CN110312692A - 包含赝立方相的陶瓷材料、其制备方法和用途 - Google Patents

包含赝立方相的陶瓷材料、其制备方法和用途 Download PDF

Info

Publication number
CN110312692A
CN110312692A CN201880010087.7A CN201880010087A CN110312692A CN 110312692 A CN110312692 A CN 110312692A CN 201880010087 A CN201880010087 A CN 201880010087A CN 110312692 A CN110312692 A CN 110312692A
Authority
CN
China
Prior art keywords
ceramic material
tio
phase
ceramic
precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201880010087.7A
Other languages
English (en)
Other versions
CN110312692B (zh
Inventor
大卫·卡恩
B·吉邦斯
彼得·马迪洛维奇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seer Technology Co Ltd
Xaar Technology Ltd
Original Assignee
Seer Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seer Technology Co Ltd filed Critical Seer Technology Co Ltd
Publication of CN110312692A publication Critical patent/CN110312692A/zh
Application granted granted Critical
Publication of CN110312692B publication Critical patent/CN110312692B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14201Structure of print heads with piezoelectric elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14201Structure of print heads with piezoelectric elements
    • B41J2/14233Structure of print heads with piezoelectric elements of film type, deformed by bending and disposed on a diaphragm
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G29/00Compounds of bismuth
    • C01G29/006Compounds containing, besides bismuth, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/475Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on bismuth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6263Wet mixtures characterised by their solids loadings, i.e. the percentage of solids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/6342Polyvinylacetals, e.g. polyvinylbutyral [PVB]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/09Forming piezoelectric or electrostrictive materials
    • H10N30/093Forming inorganic materials
    • H10N30/097Forming inorganic materials by sintering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/204Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using bending displacement, e.g. unimorph, bimorph or multimorph cantilever or membrane benders
    • H10N30/2047Membrane type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/802Circuitry or processes for operating piezoelectric or electrostrictive devices not otherwise provided for, e.g. drive circuits
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8536Alkaline earth metal based oxides, e.g. barium titanates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8542Alkali metal based oxides, e.g. lithium, sodium or potassium niobates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8561Bismuth-based oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2202/00Embodiments of or processes related to ink-jet or thermal heads
    • B41J2202/01Embodiments of or processes related to ink-jet heads
    • B41J2202/03Specific materials used
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/34Three-dimensional structures perovskite-type (ABO3)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3237Substoichiometric titanium oxides, e.g. Ti2O3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3248Zirconates or hafnates, e.g. zircon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3248Zirconates or hafnates, e.g. zircon
    • C04B2235/3249Zirconates or hafnates, e.g. zircon containing also titanium oxide or titanates, e.g. lead zirconate titanate (PZT)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/761Unit-cell parameters, e.g. lattice constants
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/765Tetragonal symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/768Perovskite structure ABO3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/788Aspect ratio of the grains
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/79Non-stoichiometric products, e.g. perovskites (ABO3) with an A/B-ratio other than 1

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明涉及铋基固溶体陶瓷材料,以及该陶瓷材料的制备方法、及其用途,特别是用于在例如液滴沉积设备中采用的致动器组件。特别地,本发明涉及具有化学通式(I)的陶瓷材料:(I):x(Bi0.5Na0.5)TiO3‑y(Bi0.5K0.5)TiO3‑z1SrHfO3‑z2SrZrO3,其中:x+y+z1+z2=1;y、(z1+z2)≠0;x≥0。在实施方案中,本发明还涉及具有化学通式(II)的陶瓷材料:x(Bi0.5Na0.5)TiO3‑y(Bi0.5K0.5)TiO3‑z1SrHfO3‑z2SrZrO3,其中:x+y+z1+z2=1;x、y、(z1+z2)≠0;以及通式(III)的陶瓷材料:y(Bi0.5K0.5)TiO3‑z1SrHfO3‑z2SrZrO3,其中:y+z1+z2=1;y、(z1+z2)≠0。

Description

包含赝立方相的陶瓷材料、其制备方法和用途
技术领域
本发明涉及铋基固溶体陶瓷材料,以及该陶瓷材料的制备方法及其用途。特别是,本发明涉及具有化学通式(I)的陶瓷材料:x(Bi0.5Na0.5)TiO3-y(Bi0.5K0.5)TiO3-z1SrHfO3-z2SrZrO3,其中x+y+z1+z2=1;y、(z1+z2)≠0;x≥0;其在液滴沉积设备的致动器组件中是特别有用的。在实施方案中,本发明还涉及具有化学通式(II)的陶瓷材料:x(Bi0.5Na0.5)TiO3-y(Bi0.5K0.5)TiO3-z1SrHfO3-z2SrZrO3,其中x+y+z1+z2=1;x、y、(z1+z2)≠0;以及通式(III)的陶瓷材料:y(Bi0.5K0.5)TiO3-z1SrHfO3-z2SrZrO3,其中y+z1+z2=1;y、(z1+z2)≠0。
背景技术
对于包括例如,机械继电器、数码相机和喷墨打印机在内的许多装置需要致动器材料以产生电场诱导的应变。致动器材料的组成和晶体结构对于确定致动器特性是至关重要的。一般的致动器材料包括当暴露于外部电场时形状经历物理变化的压电材料。然而,不是必然呈现压电效应的介电材料也可以潜在地作为致动器应用。
原则上,所有介电材料均展现电致伸缩,其特征在于,在电场的施加下形状变化。电致伸缩通过在暴露于外部电场时离子在晶格内的位移而产生;正离子沿电场的方向位移和负离子沿相反的方向位移。该位移在整个块状材料中累积并且导致沿电场方向的总体宏观应变(伸长)。由此,在施加外部电场时,介电材料的厚度将以泊松比为特征沿正交方向减小。与仅在某类电介质中观察到的主要线性效应的相关压电效应相比,已知电致伸缩为二次效应。
致动器材料的关键性能特征包括装置操作中的有效压电系数d33*、d33*的温度依赖性和d33*的长期稳定性。锆钛酸铅(PZT)、Pb(ZrxTi1-x)O3、及其相关固溶体为众所周知的一类已发现广泛用于利用压电致动的应用中的陶瓷钙钛矿型压电材料。然而,由于新出现的环境法规,驱动开发新的无铅致动器材料。
对于潜在的致动器应用,可选择的无铅介电材料的电场诱导的应变行为受到了明显的关注,所述无铅介电材料的实例包括(K,Na)NbO3基材料、(Ba,Ca)(Zr,Ti)O3基材料和(Bi,Na,K)TiO3基材料。具有钙钛矿型结构的陶瓷在这方面已经特别受关注。构成原子使晶胞容易变形,产生各种铁电活性非立方钙钛矿相,例如具有四方、菱方、正交或单斜对称的那些。对取代原子的相对大的空间容忍性有利于化学改性,使得能够定制功能特性。当施加外部电场时,这些钙钛矿型结构的陶瓷随着其宏观极化状态的变化而变形。
特别是在追求无铅致动器材料方面广泛研究了钙钛矿型化合物钛酸铋钠(Bi0.5Na0.5)TiO3("BNT"),其包括包含BNT和其它旨在提高BNT的介电和压电特性的组分的固溶体。WO 2012/044313和WO 2012/044309记载了一系列基于BNT和(Bi0.5K0.5)TiO3("BKT")与(Bi0.5Zn0.5)TiO3("BZT")、(Bi0.5Ni0.5)TiO3("BNiT")或(Bi0.5Mg0.5)TiO3("BMgT")的组合的三元组成的无铅压电材料。WO 2014/116244也记载了BiCoO3与钙钛矿型化合物如BaTiO3("BT")、(Na,K)NbO3("KNN")、BNT和BKT等一起的三元组成。
展现巨大电应变的钙钛矿型陶瓷材料已成为潜在致动器应用的增长焦点。例如,在BNT-BT-KNN钙钛矿型陶瓷体系的情况下发现了巨大电场诱导的应变,这被认为是追求无铅陶瓷的一个特别令人感兴趣的发现,其可能在致动器应用中与PZT竞争。据推测,如JElectroceram(2012)29:71-93中所讨论的,在由外部电场驱动的某些钙钛矿型陶瓷中,期望的巨大电应变,如由BNT-BT-KNN所展示的巨大电应变,可能归因于从无序的遍历(非极性)弛豫状态到长程非遍历(极性)铁电有序状态的可逆相变。BNT-BT-KNN钙钛矿型陶瓷体系中的巨大应变特性例如,通过J Electroceram(2012)29:71-93的图9中的组成依赖的应变滞后回路(loop)来说明。
在J Electroceram(2012)29:71-93中表明,通过压电效应展现的巨大电应变是应变产生的相变的结果,并且这种现象以新的方式扩展了致动器应用的机会。此外,还指出,展现出巨大电场诱导的应变的基于BNT的体系有潜力在致动器应用领域取代PZT,前提是可以克服某些挑战,如相对大的驱动电场和频率依赖性、以及温度不稳定性。
Bai等人,在Dalton Trans.,2016,45,8573-8586中记载了无铅BNT-BT-BZT陶瓷体系,和如通过X射线衍射(XRD)测量、拉曼光谱分析以及极化和应变滞后回路的温度依赖的变化确认的,将BZT添加至BNT-BT的固溶体中如何对相变特性和机电性能具有强烈影响。Bai等人记载了BZT的添加“破坏”铁电有序以在零电场下产生“非极性”相。在施加电场时,BNT-BT-BZT陶瓷材料从四方和菱方结构的赝立方混合相转变为纯菱方相。
仍然需要展现出与用于致动器应用的相变机制相关联的巨大电应变并且没有与大电场和频率依赖性和/或温度不稳定性相关的缺陷的替代的无铅钙钛矿型陶瓷材料。本发明基于展现巨大电应变、同时还展现特别适用于致动器应用的其它特性的新的铋基陶瓷材料的发现。
发明内容
因此,在第一方面,本发明涉及具有化学通式(I)的固溶体陶瓷材料:
(I):x(Bi0.5Na0.5)TiO3-y(Bi0.5K0.5)TiO3-z1SrHfO3-z2SrZrO3
其中:x+y+z1+z2=1;y、(z1+z2)≠0;x≥0,并且
其中,该陶瓷材料包含轴比c/a为0.995~1.005和/或菱形体角为90±0.5度的赝立方相。式(I)的陶瓷材料能够进行从赝立方相至轴比c/a在1.005与1.02之间(即,大于1.005且小于1.02)的四方相的可逆的场诱导的相变。
本发明的一个实施方案涉及具有化学通式(II)的固溶体陶瓷材料:
(II):x(Bi0.5Na0.5)TiO3-y(Bi0.5K0.5)TiO3-z1SrHfO3-z2SrZrO3
其中:x+y+z1+z2=1;x、y、(z1+z2)≠0;和
其中该陶瓷材料包含轴比c/a为0.995~1.005和/或菱形体角为90±0.5度的赝立方相。式(II)的陶瓷材料能够进行从赝立方相至轴比c/a在1.005与1.02之间(即,大于1.005且小于1.02)的四方相的可逆的场诱导的相变。
本发明的另一实施方案涉及具有化学通式(III)的固溶体陶瓷材料:
(III):y(Bi0.5K0.5)TiO3-z1SrHfO3-z2SrZrO3
其中:y+z1+z2=1;y、(z1+z2)≠0;
其中该陶瓷材料包含轴比c/a为0.995~1.005和/或菱形体角为90±0.5度的赝立方相。式(III)的陶瓷材料能够进行从赝立方相至轴比c/a在1.005与1.02之间(即,大于1.005且小于1.02)的四方相的可逆的场诱导的相变。
本发明还提供式(I)的陶瓷材料和根据式(II)和式(III)的陶瓷材料子集的制备方法,式(I)、(II)或(III)的陶瓷材料可逆地转变为包含占主要比例的四方相的陶瓷材料的方法,以及包含式(I)、(II)或(III)的陶瓷材料的致动器组件和液滴沉积设备。
附图说明
图1:示出BNT-BKT-Sr(Hf,Zr)O3固溶体的相图以及改变钙钛矿型化合物成分的摩尔分数对于对称性的影响;
图2:示出具有以下摩尔分数的BNT-BKT-SrHfO3-SrZrO3陶瓷的XRD衍射图:i)45-45-10-0;ii)45-45-0-10;和iii)45-45-5-5;
图3a-b:示出具有以下摩尔分数的BNT-BKT-SrHfO3-SrZrO3陶瓷的XRD衍射图;a)46.5-46.5-3.75-3.75;和b)46.5-46.5-0-7.5;
图4:示出具有以下摩尔分数的BNT-BKT-SrHfO3-SrZrO3陶瓷的XRD衍射图:i)47.5-47.5-2.5-2.5;ii)47.5-47.5-0-5;和iii)47.5-47.5-5-0;
图5a-b:示出具有以下摩尔分数的BNT-BKT-SrHfO3-SrZrO3陶瓷的XRD衍射图:a)48.75-48.75-0-2.5;和b)48.75-48.75-1.25-1.25;
图6a-c;示出具有以下摩尔分数的BNT-BKT-SrHfO3-SrZrO3陶瓷在1、10和100kHz下测量的相对介电常数和介电损耗(tanδ)的温度依赖性的图:a)47.5-47.5-5-0;b)47.5-47.5-0-5;和c)47.5-47.5-2.5-2.5;
图7a-c:示出具有以下摩尔分数的BNT-BKT-SrHfO3-SrZrO3陶瓷的在10Hz和室温(25℃)下测量的极化强度对电场强度的图:a)47.5-47.5-2.5-2.5;b)47.5-47.5-5-0;和c)47.5-47.5-0-5;
图8a-c:示出具有以下摩尔分数的BNT-BKT-SrHfO3-SrZrO3陶瓷的在10Hz和室温下测量的机电应变对电场强度的图:a)47.5-47.5-5-0;b)47.5-47.5-0-5;和c)47.5-47.5-2.5-2.5;
图9a-b:示出具有48.5-48.5-1.25-1.25的摩尔分数的BNT-BKT-SrHfO3-SrZrO3陶瓷的在10Hz和室温下测量的极化强度对电场强度的图;和
图10a-b;示出具有48.5-48.5-1.25-1.25的摩尔分数的BNT-BKT-SrHfO3-SrZrO3陶瓷的在10Hz和室温下测量的机电应变对电场强度的图。
具体实施方式
本发明人惊奇地发现,基于具有特定相特征的某些钙钛矿型化合物的选择,可以制备展现巨大电应变的特别有利的陶瓷材料,当其组合以形成固溶体时,能够产生作为特别是从赝立方相到四方相的相变的结果的电场诱导的应变。这对应于“交叉(cross-over)”或“弛豫-铁电转变(relaxor-to-ferroelectric transition)”机制的形式,通过该机制可以使用电场来诱导应变。
通常,为了制备展现特别期望的相变的陶瓷材料,本发明人发现通过向固溶体中引入一种或多种另外的钙钛矿型化合物("无序相")来改变呈现四方相(“母相”)的固溶体陶瓷材料是有利的。无序相的添加起到破坏母相的长程四方有序(即支撑四方相的长程电偶极有序)的作用,使所得到的陶瓷材料在没有施加电场的情况下展现赝立方相。当对具有赝立方相的陶瓷材料施加电场时,可以观察到巨大电应变,其与从赝立方相至四方相的转变相关,与母相相关。
本发明人已发现,特别有利的是提供具有轴比c/a在1.005与1.02之间的四方相的母相。轴比c/a基于钙钛矿晶胞的晶格参数来定义,具体地,定义为晶体(001)轴(c)的长度除以(100)轴(a)的长度。期望的轴比c/a可以通过以一定的摩尔比组合形成母相的钙钛矿型化合物来实现。在这方面,可以使用X射线衍射(XRD)分析,例如,采用Cu Kα辐射容易地识别陶瓷材料的相和晶体结构,包括轴比c/a。
根据本发明,母相的轴比c/a对通过电场诱导的相变产生的应变的大小具有影响。已发现轴比c/a在1.005和1.02之间的母四方相基于总极化和应变水平是特别有用的。当太大的轴比c/a与母相相关时,可能难以获得电场诱导的转变(例如需要高矫顽场)。相对地,当太小的轴比c/a与母相相关时,来自相变的总诱导的应变可能太小。本发明人已经发现轴比c/a在1.005和1.02之间的母相在实际电场水平下例如在大约10至30kV/cm下引起大的电场诱导的应变。
根据本发明的一个方面,具有所期望的轴比c/a的母相可以容易地制备为四方钙钛矿型化合物和非四方钙钛矿型化合物例如低容忍因子钙钛矿型化合物(例如立方、正交、单斜或菱方钙钛矿型化合物)的固溶体。众所周知,钙钛矿容忍因子主要是描述钙钛矿型结构"ABX3"中的A-和B-位的相对堆积密度的几何参数。由此,非四方钙钛矿型化合物可以以适当的摩尔比,与四方钙钛矿型化合物以固溶体的形式包含,这为母相提供所期望的轴比c/a。
根据本发明的一个方面,母相具体对应于BNT和BKT的固溶体。BKT为轴比c/a为1.019的四方铁电钙钛矿型化合物,而BNT是非四方钙钛矿型化合物,并且已知为轴比c/a接近于1.0的菱方或赝立方钙钛矿型化合物。当这些钙钛矿型化合物以固溶体的形式组合时,轴比c/a为各组分的摩尔分数的函数,因此可以制备具有在1.005与1.02之间的期望的轴比c/a的母相。这可以通过具有以特定的摩尔比存在的BNT和BKT的BNT和BKT的二元组合(即代表母相)的XRD分析来证实。然后,该相同摩尔比的BNT与BKT可用于制备根据本发明的进一步包含无序相(即,钙钛矿型化合物SrHfO3、SrZrO3或其混合物)的固溶体陶瓷材料。这意味着所得的固溶体陶瓷材料能够进行与母相相关的从赝立方相至四方相的电场诱导的可逆相变。
可选择地,具有期望的轴比c/a的母相可以通过单一的四方钙钛矿型化合物来提供。根据本发明的该方面,母相具体对应于BKT。如上所述,BKT为轴比c/a为1.019的四方铁电钙钛矿型化合物。
为了有益于电场诱导的应变,本发明依赖于相变作为“交叉”或“弛豫-铁电转变”机制的一部分。根据本发明,通过将无序相引入至母相中以形成具有改变的晶体结构的固溶体,可以制备展现此类性质的陶瓷材料。这在图1中示出,其显示了BNT-BKT-Sr(Hf,Zr)O3的固溶体的相图,并且示出改变与母相和无序相相关的钙钛矿组分的摩尔分数的影响。特别地,无序相以足以破坏母相的长程四方有序的摩尔比添加至母相中,使得所得的固溶体陶瓷材料呈现赝立方相,其中赝立方相本文中被定义为具有轴比c/a为0.995~1.005和/或菱形体角为90±0.5度。
具体地,根据本申请所使用的无序相源自钙钛矿SrHfO3、SrZrO3或其混合物。将Sr2 +引入至固溶体中填充钙钛矿型结构的A位,这对于破坏四方相的长程偶极有序是特别有效的,因为其尺寸和电子结构与源自BNT-BKT或BKT母相的Bi3+和Na+/K+阳离子显著不同。类似地,在钙钛矿型结构的B位上添加Zr4+和/或Hf4+引起无序,因为与源自母相的Ti4+相比离子尺寸增大(与Zr4+和Hf4+相比,Ti4+的离子半径为)。SrHfO3、SrZrO3或其混合物的添加的累积效应导致固溶体从四方/极性到赝立方/非极性的总体对称性改变。
由此,本发明涉及用于致动器应用的、优选用作液滴沉积设备中的致动器组件的固溶体陶瓷材料,其具有化学通式(I):
(I):x(Bi0.5Na0.5)TiO3-y(Bi0.5K0.5)TiO3-z1SrHfO3-z2SrZrO3
其中:x+y+z1+z2=1;y、(z1+z2)≠0;x≥0并且
其中,该陶瓷材料包含轴比c/a为0.995~1.005和/或菱形体角为90±0.5度的赝立方相。式(I)的陶瓷材料能够进行从赝立方相至轴比c/a在1.005与1.02之间(即,大于1.005且小于1.02)的四方相的可逆的场诱导的相变。
本发明还涉及根据式(II)和式(III)的以上式(I)的化合物的子集。
因此,在一个实施方案中,本发明还涉及具有化学通式(II)的陶瓷材料;
(II):x(Bi0.5Na0.5)TiO3-y(Bi0.5K0.5)TiO3-z1SrHfO3-z2SrZrO3
其中:x+y+z1+z2=1;x、y、(z1+z2)≠0;和
其中该陶瓷材料包含轴比c/a为0.995~1.005和/或菱形体角为90±0.5度的赝立方相。以上术语x、y、z1和z2描述了陶瓷材料中BNT、BKT、SrHfO3和SrZrO3的摩尔关系(即,摩尔分数)。
在另一实施方案中,本发明还涉及具有化学通式(III)的陶瓷材料:
(III):y(Bi0.5K0.5)TiO3-z1SrHfO3-z2SrZrO3
其中:y+z1+z2=1;y、(z1+z2)≠0;和
其中该陶瓷材料包含轴比c/a为0.995~1.005和/或菱形体角为90±0.5度的赝立方相。以上术语y、z1和z2描述了陶瓷材料中BKT、SrHfO3和SrZrO3的摩尔关系。
如本领域技术人员所理解的,本发明的式(I)、(II)或(III)的陶瓷材料在零电场并且在标准温度和压力的条件下(即25℃和1.01巴(101kPa))展现轴比c/a为0.995~1.005和/或菱形体角为90±0.5度的赝立方相。式(I)、(II)或(II)的陶瓷材料还能够在标准温度和压力的条件下(即25℃和1.01巴(101kPa))进行从赝立方相至轴比c/a在1.005与1.02之间的四方相的场诱导的可逆相变。
如果需要,计算机模拟可用于帮助评估在不同的化合物摩尔比的情况下,BKT/BNT与SrHfO3和/或SrZrO3的组合的固溶体的结晶学性质。技术人员熟悉可以在这方面使用的许多开源软件包。例如,可以使用分子动力学模拟器软件,如来自Sandia NationalLaboratories的大规模原子/分子大规模并行模拟器(LAM PS),以预测不同结晶组分的固溶体的稳定性。可选择地或另外地,也可以使用密度泛函理论(DFT)软件,如OpenMX。
本文使用的术语“固溶体”是指组合以形成新的结晶固体或晶格的两种或多种结晶固体的混合物,所述新的结晶固体或晶格由组成化合物的元素的组合构成。可以理解,本文提及的根据式(I)、(II)或(III)的固溶体陶瓷材料可以基本上由其组成结晶化合物以及掺杂剂和不可避免的杂质组成。固溶体存在于组成化合物的部分或全部比例或摩尔比范围内,其中至少一种组成化合物可以被认为是“溶剂”相。
本文使用的术语“掺杂剂”是指可以溶解在本发明的陶瓷材料的固溶体中的含金属组分,以改变陶瓷材料的性能或工程特性,而不会对固溶体的整个相和对称特性具有任何材料影响。例如,掺杂剂可用于改变晶粒尺寸和域移动(domain mobility),或改善电阻率(例如通过补偿过量的电荷载流子),温度依赖性和疲劳性质。
合适的掺杂剂的实例包括包含金属阳离子,优选选自Mn、Mg、Nb和Ca等的材料,例如MnO2,MgO,Nb2O5和CaO。优选地,本发明的固溶体陶瓷材料包含小于5wt.%、优选小于2wt.%、更优选小于0.5wt.%的掺杂剂。在其它优选实施方案中,本发明的固溶体陶瓷材料不含掺杂剂。
式(I)、(II)和(III)的固溶体陶瓷材料包含单一的主要结晶相,即陶瓷材料具有其微结构的主要部分(即,高于50体积%),其对应于特定的结晶相(即,赝立方相)。因此,换言之,在式(I)、(II)和(III)的固溶体陶瓷材料在其微结构中包含多个结晶组分的情况下,存在单一结晶相作为陶瓷材料微结构的主要部分。可能存在的其它结晶相整体表示陶瓷材料微结构的一小部分。固溶体的主要结晶相的晶格尺寸和物理与化学性质是组成的连续函数。随着组成改变,晶格对称性可以通过结构的均匀畸变(distortion)而在所述组成范围内变化。在优选实施方案中,式(I)、(II)或(III)的陶瓷材料包含至少70体积%、更优选至少80体积%、甚至更优选至少90体积%、还更优选至少95体积%的赝立方相。最优选地,式(I)、(II)或(III)的固溶体陶瓷材料基本上是均匀的,仅具有单一结晶相。
在施加的电场的存在下,式(I)、(II)或(III)的陶瓷材料的主要晶相可逆地从赝立方相转变为轴比c/a在1.005与1.02之间的四方相。因此,类似地,陶瓷材料的主要结晶相在场诱导的相变之后变为四方相(即,在场诱导的相变之后,大于50体积%的陶瓷材料微结构是四方的)。
式(I)、(II)或(III)的固溶体陶瓷材料可以在大的温度范围内展现相稳定性(即在大的温度范围内不发生温度诱导的相变)。陶瓷材料还可以在大的温度范围内经历本文所讨论的场诱导的相变。在优选的实施方案中,根据本发明的式(I)、(II)或式(III)的固溶体陶瓷材料在-50℃至200℃、更优选-5℃至150℃、还更优选0℃至100℃的温度范围内展现相稳定性并且对于根据本发明的场诱导的相变具有活性。
在本发明的一些实施方案中,用于制备本发明陶瓷材料的无序相对应于SrHfO3和SrZrO3的混合物,使得在上述式(I)、(II)或(III)中z1和z2≠0。在其它实施方案中,SrHfO3或SrZrO3单独存在于陶瓷材料中。
因此,在一些实施方案中,z1=0并且陶瓷材料具有通式(II)(a):
(II)(a):x(Bi0.5Na0.5)TiO3-y(Bi0.5K0.5)TiO3-z2SrZrO3
在其它实施方案中,z2=0并且陶瓷材料具有通式(II)(b):
(II)(b):x(Bi0.5Na0.5)TiO3-y(Bi0.5K0.5)TiO3-z1SrHfO3
在其它实施方案中,z1=0并且陶瓷材料具有通式(III)(a):
(III)(a):y(Bi0.5K0.5)TiO3-z2SrZrO3
在其它实施方案中,z2=0并且陶瓷材料具有通式(III)(b):
(III)(b):y(Bi0.5K0.5)TiO3-z1SrHfO3
如上所讨论,本发明的优点源于特别是从赝立方相至四方相的场诱导的转变。从概念上讲,这可以被认为对应于与母体赝立方相和四方相相关的主要结晶结构之间的转变。在母相中采用BNT和BKT的情况下,在式(I)或式(II)的陶瓷材料中采用的BNT与BKT的摩尔比对应于适合于易于场诱导的从赝立方相至轴比c/a在1.005与1.02之间的四方相的相变的摩尔比。优选地,式(I)、(II)或(III)的陶瓷材料经历场诱导的相变至轴比c/a在1.01与1.02之间的四方相。
通过利用式(I)或式(II)的陶瓷材料中BNT与BKT的摩尔比可以提供与本发明的陶瓷材料相关的特征场诱导的转变,这将在固溶体中的这两种钙钛矿型化合物的二元混合物中(即,在这些化合物的二元母相中)提供轴比c/a在1.005与1.02之间、优选轴比c/a在1.01与1.02之间的四方相。
已发现对应于:0.25≤x≤0.65,优选0.35≤x≤0.55,更优选0.40≤x≤0.50的式(II)的陶瓷材料中BNT的摩尔分数特别适合。
根据本发明,已发现对应于:0.25≤y≤0.75,优选0.35≤y≤0.55,更优选0.40≤y≤0.50的式(II)的陶瓷材料中BKT的摩尔分数特别适合。
根据本发明,已发现对应于:0.01≤(z1+z2)≤0.15,优选0.02≤(z1+z2)≤0.10,更优选0.04≤(z1+z2)≤0.08的式(II)的陶瓷材料中的SrHfO3和/或SrZrO3的摩尔分数特别适合。
在特别优选的实施方案中,式(II)的陶瓷材料中BNT、BKT、SrHfO3和/或SrZrO3的摩尔分数对应于0.40≤x≤0.50;0.40≤y≤0.50;和0.02≤(z1+z2)≤0.10。
根据本发明,已发现对应于:0.75≤y≤0.99,优选0.80≤y≤0.98,更优选0.90≤y≤0.95的式(III)的陶瓷材料中BKT的摩尔分数特别适合。
根据本发明,已发现对应于:0.01≤(z1+z2)≤0.25,优选0.02≤(z1+z2)≤0.20,更优选0.04≤(z1+z2)≤0.10的式(III)的陶瓷材料中SrHfO3和/或SrZrO3的摩尔分数特别适合。
本发明的式(I)、(II)或(III)的陶瓷材料优选具有由例如在1Hz下的极化滞后测量所确定的小于<5μC/cm2的剩余极化强度。
本发明的式(I)、(II)或(III)的陶瓷材料优选具有50~500pm/V的有效压电应变系数d33*。这里参考有效压电系数(d33*)是指通过将最大机电应变(Smax)除以最大施加电场(Emax)(d33*=Smax/Emax)确定的压电系数。
当在10Hz和在标准温度和压力(即25℃和1.01巴(101kPa))下测量时,本发明的式(I)、(II)或(III)的陶瓷材料优选具有0.1%至0.5%的最大机电应变值。
本发明的式(I)、(II)或(III)的陶瓷材料优选具有由例如在1Hz下的极化滞后测量所确定的10~50μC/cm2的场诱导的极化强度。
有效压电系数(d33*)、机电应变响应和极化滞后可以使用本领域技术人员熟悉的任何合适的测量装置,包括例如配备有干涉仪的AixACCT压电表征系统来测量。
本发明的式(I)、(II)或(III)的陶瓷材料可以使用适当量的选自纯度为至少99%的Bi2O3、TiO2、Na2CO3、K2CO3、SrCO3、ZrO2和HfO2起始粉末的前体通过本领域技术人员熟悉的任何合适的固态合成方法来制备。通常,用于制备陶瓷材料的常规固态合成方法包括研磨粉末前体,然后成形和煅烧以生产所期望的陶瓷产品。研磨可以是湿式或干式研磨。例如,可以使用高能振动研磨来混合起始粉末,以及用于煅烧后研磨。在采用湿式研磨的情况下,将粉末与合适的液体(例如,乙醇或水,或其组合)混合,并且用合适的高密度研磨介质(例如,氧化钇稳定的氧化锆(YSZ)珠)湿式研磨。将研磨的粉末煅烧,然后与粘结剂混合,成形为所期望的形状(例如,丸粒)并且烧结,以生产具有高烧结密度的陶瓷产品。
出于测试目的,在电测量之前,可以将陶瓷盘抛光至合适的厚度(例如,0.9mm),并且将银糊剂(例如,Heraeus C1000)施加到盘的两侧。根据预期的最终用途,可以将高密度陶瓷盘或丸粒抛光至在约0.5pm至约1pm的范围内的厚度。
式(I)、(II)或(III)的固溶体陶瓷材料也可以通过任何合适的沉积方法以薄膜的形式来制作。例如,可以使用适当的前体采用原子层沉积(ALD)、化学气相沉积(CVD)(包括等离子体增强化学气相沉积(PECVD)和金属有机化学气相沉积(MOCVD))和化学溶液沉积(CSD)。合适的前体的实例包括异丙醇钛(IV)、丁醇钛、乙酸铋、硝酸铋、2-乙基己酸铋、乙酸钡、硝酸钡、2-乙基己酸钡、三水合乙酸钠、硝酸钠、乙酸钾、硝酸钾、四水合乙酸镁、硝酸镁、乙酸锌和硝酸锌。适当时可以在这些方法中使用的合适溶剂包括醇类(例如甲醇、乙醇和1-丁醇)和有机酸类(例如乙酸和丙酸)。适当时可以在这些方法中使用的合适的稳定剂包括乙酰丙酮和二乙醇胺。如果需要,也可以采用使用固态烧结的或热压的陶瓷靶的溅射。此类薄膜可以具有在0.3μm至5μm的范围内、优选在0.5μm至3μm的范围内的厚度。
在将固溶体陶瓷材料制造成薄膜的情况下,应当理解,与薄膜相关的拉伸应力会影响场诱导的应变和有效压电系数d33*的大小。本领域技术人员能够确定与所制造的薄膜相关的残余拉伸应力的程度,并采取措施来控制这种应力(例如,利用热退火来缓解应力,通过设计器件结构来实现所期望的应力状态,以及通过调节膜厚度),以获得与本发明的固溶体陶瓷材料相关的场诱导的应变的最大益处。
可以理解,例如,当将固溶体陶瓷材料制造为形成以下将进一步详细描述的液滴沉积设备的致动器组件的一部分的薄膜时,也可以使用该方法。本领域技术人员能够适应或减轻由致动器组件的配置产生的内应力(intrinsic stresses),以确保响应于电场,与本发明的陶瓷材料相关的可逆相变是可能的。因此,当应用于液滴沉积设备时,本领域技术人员能够确保由于通过将喷射波形施加到由陶瓷材料形成的致动器元件而引起的可逆相变导致的电场诱导的应变的增益或损失足以引起液滴喷射。在一个实例中,这可以通过适当设计喷射波形来实现。例如,这可以包括识别用于喷射波形的合适幅度(例如,合适的峰-峰值幅度)和/或识别合适的最大和最小电压值(具有在最大和最小电压值之间变化时发生的特征相变)。如此设计的喷射波形可以适应或减轻内应力对引起可逆相变所必需的条件的影响。
根据另一方面,本发明还提供一种将如上所述的式(I)、(II)或(III)的陶瓷材料可逆地转化为包含占主要比例的四方相的陶瓷材料的方法,所述方法包括向式(I)、(II)或(III)的陶瓷材料施加电场的步骤。优选地,四方相的轴比c/a在1.005与1.02之间。
根据又一方面,本发明还提供具有化学通式(II)的固溶体陶瓷材料的制备方法:
(II):x(Bi0.5Na0.5)TiO3-y(Bi0.5K0.5)TiO3-z1SrHfO3-z2SrZrO3
其中:x+y+z1+z2=1;x、y、(z1+z2)≠0;
其中该陶瓷材料包含轴比c/a为0.995~1.005和/或菱形体角为90±0.5度的赝立方相;
所述方法包括以下步骤:
i)以预定的摩尔比混合陶瓷材料的各组分的前体;
ii)在固态合成时利用步骤i)中所形成的前体混合物以制备根据式(II)的陶瓷材料;
其中前体的预定的摩尔比基于以下来确定:a)在二元(Bi0.5Na0.5)TiO3-(Bi0.5K0.5)TiO3基陶瓷材料中形成四方相所需的(Bi0.5Na0.5)TiO3前体与(Bi0.5K0.5)TiO3前体的摩尔比;和b)形成包含赝立方相的具有化学通式(II)的陶瓷材料所需的SrHfO3前体和/或SrZrO3前体与(Bi0.5Na0.5)TiO3和(Bi0.5K0.5)TiO3前体的摩尔比。在该方法的步骤ii)中形成的陶瓷材料可以如上文讨论的任何实施方案中所述。优选地,对应于母相的二元(Bi0.5Na0.5)TiO3-(Bi0.5K0.5)TiO3组合包含轴比c/a在1.005与1.02之间的四方相。
根据又一方面,提供具有化学通式(III)的固溶体陶瓷材料的制备方法:
(III):y(Bi0.5K0.5)TiO3-z1SrHfO3-z2SrZrO3
其中:y+z1+z2=1;y、(z1+z2)≠0;
其中该陶瓷材料包含轴比c/a为0.995~1.005和/或菱形体角为90±0.5度的赝立方相;
所述方法包括以下步骤:
i)以预定的摩尔比混合陶瓷材料的各组分的前体;
ii)在固态合成时利用步骤i)中所形成的前体混合物来制备根据式(III)的陶瓷材料;
其中,前体的预定的摩尔比基于以下来确定:形成包含赝立方相的具有化学通式(III)的陶瓷材料所需的(Bi0.5K0.5)TiO3前体与SrHfO3前体和/或SrZrO3前体的摩尔比。在该方法的步骤ii)中所形成的陶瓷材料可以如上文讨论的任何实施方案中所述。
展现源自可逆相变的电场诱导的应变的式(I)、(II)和(III)的陶瓷材料可以用作各种致动器组件中的致动元件。例如,发现此类致动器组件可用于液滴沉积设备。液滴沉积设备在例如喷墨打印的传统打印应用以及3D打印和其它材料沉积或快速原型制作技术二者中广泛使用。
因此,根据另一方面,本发明还提供一种用于液滴沉积设备的致动器组件,其包括如上所述的式(I)、(II)或(III)的陶瓷材料。因此,在相关方面,还提供一种使致动器组件致动的方法,所述方法包括向致动器组件施加电场的步骤。在另一相关方面,提供一种包括致动器组件的液滴沉积设备。
适合用于液滴沉积设备的致动器组件可以例如包括多个流体腔室,所述流体腔室可以配置成一排或多排,每个腔室设置有相应的致动器元件和喷嘴。致动元件可致动以使来自多个腔室的流体通过相应的一个喷嘴喷射。致动元件通常设置有至少第一和第二致动电极,所述第一和第二致动电极构造成将电场施加至致动元件,由此变形,从而产生液滴喷射。还可以存在附加层,包括绝缘层、半导体层、导电层和/或钝化层。可以使用任何合适的制造技术如例如沉积/加工技术,例如如溅射、CVD、PECVD、MOCVD、ALD、激光烧蚀等来设置此类层。此外,可以根据需要使用任何合适的图案化技术,例如光刻技术(例如在溅射和/或蚀刻期间设置掩模)。
致动元件可以例如通过使界定致动器组件的一个流体室的壁变形来起作用。这种变形反过来可能增加腔室内流体的压力,从而导致流体液滴从喷嘴喷射。这种壁可以是膜层的形式,其可以包括任何合适的材料,例如金属、合金、介电材料和/或半导体材料。合适的材料的实例包括氮化硅(Si3N4),氧化硅(SiO2)、氧化铝(Al2O3)、氧化钛(TiO2)、硅(Si)或碳化硅(SiC)。致动元件可以包括薄膜形式的本文所述的陶瓷材料。可以使用包括溅射、溶胶-凝胶、化学溶液沉积(CSD)、气溶胶沉积和脉冲激光沉积技术的本领域技术人员公知的不同技术来制造包括多层的此类薄膜。
液滴沉积设备通常包括液滴沉积头,该液滴沉积头包括致动器组件和附接至致动器组件的一个或多个歧管组件。此外或作为替代,此类液滴沉积头可以包括例如借助于通过致动器组件提供的电迹线(electrical traces)电连接至致动元件的驱动电路。此类驱动电路可以向致动元件供给驱动电压信号,该驱动电压信号引起从选择的一组流体腔室中喷射液滴,所选择的组随着由头部所接收的输入数据的变化而变化。
为了满足各种应用的材料需求,可以通过如本文所述的液滴沉积头沉积各种各样的替代流体。例如,液滴沉积头可以喷射可以行进到纸张或卡片或者其它接收介质如纺织品或箔或成形制品(例如罐,瓶等)的墨滴,以形成图像,如喷墨打印应用中的情况,其中液滴沉积头可以为喷墨打印头,或者更特别地,按需喷墨打印头。
可选择地,可以使用流体的液滴来构建结构,例如可以将电活性流体沉积至如电路板等接收介质上,从而能够对电子装置原型设计。在另一个实例中,包含流体的聚合物或熔融聚合物可以沉积在连续的层中,从而产生对象的原型模型(如在3D打印中)。在其它应用中,液滴沉积头可适合于将包含生物或化学材料的溶液的液滴沉积至接收介质(例如微阵列)上。
适合于这种替代流体的液滴沉积头在结构上通常与打印头类似,其中进行一些调整以处理所讨论的特定流体。可以采用的液滴沉积头包括按需滴落的液滴沉积头。在此类头中,喷射的液滴的图案根据提供给头的输入数据而变化。
现在将参考以下实施例描述本发明,这些实施例旨在说明本发明而不是限制。
实施例
陶瓷材料的一般制备方法
利用适当量的纯度为至少99%的Bi2O3、TiO2、Na2CO3、KCO3、SrCO3、ZrO2和HfO2起始粉末来制备BNT-BKT的二元固溶体的陶瓷材料或根据式(I)的陶瓷材料。通过高能振动研磨将起始粉末混合2至6小时的时间。制备包含15体积%粉末的粉末乙醇混合物,随后用直径为大约3/8英寸(0.95cm)的高密度氧化钇稳定的氧化锆(YSZ)珠研磨。在通过筛分装置除去YSZ珠之后,在盖住的坩埚中在约800-950℃下对研磨的粉末进行煅烧6小时。随后将高能振动研磨用于粉末的煅烧后研磨2至6小时。
随后将煅烧的粉末与聚乙烯醇缩丁醛(PVB)粘结剂的3wt.%的溶液混合,并且将粉末在Carver压机中在150MPa的压力下单轴冷压成12.7mm的丸粒。在400℃粘结剂烧尽步骤后,将丸粒/圆盘在盖住的坩埚中在1000-1200℃下烧结2小时。将陶瓷盘抛光至0.9mm的厚度,具有光滑且平行的表面。
将电极施加至制备的陶瓷材料的一般方法
在第一种方法中,将银糊剂(Heraeus C1000)在两侧在空气中在650℃下烧制30分钟。
在第二种方法中,使用标准方法在真空中使用DC磁控管溅射将如Au、Ag或Pt等的惰性金属或陶瓷氧化铟锡(ITO)的薄膜电极施加至样品的两侧。
实施例1
上述一般方法用于制备具有下表1中所示组成的各种陶瓷材料.
表1
实施例2
在研磨丸粒上使用Cu Kα辐射(Bruker AXS D8 Discover,Madison,WI,USA)完成实施例1中制备的陶瓷材料的X射线衍射分析,并且分析相和晶体结构测定。XRD衍射图形式的结果在图2、3a-b,4和5a-b中提供。如图中所示,XRD数据揭示了具有赝立方对称性的单一均质钙钛矿相。
实施例3
在根据上述一般方法制备电极之后测量来自实施例1的陶瓷材料6至8的介电性能。使用HP 4194A LCR Meter在1、10和100kHz下测量相对介电常数和介电损耗(tanδ)的温度依赖性。结果显示于图6a-c中。
图6a-c显示了低温(T≤200℃)下的介电弛豫,以及大约300℃(Tmax)下的介电最大值。低温介电弛豫可归因于介电材料的弛豫特性。BNT-BKT-SrHfO3-SrZrO3陶瓷材料是在A位(Bi、Na、K、Sr)和B位(Ti、Zr、Hf)上具有不同尺寸和电子结构的多种阳离子的主体。介电最大值归因于由于在B位上的Ti的局部位移引起的短程四方变形的变化。在高于300℃的温度下,Ti离子位于氧八面体内的非位移位置。
实施例4
根据上述一般方法,在制备电极之后测量来自实施例1的陶瓷材料6至8和10的极化滞后行为。使用AixACCT压电表征系统在室温下在10Hz下测量极化强度。结果显示在图7a-c和9a-b中。数据显示特征性非线性滞后回路,其最大极化强度值在20与30μC/cm2之间,并且剩余极化强度接近零,与展现出弛豫-铁电相变特性的陶瓷材料一致。
实施例5
在根据上述一般方法制备电极之后,测量来自实施例1的陶瓷材料6至8和10的机电应变响应。使用配有干涉仪的AixACCT压电表征系统在室温下在10Hz下测量机电应变响应。结果显示在图8a-c和10a-b中。
图8a-c显示在60kV/cm的最大电场下最大应变接近0.15%。由最大应变除以最大电场计算出的这些陶瓷材料(对应于来自实施例1的陶瓷材料6至8)的有效压电系数(d33*)具有在260至277pm/V的范围内的值。数据显示具有中等滞后水平的准抛物线应变。这两个特征都是通过弛豫-铁电交叉机制产生机电应变的材料的特征。这些数据表明这些材料高度适合于致动器应用。

Claims (28)

1.一种固溶体陶瓷材料,其具有化学通式(I):
(I):x(Bi0.5Na0.5)TiO3-y(Bi0.5K0.5)TiO3-z1SrHfO3-z2SrZrO3
其中:x+y+z1+z2=1;y、(z1+z2)≠0;x≥0;并且
其中所述陶瓷材料包含轴比c/a为0.995~1.005和/或菱形体角为90±0.5度的赝立方相,和其中所述陶瓷材料能够经历从赝立方相至轴比c/a在1.005与1.02之间的四方相的场诱导的可逆转变。
2.根据权利要求1所述的陶瓷材料,其具有化学通式(II):
(II):x(Bi0.5Na0.5)TiO3-y(Bi0.5K0.5)TiO3-z1SrHfO3-z2SrZrO3
其中:x+y+z1+z2=1;x、y、(z1+z2)≠0;和
其中所述陶瓷材料包含轴比c/a为0.995~1.005和/或菱形体角为90±0.5度的赝立方相,和其中所述陶瓷材料能够经历从赝立方相至轴比c/a在1.005与1.02之间的四方相的场诱导的可逆转变。
3.根据权利要求2所述的陶瓷材料,其中z1=0并且所述陶瓷材料具有通式(II)(a):
x(Bi0.5Na0.5)TiO3-y(Bi0.5K0.5)TiO3-z2SrZrO3;或者
其中,z2=0并且所述陶瓷材料具有通式(II)(b):
x(Bi0.5Na0.5)TiO3-y(Bi0.5K0.5)TiO3-z1SrHfO3
4.根据权利要求2所述的陶瓷材料,其中z1≠0且z2≠0。
5.根据权利要求2~4任一项所述的陶瓷材料,其中0.25≤x≤0.65,优选其中0.35≤x≤0.55,更优选其中0.40≤x≤0.50。
6.根据权利要求2~5任一项所述的陶瓷材料,其中0.25≤y≤0.75,优选其中0.35≤y≤0.55,更优选其中0.40≤y≤0.50。
7.根据权利要求2~6任一项所述的陶瓷材料,其中0.01≤(z1+z2)≤0.15,优选其中0.02≤(z1+z2)≤0.10,更优选其中0.04≤(z1+z2)≤0.08。
8.根据权利要求2~7任一项所述的陶瓷材料,其中0.40≤x≤0.50;0.40≤y≤0.50;和0.02≤(z1+z2)≤0.10。
9.根据权利要求1所述的陶瓷材料,其具有化学通式(III):
(III):y(Bi0.5K0.5)TiO3-z1SrHfO3-z2SrZrO3
其中:y+z1+z2=1;y、(z1+z2)≠0;和
其中所述陶瓷材料包含轴比c/a为0.995~1.005和/或菱形体角为90±0.5度的赝立方相,和其中所述陶瓷材料能够经历从赝立方相至轴比c/a在1.005与1.02之间的四方相的场诱导的可逆转变。
10.根据权利要求9所述的陶瓷材料,其中z1=0并且所述陶瓷材料具有通式(III)(a):
y(Bi0.5K0.5)TiO3-z2SrZrO3;或者
其中z2=0并且所述陶瓷材料具有通式(III)(b):
y(Bi0.5K0.5)TiO3-z1SrHfO3
11.根据权利要求9所述的陶瓷材料,其中z1≠0且z2≠0。
12.根据权利要求9~11任一项所述的陶瓷材料,其中0.75≤y≤0.99,优选其中0.80≤y≤0.98,更优选其中0.90≤y≤0.95。
13.根据权利要求9~12任一项所述的陶瓷材料,其中0.01≤(z1+z2)≤0.25,优选其中0.02≤(z1+z2)≤0.20,更优选其中0.04≤(z1+z2)≤0.10。
14.根据前述权利要求任一项所述的陶瓷材料,其中所述陶瓷材料的剩余极化强度小于<5μC/cm2
15.根据前述权利要求任一项所述的陶瓷材料,其中所述陶瓷材料包含至少70体积%、优选至少80体积%、更优选至少90体积%的所述赝立方相。
16.根据前述权利要求任一项所述的陶瓷材料,其中所述陶瓷材料具有50~500pm/V的有效压电应变系数d33*。
17.根据前述权利要求任一项所述的陶瓷材料,其中当在10Hz和标准温度和压力下测量时,所述陶瓷材料具有0.1%至0.5%的最大机电应变值。
18.根据前述权利要求任一项所述的陶瓷材料,其中所述陶瓷材料具有10~50μC/cm2的场诱导的极化强度。
19.一种将根据权利要求1~18任一项所述的陶瓷材料可逆地转变为包含占主要比例的四方相的陶瓷材料的方法,所述方法包括将电场施加至根据权利要求1~18任一项所述的陶瓷材料的步骤。
20.根据权利要求19所述的方法,其中所述四方相的轴比c/a在1.01与1.02之间。
21.一种用于液滴沉积设备的致动器组件,其包含根据权利要求1~18任一项所述的陶瓷材料。
22.一种使根据权利要求21所述的致动器组件致动的方法,所述方法包括将电场施加至所述致动器组件的步骤。
23.一种液滴沉积设备,其包括根据权利要求21所述的致动器组件。
24.一种具有化学通式(II)的固溶体陶瓷材料的制备方法:
(II):x(Bi0.5Na0.5)TiO3-y(Bi0.5K0.5)TiO3-z1SrHfO3-z2SrZrO3
其中:x+y+z1+z2=1;x、y、(z1+z2)≠0;
其中所述陶瓷材料包含轴比c/a为0.995~1.005和/或菱形体角为90±0.5度的赝立方相;
所述方法包括以下步骤:
i)以预定的摩尔比混合所述陶瓷材料的各组分的前体;
ii)在固态合成时利用步骤i)中所形成的前体的混合物来制备根据式(II)的陶瓷材料;
其中前体的所述预定的摩尔比基于以下来确定:a)在二元(Bi0.5Na0.5)TiO3-(Bi0.5K0.5)TiO3基陶瓷材料中形成四方相所需的(Bi0.5Na0.5)TiO3前体与(Bi0.5K0.5)TiO3前体的摩尔比;和b)形成包含赝立方相的具有化学通式(II)的陶瓷材料所需的SrHfO3前体和/或SrZrO3前体与(Bi0.5Na0.5)TiO3和(Bi0.5K0.5)TiO3前体的摩尔比。
25.根据权利要求24所述的方法,其中在步骤ii)中所形成的陶瓷材料如权利要求3~8任一项所述。
26.根据权利要求24或权利要求25所述的方法,其中二元(Bi0.5Na0.5)TiO3-(Bi0.5K0.5)TiO3组合包含轴比c/a在1.01与1.02之间的四方相。
27.一种具有化学通式(III)的固溶体陶瓷材料的制备方法:
(III):y(Bi0.5K0.5)TiO3-z1SrHfO3-z2SrZrO3
其中:y+z1+z2=1;y、(z1+z2)≠0;
其中所述陶瓷材料包含轴比c/a为0.995~1.005和/或菱形体角为90±0.5度的赝立方相;
所述方法包括以下步骤:
i)以预定的摩尔比混合所述陶瓷材料的各组分的前体;
ii)在固态合成时利用步骤i)中所形成的前体的混合物来制备根据式(III)的陶瓷材料;
其中,前体的所述预定的摩尔比基于以下来确定:形成包含赝立方相的具有化学通式(III)的陶瓷材料所需的(Bi0.5K0.5)TiO3前体与SrHfO3前体和/或SrZrO3前体的摩尔比。
28.根据权利要求27所述的方法,其中在步骤ii)中所形成的陶瓷材料如权利要求9~12任一项所述。
CN201880010087.7A 2017-02-03 2018-02-02 包含赝立方相的陶瓷材料、其制备方法和用途 Active CN110312692B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB1701828.4A GB2559387B (en) 2017-02-03 2017-02-03 Ceramic material comprising a pseudo-cubic phase, a process for preparing and uses of the same
GB1701828.4 2017-02-03
PCT/GB2018/050307 WO2018142152A1 (en) 2017-02-03 2018-02-02 Ceramic material comprising a pseudo-cubic phase, a process for preparing and uses of the same

Publications (2)

Publication Number Publication Date
CN110312692A true CN110312692A (zh) 2019-10-08
CN110312692B CN110312692B (zh) 2021-11-02

Family

ID=58462533

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880010087.7A Active CN110312692B (zh) 2017-02-03 2018-02-02 包含赝立方相的陶瓷材料、其制备方法和用途

Country Status (7)

Country Link
US (1) US11078122B2 (zh)
EP (1) EP3577090B1 (zh)
JP (1) JP7044794B2 (zh)
CN (1) CN110312692B (zh)
GB (1) GB2559387B (zh)
SG (1) SG11201906686TA (zh)
WO (1) WO2018142152A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111792931A (zh) * 2020-07-14 2020-10-20 广东华中科技大学工业技术研究院 一种复合陶瓷材料及其制备方法
CN112341192A (zh) * 2020-11-20 2021-02-09 西安合容新能源科技有限公司 一种高储能密度钛酸铋钠基无铅介质材料及其制备方法
CN114149258A (zh) * 2021-12-29 2022-03-08 全球能源互联网研究院有限公司 一种具有叠层结构的压电陶瓷及其制备方法和应用
CN115849901A (zh) * 2022-12-03 2023-03-28 北京工业大学 一种K0.5Bi0.5TiO3基三元系介电储能无铅陶瓷材料

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7155730B2 (ja) * 2018-03-22 2022-10-19 三菱マテリアル株式会社 圧電体膜形成用液組成物及びこの液組成物を用いて圧電体膜を形成する方法
GB2584131B (en) * 2019-05-22 2022-06-01 Xaar Technology Ltd Method of preparing a solid solution ceramic material having increased electromechanical strain, and ceramic materials obtainable therefrom
CN113964266B (zh) * 2021-10-13 2023-09-19 中国科学院光电技术研究所 一种制备高性能铋基无铅压电驱动器的方法
CN114920554A (zh) * 2022-06-14 2022-08-19 西安智疆航空科技发展有限公司 一种无铅nbt基陶瓷材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1381425A (zh) * 2001-04-18 2002-11-27 日本特殊陶业株式会社 压电陶瓷材料
CN103102154A (zh) * 2013-02-03 2013-05-15 北京工业大学 Bi0.5Na0.5TiO3-BaTiO3–BiMg0.5Ti0.5O3无铅压电陶瓷材料
CN103153910A (zh) * 2010-09-16 2013-06-12 爱普科斯公司 基于钙钛矿陶瓷Bi0.5Na0.5TiO3的陶瓷材料、包含该陶瓷材料的压电驱动器和用于制备该陶瓷材料的方法
KR101333793B1 (ko) * 2012-06-05 2013-11-29 한국세라믹기술원 비스무스계 압전 세라믹스 및 그 제조방법
EP2187462B1 (en) * 2008-11-18 2015-07-22 NGK Insulators, Ltd. Piezoelectric/electrostrictive ceramics composition, piezoelectric/electrostrictive ceramics sintered body, piezoelectric/electrostrictive element, manufacturing method of piezoelectric/electrostrictive ceramics composition, and manufacturing method of piezoelectric/electrostrictive element

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8734670B2 (en) 2010-09-30 2014-05-27 Hewlett-Packard Development Company, L.P. Lead-free piezoelectric materials with enhanced fatigue resistance
US20130161556A1 (en) 2010-09-30 2013-06-27 Yu Hong Jeon Lead-free piezoelectric material based on bismuth zinc titanate-bismuth potassium titanate-bismuth sodium titanate
KR101318088B1 (ko) * 2011-11-01 2013-10-14 울산대학교 산학협력단 변형율이 높은 무연 압전 세라믹 조성물
JP2012178584A (ja) * 2012-04-23 2012-09-13 Tdk Corp 積層型圧電素子
WO2014116244A1 (en) 2013-01-28 2014-07-31 Hewlett-Packard Development Company, L.P. Lead-free piezoelectric material
US20160340255A1 (en) * 2014-01-29 2016-11-24 Hewlett-Packard Development Company, L.P. Oxygen conducting bismuth perovskite material
JP6327087B2 (ja) * 2014-09-25 2018-05-23 Tdk株式会社 圧電組成物、圧電素子およびスパッタリングターゲット
KR101635988B1 (ko) 2014-10-08 2016-07-04 한국세라믹기술원 복합 비스무스계 무연 압전 세라믹스 및 이를 포함하는 액츄에이터

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1381425A (zh) * 2001-04-18 2002-11-27 日本特殊陶业株式会社 压电陶瓷材料
EP2187462B1 (en) * 2008-11-18 2015-07-22 NGK Insulators, Ltd. Piezoelectric/electrostrictive ceramics composition, piezoelectric/electrostrictive ceramics sintered body, piezoelectric/electrostrictive element, manufacturing method of piezoelectric/electrostrictive ceramics composition, and manufacturing method of piezoelectric/electrostrictive element
CN103153910A (zh) * 2010-09-16 2013-06-12 爱普科斯公司 基于钙钛矿陶瓷Bi0.5Na0.5TiO3的陶瓷材料、包含该陶瓷材料的压电驱动器和用于制备该陶瓷材料的方法
KR101333793B1 (ko) * 2012-06-05 2013-11-29 한국세라믹기술원 비스무스계 압전 세라믹스 및 그 제조방법
CN103102154A (zh) * 2013-02-03 2013-05-15 北京工业大学 Bi0.5Na0.5TiO3-BaTiO3–BiMg0.5Ti0.5O3无铅压电陶瓷材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ALI HUSSAIN ET AL.: "Field-induced strain and polarization response in lead-free Bi1/2(Na0.80K0.20)1/2TiO3-SrZrO3 ceramics", 《MATERIALS CHEMISTRY AND PHYSICS》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111792931A (zh) * 2020-07-14 2020-10-20 广东华中科技大学工业技术研究院 一种复合陶瓷材料及其制备方法
CN111792931B (zh) * 2020-07-14 2022-06-24 广东华中科技大学工业技术研究院 一种复合陶瓷材料及其制备方法
CN112341192A (zh) * 2020-11-20 2021-02-09 西安合容新能源科技有限公司 一种高储能密度钛酸铋钠基无铅介质材料及其制备方法
CN112341192B (zh) * 2020-11-20 2022-07-22 西安合容新能源科技有限公司 一种高储能密度钛酸铋钠基无铅介质材料及其制备方法
CN114149258A (zh) * 2021-12-29 2022-03-08 全球能源互联网研究院有限公司 一种具有叠层结构的压电陶瓷及其制备方法和应用
CN115849901A (zh) * 2022-12-03 2023-03-28 北京工业大学 一种K0.5Bi0.5TiO3基三元系介电储能无铅陶瓷材料
CN115849901B (zh) * 2022-12-03 2023-08-18 北京工业大学 一种K0.5Bi0.5TiO3基三元系介电储能无铅陶瓷材料

Also Published As

Publication number Publication date
CN110312692B (zh) 2021-11-02
GB2559387B (en) 2020-05-06
EP3577090B1 (en) 2022-01-26
GB201701828D0 (en) 2017-03-22
JP7044794B2 (ja) 2022-03-30
US11078122B2 (en) 2021-08-03
SG11201906686TA (en) 2019-08-27
WO2018142152A1 (en) 2018-08-09
EP3577090A1 (en) 2019-12-11
US20200010370A1 (en) 2020-01-09
JP2020506149A (ja) 2020-02-27
GB2559387A (en) 2018-08-08

Similar Documents

Publication Publication Date Title
CN110312692A (zh) 包含赝立方相的陶瓷材料、其制备方法和用途
CN110312693A (zh) 展现源自可逆相变的电场诱导应变的陶瓷材料的识别方法、制备方法和由其可得的陶瓷材料
US7576477B2 (en) Piezoelectric/electrostrictive porcelain composition and method of manufacturing the same
Haertling Ferroelectric ceramics: history and technology
CN101139202B (zh) 压电/电致伸缩体、其制造方法及压电/电致伸缩元件
Kimura et al. Lead zirconate titanate-based piezoceramics
Hong et al. High electromechanical strain properties by the existence of nonergodicity in LiNbO3–modified Bi1/2Na1/2TiO3–SrTiO3 relaxor ceramics
Uchino Manufacturing methods for piezoelectric ceramic materials
WO2017203211A1 (en) Temperature stable lead-free piezoelectric/electrostrictive materials with enhanced fatigue resistance
Jia et al. Large electric field induced strain of Bi (Mg1/2Ti1/2) O3-Pb (Mg1/3Nb2/3) O3-PbTiO3 ceramics textured by template grain growth
Ha et al. Effects of ZnO on piezoelectric properties of 0.01 PMW–0.41 PNN–0.35 PT–0.23 PZ ceramics
US6517737B2 (en) Ceramic piezoelectric and devices using the piezoelectric
JP2011195382A (ja) 圧電磁器およびそれを用いた圧電素子
JP5550401B2 (ja) 圧電磁器およびそれを用いた圧電素子
US20220209100A1 (en) Method of preparing a solid solution ceramic material having increased electromechanical strain, and ceramic materials obtainable therefrom
Yoon et al. Effect of Pb (Yb 1/2 Nb 1/2) O 3 on structural and piezoelectric properties of Pb (Zr 0.52 Ti 0.48) O 3 ceramics
Kim et al. Characteristics of PMW-PNN-PT-PZ thick films on various bottom electrodes
Kim et al. Effect of crystal structure on the improvement of the piezoelectric properties for [001]-textured PZT-PNN piezoceramics
Maliˇc et al. 1Joˇzef Stefan Institute, Ljubljana, Slovenia, 2Technische Universitat Darmstadt, Darmstadt, Germany
Ren et al. Crystal Structures and Properties of Pb (Ni1/3, Nb2/3) O3–Pb (Zr1/2, Ti1/2) O3 Thin Films on Silicon Substrates
Lee et al. Dielectric Properties of PZT (20/80)/PZT (80/20) Heterolayered Thick Films Fabricated by Screen-printing Method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP02 Change in the address of a patent holder

Address after: Cambridge County, England

Patentee after: XAAR TECHNOLOGY Ltd.

Address before: Britain Camb

Patentee before: XAAR TECHNOLOGY Ltd.

CP02 Change in the address of a patent holder