CN112341192B - 一种高储能密度钛酸铋钠基无铅介质材料及其制备方法 - Google Patents

一种高储能密度钛酸铋钠基无铅介质材料及其制备方法 Download PDF

Info

Publication number
CN112341192B
CN112341192B CN202011308873.0A CN202011308873A CN112341192B CN 112341192 B CN112341192 B CN 112341192B CN 202011308873 A CN202011308873 A CN 202011308873A CN 112341192 B CN112341192 B CN 112341192B
Authority
CN
China
Prior art keywords
tio
energy storage
dielectric material
based lead
bismuth titanate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011308873.0A
Other languages
English (en)
Other versions
CN112341192A (zh
Inventor
刘丹
周晓斌
李祥元
刘霄
车景锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xi'an Helong New Energy Technology Co ltd
Original Assignee
Xi'an Helong New Energy Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xi'an Helong New Energy Technology Co ltd filed Critical Xi'an Helong New Energy Technology Co ltd
Priority to CN202011308873.0A priority Critical patent/CN112341192B/zh
Publication of CN112341192A publication Critical patent/CN112341192A/zh
Application granted granted Critical
Publication of CN112341192B publication Critical patent/CN112341192B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/475Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on bismuth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种高储能密度钛酸铋钠基无铅介质材料,化学式为(0.8‑x)Bi0.5Na0.5TiO3‑xSrTi0.9(Cu1/3Nb2/3)0.1O3‑0.2Bi0.5K0.5TiO3,其中x为xSrTi0.9(Cu1/3Nb2/3)0.1O3离子化合物掺杂量的摩尔百分比,值在0.1~0.3之间。上述材料的制备方法,具体为:以Bi2O3、Na2CO3、TiO2、K2CO3、SrCO3、CuO、Nb2O5为原料,根据化学计量式配料,经球磨、烘干、过筛、冷等静压压制成陶瓷生坯,在马弗炉中烧结成型,得到陶瓷样品,再进行抛光、镀银、烧电极即得。其过程简单、重复性好、成本低廉且对环境友好。

Description

一种高储能密度钛酸铋钠基无铅介质材料及其制备方法
技术领域
本发明属于应用于电子元器件陶瓷材料技术领域,涉及一种高储能密度钛酸铋钠基无铅介质材料,本发明还涉及上述高储能密度钛酸铋钠基无铅介质材料的制备方法。
背景技术
随着电子设备的高度集成化、高性能化及多元化的应用领域,微电子行业毫无疑问已成为当今世界最大的产业之一,因此其对电子器件的小型化、各项性能稳定性的要求越来越高。陶瓷电容器是电子设备使用量最大的电子元器件之一,其因功率密度高、充放电速度快、循环次数多、抗老化能力强且能够适应高温高压等极端环境而符合新时期电子设备的要求,因此其无论是在手机、电脑、汽车,还是在医疗、军工、航空航天等领域,都扮演着越来越重要的角色。
传统钛酸铋钠(BNT)基无铅介质材料无法同时拥有高的介电常数、储能密度和击穿场强,并且介电损耗相对较大,从而限制了其在脉冲、滤波等电子产品中的广泛应用。
发明内容
本发明的目的是提供一种高储能密度钛酸铋钠基无铅介质材料,解决了现有技术中存在的无法同时具备高的介电常数、储能密度和击穿场强,并且介电损耗相对较大的问题。
本发明的另一目的是提供上述高储能密度钛酸铋钠基无铅介质材料的制备方法。
本发明所采用的技术方案是,一种高储能密度钛酸铋钠基无铅介质材料,化学式为:
(0.8-x)Bi0.5Na0.5TiO3-xSrTi0.9(Cu1/3Nb2/3)0.1O3-0.2Bi0.5K0.5TiO3,其中x=0.1~0.3。
本发明所采用的另一种技术方案是,一种高储能密度钛酸铋钠基无铅介质材料的制备方法,具体按照以下步骤实施:
步骤1、计算化学式中金属元素的化学计量比,根据计算结果将分析纯的Bi2O3、Na2CO3、TiO2、K2CO3、SrCO3、CuO、Nb2O5配制成粉体,化学式为(0.8-x)Bi0.5Na0.5TiO3-xSrTi0.9(Cu1/3Nb2/3)0.1O3-0.2Bi0.5K0.5TiO3,其中x=0.1~0.3;
步骤2、将步骤1得到的粉体进行混料球磨、烘干、过筛、预烧得到陶瓷粉体;
步骤3、将步骤2得到的陶瓷粉体经模具初成型后进行冷等静压成型得到陶瓷生坯;
步骤4、将步骤3得到的陶瓷生坯在高温下进行烧结,得到高储能密度的(0.8-x)Bi0.5Na0.5TiO3-xSrTi0.9(Cu1/3Nb2/3)0.1O3-0.2Bi0.5K0.5TiO3陶瓷样品;
步骤5、将步骤4得到的陶瓷样品进行抛光、镀银、烧电极得到高储能密度钛酸铋钠基无铅介质材料。
本发明另一技术方案的特点还在于:
步骤2中预烧以2~4℃/min的升温速率升温至800~880℃,保温2~4h。
步骤2中混料球磨是以氧化锆球和无水乙醇为介质,置于球磨罐中球磨10~15h。
步骤2中烘干温度为80~100℃,时间为24~30h。
步骤2中过筛采用60目筛网。
步骤3中冷等静压的压力为220~280MPa,时间为130~170s。
步骤3得到的陶瓷生坯直径为7mm,厚度为1mm。
步骤4中烧结温度为1170~1200℃,时间为1~3h。
步骤5中,抛光具体为,将步骤4得到的陶瓷样品经自动精密研磨机抛光至0.1mm;烧电极的温度为800~850℃,时间为10~15min。
本发明的有益效果是:
1、本发明所制备的高储能密度钛酸铋钠基无铅介质材料具有良好的储能性能。向Bi0.5Na0.5TiO3-Bi0.5K0.5TiO3中加入SrTi0.9(Cu1/3Nb2/3)0.1O3,形成(0.8-x)Bi0.5Na0.5TiO3-xSrTi0.9(Cu1/3Nb2/3)0.1O3-0.2Bi0.5K0.5TiO3的固溶体,利用[Cu1/3Nb2/3]4+离子替换了BNT-ST-BKT中部分Ti4+离子,使得所制陶瓷材料在100Hz下,具有较高的介电常数3335~3584和极低的介电损耗(≤0.037),在160~220kV/cm击穿场强下,还具有高的储能密度1.76~2.04J/cm3
2、本发明所用原料中不含重金属等污染性元素,对环境友好,且制备工艺简单,重复性与可操作性高,成本低廉;所有的烧结温度均在1200度以下,有利于节能减排。
附图说明
图1是本发明实施例1得到的高储能密度钛酸铋钠基无铅介质材料的介电温谱曲线;
图2是本发明实施例1得到的高储能密度钛酸铋钠基无铅介质材料的单轴极化强度随电场强度变化曲线;
图3是本发明实施例2得到的高储能密度钛酸铋钠基无铅介质材料的介电温谱曲线;
图4是本发明实施例2得到的高储能密度钛酸铋钠基无铅介质材料的单轴极化强度随电场强度变化曲线;
图5是本发明实施例3得到的高储能密度钛酸铋钠基无铅介质材料的介电温谱曲线;
图6是本发明实施例3得到的高储能密度钛酸铋钠基无铅介质材料的单轴极化强度随电场强度变化曲线。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
本发明一种高储能密度钛酸铋钠(BNT)基无铅介质材料,化学式为(0.8-x)Bi0.5Na0.5TiO3-xSrTi0.9(Cu1/3Nb2/3)0.1O3-0.2Bi0.5K0.5TiO3,其中x为xSrTi0.9(Cu1/3Nb2/3)0.1O3离子化合物掺杂量的摩尔百分比,值为0.1~0.3。
一种高储能密度钛酸铋钠基无铅介质材料的制备方法,具体按照以下步骤实施:
步骤1、计算化学式中金属元素的化学计量比,根据计算结果将分析纯的Bi2O3、Na2CO3、TiO2、K2CO3、SrCO3、CuO、Nb2O5配制成粉体,化学式为(0.8-x)Bi0.5Na0.5TiO3-xSrTi0.9(Cu1/3Nb2/3)0.1O3-0.2Bi0.5K0.5TiO3,其中x=0.1~0.3;
步骤2、将步骤1得到的粉体进行混料球磨、烘干、过筛、预烧得到陶瓷粉体;
步骤3、将步骤2得到的陶瓷粉体经模具初成型后进行冷等静压成型得到陶瓷生坯;
步骤4、将步骤3得到的陶瓷生坯在高温下进行烧结,得到高储能密度的(0.8-x)Bi0.5Na0.5TiO3-xSrTi0.9(Cu1/3Nb2/3)0.1O3-0.2Bi0.5K0.5TiO3陶瓷样品;
步骤5、将步骤4得到的陶瓷样品进行抛光、镀银、烧电极得到高储能密度钛酸铋钠基无铅介质材料;
步骤2中预烧以2~4℃/min的升温速率升温至800~880℃,保温2~4h;
步骤2中混料球磨是以氧化锆球和无水乙醇为介质,置于球磨罐中球磨10~15h;
步骤2中烘干温度为80~100℃,时间为24~30h;
步骤2中过筛采用60目筛网;
步骤3中冷等静压的压力为220~280MPa,时间为130~170s;
步骤3得到的陶瓷生坯直径为7mm,厚度为1mm;
步骤4中烧结温度为1170~1200℃,时间为1~3h;
步骤5中,抛光具体为,将步骤4得到的陶瓷样品经自动精密研磨机抛光至0.1mm;烧电极的温度为800~850℃,时间为10~15min。
通过上述方法制备的高储能密度钛酸铋钠基无铅介质材料在160~220kV/cm击穿场强下,储能密度在1.76~2.04J/cm3范围内,在100Hz下,介电常数在3335~3584之间,介电损耗均≤0.037。
实施例1
一种高储能密度钛酸铋钠基无铅介质材料,其化学组成表达式为(0.8-x)Bi0.5Na0.5TiO3-xSrTi0.9(Cu1/3Nb2/3)0.1O3-0.2Bi0.5K0.5TiO3,其中x表示摩尔百分比,且x=0.1,其具体制备步骤如下:
(1)根据0.7Bi0.5Na0.5TiO3-0.1SrTi0.9(Cu1/3Nb2/3)0.1O3-0.2Bi0.5K0.5TiO3的化学组成表达进行计算,再将分析纯的Bi2O3、Na2CO3、TiO2、K2CO3、SrCO3、CuO、Nb2O5按照计算结果配制成粉体;
(2)将配制的粉体放入球磨罐中,以氧化锆球和无水乙醇为介质,在行星球磨机上球磨,时间为15h;随后在90℃下烘干24h后过60目筛,过完筛后将粉体放入氧化铝坩埚中在空气气氛中预烧,预烧是以3°/min的升温速率从室温升温至800℃,保温2h,后随炉冷却,即得到0.7Bi0.5Na0.5TiO3-0.1SrTi0.9(Cu1/3Nb2/3)0.1O3-0.2Bi0.5K0.5TiO3粉体;
(3)然后对得到的粉体进行二次球磨,时间为9h,随后在90℃下烘干24h后过60目筛,取过筛后均匀的粉体颗粒于模具中干压,压制成直径7mm、厚度1mm的陶瓷圆片,再将陶瓷圆片置于冷等静压机中以250MPa的压力,保压150s,得到初成型的陶瓷生坯;
(4)将所得陶瓷生坯在空气气氛的马弗炉中以4℃/min的升温速率升温至1190℃,并保温3h,后随炉自然冷却,最终得到高储能密度的0.7Bi0.5Na0.5TiO3-0.1SrTi0.9(Cu1/ 3Nb2/3)0.1O3-0.2Bi0.5K0.5TiO3陶瓷样品;
(5)将所得陶瓷样品打磨厚度至0.1mm,清洗烘干后在其两面均匀镀银导电层,随后在马弗炉中以4℃/min的升温速率升温至850℃,保温15min,得到测试样品。
结合图1,图1所示为本实施例制备样品当x=0.1时的介电温谱和介电损耗曲线。由图1可以看出该陶瓷样品在1Hz、100Hz、1000Hz、10kHz和1MHz频率下,温度范围80~380℃时,均具有较高的介电常数(3344≤εr≤4651)和极低的介电损耗(≤0.037)。
结合图2,图2所示为本实施例制备样品当x=0.1时的单轴电滞回线。由图2可以看出该陶瓷样品在室温25℃和1Hz频率下,场强在160kV/cm(击穿场强)时,具有较为纤细的饱和电滞回线(虚线部分表示储能密度)。经计算可得储能密度为1.76J/cm3,储能效率为70%。
实施例2
一种高储能密度钛酸铋钠基无铅介质材料,其化学组成表达式为(0.8-x)Bi0.5Na0.5TiO3-xSrTi0.9(Cu1/3Nb2/3)0.1O3-0.2Bi0.5K0.5TiO3,其中x表示摩尔百分比,且x=0.2。其具体制备步骤如下:
(1)根据0.6Bi0.5Na0.5TiO3-0.2SrTi0.9(Cu1/3Nb2/3)0.1O3-0.2Bi0.5K0.5TiO3的化学组成表达进行计算,再将分析纯的Bi2O3、Na2CO3、TiO2、K2CO3、SrCO3、CuO、Nb2O5按照计算结果配制成粉体;
(2)将配制的粉体放入球磨罐中,以氧化锆球和无水乙醇为介质,在行星球磨机上球磨,时间为15h;随后在90℃下烘干24h后过60目筛,过完筛后将粉体放入氧化铝坩埚中在空气气氛中预烧,预烧是以3°/min的升温速率从室温升温至800℃,保温2h,后随炉冷却,即得到0.6Bi0.5Na0.5TiO3-0.2SrTi0.9(Cu1/3Nb2/3)0.1O3-0.2Bi0.5K0.5TiO3粉体;
(3)然后对得到的粉体进行二次球磨,时间为9h,随后在90℃下烘干24h后过60目筛。取过筛后均匀的粉体颗粒于模具中干压,压制成直径7mm、厚度1mm的陶瓷圆片,再将陶瓷圆片置于冷等静压机中以250MPa的压力,保压150s,得到初成型的陶瓷生坯;
(4)将所得陶瓷生坯在空气气氛的马弗炉中以4℃/min的升温速率升温至1190℃,并保温3h,后随炉自然冷却,最终得到高储能密度的0.6Bi0.5Na0.5TiO3-0.2SrTi0.9(Cu1/ 3Nb2/3)0.1O3-0.2Bi0.5K0.5TiO3陶瓷样品;
(5)将所得陶瓷样品打磨厚度至0.1mm,清洗烘干后在其两面均匀镀银导电层,随后在马弗炉中以4℃/min的升温速率升温至850℃,保温15min,得到测试样品。
结合图3,图3所示为本实施例制备样品当x=0.2时的介电温谱和介电损耗曲线。由图3可以看出该陶瓷样品在1Hz、100Hz、1000Hz、10kHz和1MHz频率下,温度范围68~243℃时,均具有较高的介电常数(3584≤εr≤3840)和极低的介电损耗(≤0.012)。
结合图4,图4所示为本实施例制备样品当x=0.2时的单轴电滞回线。由图4可以看出该陶瓷样品在室温25℃和1Hz频率下,场强在220kV/cm(击穿场强)时,具有较为纤细的饱和电滞回线(虚线部分表示储能密度)。经计算可得储能密度为2.04J/cm3,储能效率为76%。
实施例3
一种高储能密度钛酸铋钠基无铅介质材料,其化学组成表达式为(0.8-x)Bi0.5Na0.5TiO3-xSrTi0.9(Cu1/3Nb2/3)0.1O3-0.2Bi0.5K0.5TiO3,其中x表示摩尔百分比,且x=0.3。其具体制备步骤如下:
(1)根据0.5Bi0.5Na0.5TiO3-0.3SrTi0.9(Cu1/3Nb2/3)0.1O3-0.2Bi0.5K0.5TiO3的化学组成表达进行计算,再将分析纯的Bi2O3、Na2CO3、TiO2、K2CO3、SrCO3、CuO、Nb2O5按照计算结果配制成粉体;
(2)将配制的粉体放入球磨罐中,以氧化锆球和无水乙醇为介质,在行星球磨机上球磨,时间为15h;随后在90℃下烘干24h后过60目筛,过完筛后将粉体放入氧化铝坩埚中在空气气氛中预烧,预烧是以3℃/min的升温速率从室温升温至800℃,保温2h,后随炉冷却,即得到0.5Bi0.5Na0.5TiO3-0.3SrTi0.9(Cu1/3Nb2/3)0.1O3-0.2Bi0.5K0.5TiO3粉体;
(3)然后对得到的粉体进行二次球磨,时间为9h,随后在90℃下烘干24h后过60目筛,取过筛后均匀的粉体颗粒于模具中干压,压制成直径7mm、厚度1mm的陶瓷圆片,再将陶瓷圆片置于冷等静压机中以250MPa的压力,保压150s,得到初成型的陶瓷生坯;
(4)将所得陶瓷生坯在空气气氛的马弗炉中以4℃/min的升温速率升温至1190℃,并保温3h,后随炉自然冷却,最终得到高储能密度的0.5Bi0.5Na0.5TiO3-0.3SrTi0.9(Cu1/ 3Nb2/3)0.1O3-0.2Bi0.5K0.5TiO3陶瓷样品;
(5)将所得陶瓷样品打磨厚度至0.1mm,清洗烘干后在其两面均匀镀银导电层,随后在马弗炉中以4℃/min的升温速率升温至850℃,保温15min,得到测试样品。
结合图5,图5所示为本实施例制备样品当x=0.3时的介电温谱和介电损耗曲线。由图5可以看出该陶瓷样品在1Hz、100Hz、1000Hz、10kHz和1MHz频率下,温度范围77~320℃时,均具有较高的介电常数(3335≤εr≤3780)和极低的介电损耗(≤0.027)。
结合图6,图6所示为本实施例制备样品当x=0.3时的单轴电滞回线。由图6可以看出该陶瓷样品在室温25℃和1Hz频率下,场强在210kV/cm(击穿场强)时,具有较为纤细的饱和电滞回线(虚线部分表示储能密度)。经计算可得储能密度为1.82J/cm3,储能效率为72%。
表1中所示为各实施例所制备的高储能密度钛酸铋钠基无铅陶瓷介质材料在频率为100Hz下的介电性能和频率为1Hz,室温25℃下的储能性能一览表。
表1
Figure BDA0002789094520000101
综合以上实施例所述可知,本发明一种高储能密度钛酸铋钠基无铅介质材料(0.8-x)Bi0.5Na0.5TiO3-xSrTi0.9(Cu1/3Nb2/3)0.1O3-0.2Bi0.5K0.5TiO3(x=0.1~0.3),很好的解决了目前复合钛酸铋钠基无铅陶瓷介质材料高介电常数与高储能密度无法共存的问题,使得在拥有较高介电常数和储能密度的同时,还具有极低的介电损耗。并且制备工艺简单,操作性强、成本低廉,有利于大规模生产。

Claims (7)

1.一种高储能密度钛酸铋钠基无铅介质材料,其特征在于,化学式为(0.8-x)Bi0.5Na0.5TiO3-xSrTi0.9(Cu1/3Nb2/3)0.1O3-0.2Bi0.5K0.5TiO3,其中x=0.1~0.3。
2.一种高储能密度钛酸铋钠基无铅介质材料的制备方法,其特征在于,具体按照以下步骤实施:
步骤1、计算化学式中金属元素的化学计量比,根据计算结果将分析纯的Bi2O3、Na2CO3、TiO2、K2CO3、SrCO3、CuO、Nb2O5配制成粉体,化学式为(0.8-x)Bi0.5Na0.5TiO3-xSrTi0.9(Cu1/ 3Nb2/3)0.1O3-0.2Bi0.5K0.5TiO3,其中x=0.1~0.3;
步骤2、将步骤1得到的粉体进行混料球磨、烘干、过筛、预烧得到陶瓷粉体;
步骤3、将步骤2得到的陶瓷粉体经模具初成型后进行冷等静压成型得到陶瓷生坯;
冷等静压的压力为220~280MPa,时间为130~170s;
步骤4、将步骤3得到的陶瓷生坯在高温下进行烧结,得到高储能密度的(0.8-x)Bi0.5Na0.5TiO3-xSrTi0.9(Cu1/3Nb2/3)0.1O3-0.2Bi0.5K0.5TiO3陶瓷样品;
烧结温度为1170~1200℃,时间为1~3h;
步骤5、将步骤4得到的陶瓷样品进行抛光、镀银、烧电极得到高储能密度钛酸铋钠基无铅介质材料;
抛光具体为,将步骤4得到的陶瓷样品经自动精密研磨机抛光至0.1mm;烧电极的温度为800~850℃,时间为10~15min。
3.根据权利要求2所述的一种高储能密度钛酸铋钠基无铅介质材料的制备方法,其特征在于,所述步骤2中预烧以2~4℃/min的升温速率升温至800~880℃,保温2~4h。
4.根据权利要求2所述的一种高储能密度钛酸铋钠基无铅介质材料的制备方法,其特征在于,所述步骤2中混料球磨是以氧化锆球和无水乙醇为介质,置于球磨罐中球磨10~15h。
5.根据权利要求2所述的一种高储能密度钛酸铋钠基无铅介质材料的制备方法,其特征在于,所述步骤2中烘干温度为80~100℃,时间为24~30h。
6.根据权利要求2所述的一种高储能密度钛酸铋钠基无铅介质材料的制备方法,其特征在于,所述步骤2中过筛采用60目筛网。
7.根据权利要求2所述的一种高储能密度钛酸铋钠基无铅介质材料的制备方法,其特征在于,所述步骤3得到的陶瓷生坯直径为7mm,厚度为1mm。
CN202011308873.0A 2020-11-20 2020-11-20 一种高储能密度钛酸铋钠基无铅介质材料及其制备方法 Active CN112341192B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011308873.0A CN112341192B (zh) 2020-11-20 2020-11-20 一种高储能密度钛酸铋钠基无铅介质材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011308873.0A CN112341192B (zh) 2020-11-20 2020-11-20 一种高储能密度钛酸铋钠基无铅介质材料及其制备方法

Publications (2)

Publication Number Publication Date
CN112341192A CN112341192A (zh) 2021-02-09
CN112341192B true CN112341192B (zh) 2022-07-22

Family

ID=74364491

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011308873.0A Active CN112341192B (zh) 2020-11-20 2020-11-20 一种高储能密度钛酸铋钠基无铅介质材料及其制备方法

Country Status (1)

Country Link
CN (1) CN112341192B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113800904A (zh) * 2021-08-27 2021-12-17 西安理工大学 一种高能量低损耗的BNT-SBT-xSMN陶瓷材料及其制备方法
CN114621004B (zh) * 2022-01-26 2023-07-07 杭州电子科技大学 一种高储能密度的高熵陶瓷材料及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1419246A (zh) * 2001-11-12 2003-05-21 日本特殊陶业株式会社 介电陶瓷组合物
KR20090088991A (ko) * 2008-02-18 2009-08-21 창원대학교 산학협력단 비스무스(Bi)계통의 무연 세라믹스의 조성물 및 그제조방법
CN103896587A (zh) * 2012-12-26 2014-07-02 三星电机株式会社 介电组合物、及包括其作为介电层的多层陶瓷电容器
CN104628379A (zh) * 2013-11-06 2015-05-20 同济大学 高度取向的无铅压电织构陶瓷材料及其制备方法和应用
CN107056281A (zh) * 2016-12-19 2017-08-18 西安科技大学 一种高应变钛酸铋钠基陶瓷及其制备方法
CN108191428A (zh) * 2018-02-02 2018-06-22 天津大学 一种制备SrTiO3基巨介电常数介质陶瓷材料的方法
CN110312692A (zh) * 2017-02-03 2019-10-08 赛尔科技有限公司 包含赝立方相的陶瓷材料、其制备方法和用途
CN111792931A (zh) * 2020-07-14 2020-10-20 广东华中科技大学工业技术研究院 一种复合陶瓷材料及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1419246A (zh) * 2001-11-12 2003-05-21 日本特殊陶业株式会社 介电陶瓷组合物
KR20090088991A (ko) * 2008-02-18 2009-08-21 창원대학교 산학협력단 비스무스(Bi)계통의 무연 세라믹스의 조성물 및 그제조방법
CN103896587A (zh) * 2012-12-26 2014-07-02 三星电机株式会社 介电组合物、及包括其作为介电层的多层陶瓷电容器
CN104628379A (zh) * 2013-11-06 2015-05-20 同济大学 高度取向的无铅压电织构陶瓷材料及其制备方法和应用
CN107056281A (zh) * 2016-12-19 2017-08-18 西安科技大学 一种高应变钛酸铋钠基陶瓷及其制备方法
CN110312692A (zh) * 2017-02-03 2019-10-08 赛尔科技有限公司 包含赝立方相的陶瓷材料、其制备方法和用途
CN108191428A (zh) * 2018-02-02 2018-06-22 天津大学 一种制备SrTiO3基巨介电常数介质陶瓷材料的方法
CN111792931A (zh) * 2020-07-14 2020-10-20 广东华中科技大学工业技术研究院 一种复合陶瓷材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Dielectric relaxations in fine-grained SrTiO3 ceramics with Cu and Nb codoping;Junwei Liu et al.;《Ceramics International》;20190214;第45卷(第8期);10334-10341页 *
Effect of SrTiO3 template on electric properties of textured BNT–BKT ceramics prepared by templated grain growth process;Wangfeng Bai et al.;《Journal of Alloys and Compounds》;20140320;第603卷;149-157页 *

Also Published As

Publication number Publication date
CN112341192A (zh) 2021-02-09

Similar Documents

Publication Publication Date Title
CN112341192B (zh) 一种高储能密度钛酸铋钠基无铅介质材料及其制备方法
CN110511018B (zh) 一种高储能密度陶瓷电容器电介质及其制备方法
CN113004028B (zh) 一种硅基低介微波介质陶瓷及其制备方法
CN113999004B (zh) 一种无铅高储能密度陶瓷材料及其制备方法
CN111995383B (zh) Mg2-xMxSiO4-CaTiO3复合微波介质陶瓷及其制备方法
CN107382299A (zh) 一种低介微波介质陶瓷的低温制备方法
CN114621004B (zh) 一种高储能密度的高熵陶瓷材料及其制备方法
CN108863348A (zh) 一种超宽温度稳定性的介电陶瓷材料及其制备方法
CN113831121A (zh) 一种高击穿场强的复相巨介电陶瓷材料及其制备方法
CN109650878B (zh) 一种无铅宽频下巨介电低损耗高绝缘电阻陶瓷材料及其制备方法
CN103951414B (zh) 具有低介电损耗巨电容率和压敏特性陶瓷材料的制造方法
CN114773060A (zh) 一种多层陶瓷电容器用Mg-Ta基介质陶瓷及其低温制备方法
CN108863349A (zh) 一种钛酸钡基无铅高介温度稳定型陶瓷材料及其制备方法
CN107555986B (zh) 一种低损耗岩盐矿结构微波介质陶瓷及制备方法
CN107445616B (zh) 一种钛酸锶基无铅耐高压储能陶瓷材料及其制备方法
CN107285760B (zh) 一种低损耗巨介电常数陶瓷材料的制备方法
CN110903085B (zh) TiO2基微波陶瓷基板材料及制备方法和应用
CN116063067B (zh) 一种多主元素巨介电陶瓷材料及其制备方法和应用
CN107226696A (zh) X7R型BaTiO3基电容器陶瓷材料及其制备方法
CN114230335B (zh) 一种巨介电常数、低损耗和高电阻率的BaTiO3基细晶陶瓷及其制备方法
CN103641474B (zh) 一种温度稳定型焦绿石复相介电陶瓷及其制备方法
CN113788673A (zh) 中低频超低介电损耗和高介电常数的二氧化钛基陶瓷材料及制备方法
CN1544391A (zh) 低温叠层共烧的介电陶瓷和铁氧体及其制备方法
CN114736012A (zh) 具有超高q值的低介微波介质陶瓷及其ltcc材料
CN111848154B (zh) 一种陶瓷电容器介质及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant