物生长流程。
本发明实施例提供的S103中,也可以在粉末样品全部流下后,将狭缝密封,将上下腔体泵抽,将下腔体与其下的狭缝打开,载气和泵抽阀门打开,在样品流动过程将样品内前驱体吹扫干净。
本发明实施例提供的搭载有粉末原子层沉积设备的氮化物薄膜制备装置设置有可加热式多级真空腔体,上下级腔体之间通过橡胶-金属/橡胶密封,各级腔体可安装有震动器;每一级腔体腔体两端固定有可加热式气体管道,可加热式气体管道与可加热式主腔体连接处设置有粉末过滤器;每一级腔体一端与可加热式气体管道连接前驱体和载气,并由电磁阀控制开关;每一级腔体另一端通过可加热式气体管道与真空泵连接,由电磁或气动阀门控制开关。
可加热式气体管道通过VCR接头与ALD阀连接,ALD阀通过VCR接头和管道与前驱体源瓶连接,可加热式气体管道设置有载气进气口。每一级腔体在进气端或腔体内部安装有等离子体发生器,通入氮气和氨气等含氮/氢气体,在等离子体打开气体作为前驱体二,在粉体流下过程中等离子体持续打开。可加热式气体管道通过VCR接头与ALD阀连接,ALD阀通过VCR接头和管道与前驱体源瓶连接,可加热式气体管道设置有氮气和氨气等含氮/氢气体进气口。
本发明的连级式多腔体设备,粉体可以连续式镀膜,薄膜生长效率高,并可实现不同薄膜材料的生长,如无机材料和有机材料的混合生长,生长的薄膜材料稳定性高,镀膜成本低。
如图4所示,本发明实施例提供的氮化物薄膜制备方法包括:
S201:确定粉末样品20℃~450℃生长温度,使可加热式主腔体保持在相应的生长温度。
S202:通入生长薄膜的前驱体一,使腔体气压响应被检测到,打开相邻连接狭缝使粉末样品流下,前驱体一以化学吸附的形式吸附在粉末表面。
S203:待样品全部流下,打开上下腔体泵抽阀门,打开上下腔体载气阀门通入载气以彻底吹扫前驱体。
S204:反复S201,确保通入氮气和氨气等含氮/氢气体,在等离子体作用下分解为氮元素活性原子或基团,以作为前驱体二,在粉体流下过程中等离子体持续打开。
S205:反复S203,完成粉体内前驱体残余气体吹扫,完成二相氮化物生长流程。
本发明实施例提供的S202中,前驱体一为金属有机配体或Si等其他元素。
本发明实施例提供的S203中,也可以在粉末样品全部流下后,将狭缝密封,将上下腔体泵抽,将下腔体与其下的狭缝打开,将载气和泵抽阀门打开,在样品流动过程将样品内前驱体吹扫干净。
在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”、“前端”、“后端”、“头部”、“尾部”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,都应涵盖在本发明的保护范围之内。

Claims (8)

1.一种粉末原子层沉积设备,其特征在于,所述粉末原子层沉积设备设置有:
可加热式主腔体;
多级可加热式主腔体之间通过橡胶-金属/橡胶密封,多级可加热式主腔体之间设置有可动密封结构;所述可动密封结构设置有控制杆,控制杆通过可转零件固定在腔体上;
控制杆端部固定有尖状橡胶,尖状橡胶下端固定有带孔裙状板;
每级可加热式主腔体两端固定有可加热式气体管道,可加热式气体管道与可加热式主腔体连接处设置有粉末过滤器;
每级可加热式主腔体一端与可加热式气体管道连接前驱体和载气,并分别由电磁阀控制开关;
每级可加热式主腔体另一端通过可加热式气体管道与真空泵连接,由电磁或气动阀门控制开关;
所述可加热式主腔体安装有震动器;
所述的粉末原子层沉积方法可实现粉体的逐级动态生长,结合自动化系统手套箱可实现腔内转换自动持续进料,使得粉体样品大批量,连续式镀膜生长,实现单日吨级及以上粉末的包覆沉积。
2.如权利要求1所述粉末原子层沉积设备,其特征在于,所述可加热式气体管道通过VCR接头与ALD阀连接,ALD阀通过VCR接头和管道与前驱体源瓶连接。
3.如权利要求1所述粉末原子层沉积设备,其特征在于,所述可加热式气体管道设置有载气进气口。
4.如权利要求1所述粉末原子层沉积设备,其特征在于,所述可转零件为胶圈、波纹管或其他真空密封,并可以转动。
5.一种如权利要求1~4任意一项所述粉末原子层沉积设备的粉末原子层沉积方法,其特征在于,所述粉末原子层沉积方法,具体包括以下步骤:
步骤一,确定粉末样品的20℃~350℃生长温度,使反应腔体保持在相应的生长温度;
步骤二,封闭上下级反应腔体,在下反应腔体通入生长薄膜的前驱体一,使腔体气压响应可以检测;打开狭缝使粉末样品流下,前驱体一以化学吸附的形式吸附在粉末样品表面;
步骤三,待样品全部流下,打开上下腔体泵抽阀门,打开上下腔体载气阀门通入载气,抽离过量前驱体一;也可以在粉末样品全部流下后,将狭缝密封,将上下腔体泵抽,将下腔体与其下的狭缝打开,载气和泵抽阀门打开,在样品流动过程将样品内前驱体吹扫干净;
步骤四,反复步骤二,将第二种前驱体与样品表面反应;
步骤五,反复步骤三,完成粉体内前驱体残余气体吹扫,完成二相化合物生长流程。
6.一种搭载有如权利要求1~4任意一项所述粉末原子层沉积设备的氮化物薄膜制备装置,其特征在于,所述氮化物薄膜制备装置设置有:
可加热式多级真空腔体;
上下级腔体之间通过橡胶-金属/橡胶密封,各级腔体可安装有震动器;
每一级腔体腔体两端固定有可加热式气体管道,可加热式气体管道与可加热式主腔体连接处设置有粉末过滤器;
每一级腔体一端与可加热式气体管道连接前驱体和载气,并由电磁阀控制开关;
每一级腔体另一端通过可加热式气体管道与真空泵连接,由电磁或气动阀门控制开关。
7.如权利要求6所述氮化物薄膜制备装置,其特征在于,所述可加热式气体管道通过VCR接头与ALD阀连接,ALD阀通过VCR接头和管道与前驱体源瓶连接,可加热式气体管道设置有载气进气口;
每一级腔体在进气端或腔体内部安装有等离子体发生器,通入氮气、氨气、或含氮/氢的气体,在等离子体打开气体作为前驱体二,在粉体流下过程中等离子体持续打开;
可加热式气体管道通过VCR接头与ALD阀连接,ALD阀通过VCR接头和管道与前驱体源瓶连接,可加热式气体管道设置有氮气、氨气、或含氮/氢的气体进气口。
8.一种如权利要求6~7任意一项所述氮化物薄膜制备装置的氮化物薄膜制备方法,其特征在于,所述氮化物薄膜制备方法包括:
步骤A,确定粉末样品20℃~450℃生长温度,使可加热式主腔体保持在相应的生长温度;
步骤B,通入生长薄膜的前驱体一,使腔体气压响应被检测到,打开相邻连接狭缝使粉末样品流下,前驱体一以化学吸附的形式吸附在粉末表面;前驱体一为金属有机配体或Si等其他元素;
步骤C,待样品全部流下,打开上下腔体泵抽阀门,打开上下腔体载气阀门通入载气以彻底吹扫前驱体;也可以在粉末样品全部流下后,将狭缝密封,将上下腔体泵抽,将下腔体与其下的狭缝打开,将载气和泵抽阀门打开,在样品流动过程将样品内前驱体吹扫干净;
步骤D,反复步骤A,确保通入氮气、氨气、或含氮/氢的气体,在等离子体作用下分解为氮元素活性原子或基团,以作为前驱体二,在粉体流下过程中等离子体持续打开;
步骤E,反复步骤C,完成粉体内前驱体残余气体吹扫,完成二相氮化物生长流程。
CN202011131633.8A 2020-10-21 2020-10-21 一种重力驱动空间分辨粉末原子层沉积设备、方法及应用 Active CN112342530B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011131633.8A CN112342530B (zh) 2020-10-21 2020-10-21 一种重力驱动空间分辨粉末原子层沉积设备、方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011131633.8A CN112342530B (zh) 2020-10-21 2020-10-21 一种重力驱动空间分辨粉末原子层沉积设备、方法及应用

Publications (2)

Publication Number Publication Date
CN112342530A CN112342530A (zh) 2021-02-09
CN112342530B true CN112342530B (zh) 2021-10-19

Family

ID=74359454

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011131633.8A Active CN112342530B (zh) 2020-10-21 2020-10-21 一种重力驱动空间分辨粉末原子层沉积设备、方法及应用

Country Status (1)

Country Link
CN (1) CN112342530B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113046728B (zh) * 2021-03-12 2022-02-22 南开大学 一种适用于粉末样品的原子层沉积装置、沉积方法
CN114377631B (zh) * 2021-12-28 2023-10-13 福州物联网开放实验室有限公司 Nfc腔体、nfc腔体系统和控制nfc互动腔体的方法
CN115233185B (zh) * 2022-06-16 2023-06-09 西安近代化学研究所 一种强化气-固传质的原子层沉积反应器及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101675279A (zh) * 2007-05-08 2010-03-17 东京毅力科创株式会社 阀和具有该阀的处理装置
JP2011187561A (ja) * 2010-03-05 2011-09-22 Hitachi Kokusai Electric Inc 加熱装置及び加熱装置の製造方法
CN203683659U (zh) * 2013-12-31 2014-07-02 中晟光电设备(上海)有限公司 用于多反应腔化学气相沉积设备的多腔双密封圈系统
CN110055513A (zh) * 2019-06-10 2019-07-26 南开大学 一种粉末原子层沉积设备及其沉积方法与应用
CN209854244U (zh) * 2019-03-28 2019-12-27 爱发科真空技术(苏州)有限公司 一种自适应调节进气转接结构

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101675279A (zh) * 2007-05-08 2010-03-17 东京毅力科创株式会社 阀和具有该阀的处理装置
JP2011187561A (ja) * 2010-03-05 2011-09-22 Hitachi Kokusai Electric Inc 加熱装置及び加熱装置の製造方法
CN203683659U (zh) * 2013-12-31 2014-07-02 中晟光电设备(上海)有限公司 用于多反应腔化学气相沉积设备的多腔双密封圈系统
CN209854244U (zh) * 2019-03-28 2019-12-27 爱发科真空技术(苏州)有限公司 一种自适应调节进气转接结构
CN110055513A (zh) * 2019-06-10 2019-07-26 南开大学 一种粉末原子层沉积设备及其沉积方法与应用

Also Published As

Publication number Publication date
CN112342530A (zh) 2021-02-09

Similar Documents

Publication Publication Date Title
CN112342530B (zh) 一种重力驱动空间分辨粉末原子层沉积设备、方法及应用
CN111437834B (zh) 一种基于硫铟锌纳米片原位异质结构建的方法及应用
CN107447200A (zh) 一种采用两步化学气相沉积法制备过渡金属硫属化合物/二维层状材料层间异质结构的方法
CN111346642B (zh) 高分散金属纳米颗粒/生物质碳复合电极材料及其制备方法与应用
CN201626981U (zh) 一种化学气相淀积外延设备用的进气装置
CN109609931A (zh) 原子层沉积装置及方法
Zhao et al. Atomic layer deposition for electrochemical energy: from design to industrialization
CN110504482A (zh) 固态锂电池石榴石型固态电解质材料的制备及表面处理方法与应用
CN104532210A (zh) 一种原子层沉积设备和应用
CN111188028B (zh) 一种腐蚀性、危险性气态前驱体的原子层沉积过程控制方法
CN110055513B (zh) 一种粉末原子层沉积设备及其沉积方法与应用
CN101497994A (zh) 一种制备dlc薄膜的方法、由此制造的dlc膜容器及生产装置
CN113046728B (zh) 一种适用于粉末样品的原子层沉积装置、沉积方法
CN111892040B (zh) 一种电弧法制备石墨烯的方法
CN107017390B (zh) 一种硫化锂/碳复合材料的制备方法
CN112768668A (zh) 一种锂离子电池硅碳负极材料及其制备工艺和设备
CN112768667A (zh) 一种锂离子电池硅碳负极材料及其制备工艺和设备
CN201817548U (zh) 一种用于表面改性和等离子体聚合的材料处理装置
CN116121736A (zh) 一种采用羰基法于粉体表面包覆金属镀层的装置及其使用方法
CN112768666A (zh) 一种锂离子电池硅碳负极材料及其制备工艺和设备
CN211947212U (zh) 一种用于原子层沉积设备进气管路
CN114275747A (zh) 一种薄绸状掺氮炭的制备方法
CN204385289U (zh) 一种原子层沉积设备
CN102211184B (zh) 一种由纳米碳管完全包覆的锡纳米棒的制备方法
CN214937969U (zh) 一种hvpe垂直叠加反应的氮化镓生长石英反应腔体

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant