CN107056281A - 一种高应变钛酸铋钠基陶瓷及其制备方法 - Google Patents

一种高应变钛酸铋钠基陶瓷及其制备方法 Download PDF

Info

Publication number
CN107056281A
CN107056281A CN201611179209.4A CN201611179209A CN107056281A CN 107056281 A CN107056281 A CN 107056281A CN 201611179209 A CN201611179209 A CN 201611179209A CN 107056281 A CN107056281 A CN 107056281A
Authority
CN
China
Prior art keywords
bismuth
sodium titanate
titanate base
large strain
tio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611179209.4A
Other languages
English (en)
Other versions
CN107056281B (zh
Inventor
刘霄
杜慧玲
时婧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Science and Technology
Original Assignee
Xian University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Science and Technology filed Critical Xian University of Science and Technology
Priority to CN201611179209.4A priority Critical patent/CN107056281B/zh
Publication of CN107056281A publication Critical patent/CN107056281A/zh
Application granted granted Critical
Publication of CN107056281B publication Critical patent/CN107056281B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/475Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on bismuth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5116Ag or Au
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • H04R17/02Microphones
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种高应变钛酸铋钠基陶瓷及其制备方法,所述高应变钛酸铋钠基陶瓷的化学计量比为:0.8(BiNa)0.5‑x(LaLi)xTiO3‑0.2Bi0.5K0.5TiO3;x=0.006‑0.012。本发明通过优化陶瓷配方,然后经过混合、球磨、低温预烧和高温烧结过程之后,使得环境友好型的无铅压电材料钛酸铋钠基陶瓷在较低电场下具有高的应变,室温下电场为45kV cm‑1时,其应变达0.387%,动态压电常数d33 *达860pm/V,同时材料在106次循环下保持优异的抗疲劳特性。

Description

一种高应变钛酸铋钠基陶瓷及其制备方法
技术领域
本发明属于压电陶瓷材料技术领域,尤其涉及一种高应变钛酸铋钠基陶瓷及其制备方法。
背景技术
利用材料电与机械位移的相互转换特性,压电陶瓷材料在传感器、制动器和换能器等方面表现出极为重要的作用,可广泛地应用于通信、家电、航空、探测和计算机等诸多领域。但是目前大规模使用的压电陶瓷以PbZr1-xTixO3(PZT)等为主的铅基压电陶瓷。铅基压电陶瓷的原料中PbO或Pb3O4约占总量的70%,并且PbO或Pb3O4在陶瓷的烧结过程中容易挥发。含铅压电陶瓷在生产、废弃以及回收过程中给自然环境带来了极大的危害,很难满足环保的使用要求。钛酸铋钠(Na0.5Bi0.5TiO3,BNT)基无铅压电陶瓷由于较高的应变性能得到了广泛的研究。通常采用与其它铁电或者非铁电钙钛矿材料形成准同型相界以进一步提高应变。虽然材料在更高场强下具有更高的应变,但是过高的场强限制了它们的实际应用。M.Acosta,et al.Core-shell lead-free piezoelectric ceramics:Current status andadvanced characterization of the Bi1/2Na1/2TiO3-SrTiO3system.J.Am.Ceram.Soc.2015,98(11):3405-3422文章中对比了不同系列的无铅压电陶瓷,发现BNT基材料在45kVcm-1电压下具有最大的动态压电常数d33 *,即Smax/Emax,约700pm/V。进一步,R.A.Malik,et al.Temperature-insensitive high strain in lead-free Bi0.5(Na0.84K0.16)0.5TiO3-0.04SrTiO3 ceramics for actuatorapplications.J.Am.Ceram.Soc.2015,98(12):3842-3848文中通过对BNT-BKT-ST体系进行Li、Nb双掺杂,使BNT基材料的压电常数d33 *提高到755pm/V。但是对于实际应用而言,无铅压电材料的应变还需要进一步提高,尤其是解决材料在较低场强下应变较低的问题。
发明内容
本发明的目的在于提供一种无铅高应变钛酸铋钠基陶瓷及其制备方法,旨在解决现有压电材料在电场诱发下应变较小的问题。
本发明是这样实现的,一种高应变钛酸铋钠基陶瓷,所述高应变钛酸铋钠基陶瓷的化学计量比为:0.8(BiNa)0.5-x(LaLi)xTiO3-0.2Bi0.5K0.5TiO3;x=0.006-0.012。
本发明的另一目的在于提供一种所述高应变钛酸铋钠基陶瓷的制备方法,所述高应变钛酸铋钠基陶瓷的制备方法包括以下步骤:
步骤一,根据0.8(BiNa)0.5-x(LaLi)xTiO3-0.2Bi0.5K0.5TiO3化学配比称量对应量的分析纯Bi2O3,Na2CO3、TiO2、K2CO3、Li2CO3和La2O3
步骤二,将配好的料放入以酒精为介质、锆球为磨球的尼龙罐中球磨6h-8h;
步骤三,将球磨好的料烘干过筛后并压成大块,在800℃预烧4h-6h得到预烧粉;
步骤四,将预烧粉再次放入球磨罐中研磨10h-12h,烘干后过筛;
步骤五,将过筛后的粉压成直径为12mm,厚度为2mm左右的圆柱体,在300Mpa下等静压下成型;
步骤六,将成型后的试样在1100℃-1200℃下烧结4h-6h;
步骤七,对烧结成瓷的试样进行打磨和抛光,超声清洗后涂覆银浆,在550℃下保温30min烧成银电极。
本发明的另一目的在于提供一种由所述高应变钛酸铋钠基陶瓷制造的传感器。
本发明的另一目的在于提供一种由所述高应变钛酸铋钠基陶瓷制造的制动器。
本发明的另一目的在于提供一种由所述高应变钛酸铋钠基陶瓷制造的换能器。
本发明提供的高应变钛酸铋钠基陶瓷及其制备方法,通过优化陶瓷配方,使得环境友好型的无铅压电材料钛酸铋钠基陶瓷在较低电场下具有高的应变,室温下电场为45kVcm-1时,其应变达0.387%,动态压电常数d33 *达860pm/V。同时材料在106次循环下性能没有退化,介电损耗tanδ保持在0.08以下。
附图说明
图1是本发明实施例提供的高应变钛酸铋钠基陶瓷的制备方法流程图。
图2是本发明实施例提供的0.8(BiNa)0.5-x(LaLi)xTiO3-0.2Bi0.5K0.5TiO3,x=0.01时陶瓷的X射线衍射和扫描电镜图谱示意图。
图3是本发明实施例提供的0.8(BiNa)0.5-x(LaLi)xTiO3-0.2Bi0.5K0.5TiO3,x=0.01时陶瓷不同频率的介电常数和介电损耗随温度的变化图谱示意图;
图中:虚线箭头方向表示频率增大。
图4是本发明实施例提供的0.8(BiNa)0.5-x(LaLi)xTiO3-0.2Bi0.5K0.5TiO3,x=0.01时陶瓷室温下45kVcm-1电场下的电滞回线和应变曲线图谱示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
下面结合附图对本发明的应用原理作详细的描述。
本发明实施例提供的高应变钛酸铋钠基陶瓷的化学计量比为:0.8(BiNa)0.5-x(LaLi)xTiO3-0.2Bi0.5K0.5TiO3(x=0.006-0.012)。
如图1所示,本发明实施例提供的高应变钛酸铋钠基陶瓷的制备方法包括以下步骤:
S101:根据0.8(BiNa)0.5-x(LaLi)xTiO3-0.2Bi0.5K0.5TiO3(x=0.006-0.012)化学配比称量对应量的分析纯Bi2O3,Na2CO3、TiO2、K2CO3、Li2CO3和La2O3
S102;将配好的料放入以酒精为介质、锆球为磨球的尼龙罐中球磨6h-8h;
S103:将球磨好的料烘干过筛后并压成大块,在800℃预烧4h-6h得到预烧粉;
S104:将预烧粉再次放入球磨罐中研磨10h-12h,烘干后过筛;
S105:将过筛后的粉压成直径为12mm,厚度为2mm左右的圆柱体,在300Mpa下等静压下成型;
S106:将成型后的试样在1100℃-1200℃下烧结4h-6h;
S107:对烧结成瓷的试样进行打磨和抛光,超声清洗后涂覆银浆,在550℃下保温30min烧成银电极。
下面结合具体实施例对本发明的应用原理作进一步的描述。
实施例1,根据化学计量比称量22.9252g的Bi2O3,4.1548g的Na2CO3、1.3821g的K2CO3、7.987g的TiO2、0.0591g的LiCO3和0.2606g的La2O3,将配好的料放入以酒精为介质、锆球为磨球的尼龙罐中球磨6-8h;将球磨好的料烘干过筛后并压成大块,在800℃预烧4h得到预烧粉;将预烧粉再次放入球磨罐中研磨10-12h,烘干后过筛;将过筛后的粉压成直径为12mm,厚度为2mm左右的圆柱体,在300Mpa下等静压下成型;将成型后的试样在1100-1200℃下烧结4h;对烧结成瓷的试样进行打磨和抛光,超声清洗后涂覆银浆,在550℃下保温30min烧成银电极。采用安捷伦精密阻抗分析仪(4294A,Agilent,CA,USA)测试样品的介电谱。采用TF2000型铁电参数测试仪(aixACCT,Aachen,Germany)测试样品的电滞回线、应变曲线和电流密度曲线。从图2可以看出样品属于赝立方钙钛矿相,并没有出现杂相,从扫描图谱可以看出样品比较致密、均一且呈多边形分布。从图3可以看出材料具有典型的弛豫特性,其介电损耗保持在0.08以下。图4为材料的电滞回线和应变曲线图谱,可以看出材料具有典型的束腰型电滞回线,它在45kV cm-1电场下具有非常大的应变,其动态压电常数d33 *提高到860pm/V,且样品在106次循环下具有优异的抗疲劳特性。
实施例2,根据化学计量比称量22.8506g的Bi2O3,4.1378g的Na2CO3、1.3821g的K2CO3、7.987g的TiO2、0.0709g的LiCO3和0.3128g的La2O3,将配好的料放入以酒精为介质、锆球为磨球的尼龙罐中球磨6-8h;将球磨好的料烘干过筛后并压成大块,在800℃预烧4h得到预烧粉;将预烧粉再次放入球磨罐中研磨10-12h,烘干后过筛;将过筛后的粉压成直径为12mm,厚度为2mm左右的圆柱体,在300Mpa下等静压下成型;将成型后的试样在1100-1200℃下烧结4h;对烧结成瓷的试样进行打磨和抛光,超声清洗后涂覆银浆,在550℃下保温30min烧成银电极。通过测试材料在45kV cm-1电场下动态压电常数d33 *可达810pm/V。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.一种高应变钛酸铋钠基陶瓷,其特征在于,所述高应变钛酸铋钠基陶瓷的化学计量比为:0.8(BiNa)0.5-x(LaLi)xTiO3-0.2Bi0.5K0.5TiO3;x=0.006-0.012。
2.一种如权利要求1所述高应变钛酸铋钠基陶瓷的制备方法,其特征在于,所述高应变钛酸铋钠基陶瓷的制备方法包括以下步骤:
步骤一,根据0.8(BiNa)0.5-x(LaLi)xTiO3-0.2Bi0.5K0.5TiO3化学配比称量一定量的分析纯Bi2O3,Na2CO3、TiO2、K2CO3、Li2CO3和La2O3
步骤二,将配好的料放入以酒精为介质、锆球为磨球的尼龙罐中球磨6h-8h;
步骤三,将球磨好的料烘干过筛后并压成大块,在800℃预烧4h-6h得到预烧粉;
步骤四,将预烧粉再次放入球磨罐中研磨10h-12h,烘干后过筛;
步骤五,将过筛后的粉压成直径为12mm,厚度为2mm的圆柱体,在300Mpa下等静压下成型;
步骤六,将成型后的试样在1100℃-1200℃下烧结4h-6h;
步骤七,对烧结成瓷的试样进行打磨和抛光,超声清洗后涂覆银浆,在550℃下保温30min烧成银电极。
3.一种由权利要求1所述高应变钛酸铋钠基陶瓷制造的传感器。
4.一种由权利要求1所述高应变钛酸铋钠基陶瓷制造的制动器。
5.一种由权利要求1所述高应变钛酸铋钠基陶瓷制造的换能器。
CN201611179209.4A 2016-12-19 2016-12-19 一种高应变钛酸铋钠基陶瓷及其制备方法 Active CN107056281B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611179209.4A CN107056281B (zh) 2016-12-19 2016-12-19 一种高应变钛酸铋钠基陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611179209.4A CN107056281B (zh) 2016-12-19 2016-12-19 一种高应变钛酸铋钠基陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN107056281A true CN107056281A (zh) 2017-08-18
CN107056281B CN107056281B (zh) 2020-04-07

Family

ID=59619632

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611179209.4A Active CN107056281B (zh) 2016-12-19 2016-12-19 一种高应变钛酸铋钠基陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN107056281B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109483716A (zh) * 2018-11-12 2019-03-19 湖北鑫来利陶瓷发展有限公司 利用大理石废料生产的仿古砖及其生产工艺
CN112341192A (zh) * 2020-11-20 2021-02-09 西安合容新能源科技有限公司 一种高储能密度钛酸铋钠基无铅介质材料及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101058505A (zh) * 2007-06-01 2007-10-24 清华大学 一种提高钛酸铋钠基无铅压电陶瓷性能的方法
JP2012074567A (ja) * 2010-09-29 2012-04-12 Taiheiyo Cement Corp 圧電セラミックスの検査方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101058505A (zh) * 2007-06-01 2007-10-24 清华大学 一种提高钛酸铋钠基无铅压电陶瓷性能的方法
JP2012074567A (ja) * 2010-09-29 2012-04-12 Taiheiyo Cement Corp 圧電セラミックスの検査方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
THI HINH DINH ET AL.: "Comparison of structural, ferroelectric, and strain properties between A-site donor and acceptor doped Bi1/2(Na0.82K0.18)1/2TiO3 ceramics", 《CERAMICS INTERNATIONAL》 *
YING YUAN ET AL.: "Phase transitions and electrical properties in La3+-substituted Bi0.5(Na0.75K0.15Li0.10)0.5TiO3 ceramics", 《J MATER SCI》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109483716A (zh) * 2018-11-12 2019-03-19 湖北鑫来利陶瓷发展有限公司 利用大理石废料生产的仿古砖及其生产工艺
CN109483716B (zh) * 2018-11-12 2020-10-30 湖北鑫来利陶瓷发展有限公司 利用大理石废料生产的仿古砖及其生产工艺
CN112341192A (zh) * 2020-11-20 2021-02-09 西安合容新能源科技有限公司 一种高储能密度钛酸铋钠基无铅介质材料及其制备方法
CN112341192B (zh) * 2020-11-20 2022-07-22 西安合容新能源科技有限公司 一种高储能密度钛酸铋钠基无铅介质材料及其制备方法

Also Published As

Publication number Publication date
CN107056281B (zh) 2020-04-07

Similar Documents

Publication Publication Date Title
CN113666744B (zh) 一种成分梯度铌酸钾钠基无铅压电陶瓷及其制备方法
CN111302797B (zh) 一种铌酸钾钠基无铅压电陶瓷及其制备方法
CN107698252A (zh) 一种陶瓷材料作为高温稳定压电能量收集材料的应用及制备方法
CN101604566B (zh) 一种适合低浪涌电压电器使用的氧化锌压敏电阻材料及制备方法
CN109796205B (zh) 一种铋层状结构钛钽酸铋高温压电陶瓷材料及其制备方法
CN102643086B (zh) 一种二氧化锡基压敏电阻材料及制备方法
CN106518070B (zh) 一种多元系高压电活性压电陶瓷材料及其制备方法
CN107117965A (zh) 掺杂改性的铌镍酸铅‑锆钛酸铅压电陶瓷及其制备方法
CN107089832A (zh) 一种基于铌锌、铌镍锆钛酸铅的压电陶瓷及其制备方法
CN107056281A (zh) 一种高应变钛酸铋钠基陶瓷及其制备方法
CN106365636A (zh) 一种高居里温度铌酸锶钡热释电陶瓷材料及其制备方法
KR101681386B1 (ko) 무연 압전 세라믹 조성물 및 이의 제조방법
CN104230333B (zh) 一种高温压电陶瓷材料及其制备方法
CN103880416B (zh) 钛酸铋钠基无铅压电陶瓷的低温烧结制备方法
CN106699177B (zh) 一种具有高发电特性的无铅压电能量收集材料及其制备方法
JP2016175824A (ja) 圧電デバイス
CN113511893A (zh) 一种bnt基三层结构的高储能密度陶瓷及其制备方法
CN1562877A (zh) 一种掺杂改性钛酸铋钠钾压电陶瓷及其制备方法
CN108101537A (zh) 一种纳米压电陶瓷能量收集材料及其制备方法
CN104402426B (zh) 一种铁酸铋-钛酸铅-铌锌酸铅(bf-pt-pzn)三元体系高温压电陶瓷
CN105272235A (zh) 一种基于铌镍锆钛酸铅三价掺杂的压电陶瓷及其制备方法
CN100530737C (zh) 一种高频3-3型复合压电陶瓷元件的制作方法
CN102718482A (zh) 压电陶瓷材料及其制备方法、压电发电振子
TW200900371A (en) Method for manufacturing piezoelectric ceramic
CN104557038A (zh) 一种复合体系热释电陶瓷材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant