CN112340779B - 一种甜甜圈状Fe2O3/C锂离子电池负极材料制备方法 - Google Patents

一种甜甜圈状Fe2O3/C锂离子电池负极材料制备方法 Download PDF

Info

Publication number
CN112340779B
CN112340779B CN202011039333.7A CN202011039333A CN112340779B CN 112340779 B CN112340779 B CN 112340779B CN 202011039333 A CN202011039333 A CN 202011039333A CN 112340779 B CN112340779 B CN 112340779B
Authority
CN
China
Prior art keywords
lithium ion
ion battery
shaped
doughnut
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011039333.7A
Other languages
English (en)
Other versions
CN112340779A (zh
Inventor
侯莉
邓硕垒
姜洋
熊双胜
位阔
高发明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhongfeng Xinhe Dalian Technology Co ltd
Original Assignee
Yanshan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanshan University filed Critical Yanshan University
Priority to CN202011039333.7A priority Critical patent/CN112340779B/zh
Publication of CN112340779A publication Critical patent/CN112340779A/zh
Application granted granted Critical
Publication of CN112340779B publication Critical patent/CN112340779B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/06Ferric oxide [Fe2O3]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/523Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Compounds Of Iron (AREA)

Abstract

本发明公开了一种甜甜圈状Fe2O3/C锂离子电池负极材料制备方法,在反应釜中加入铁源化合物、有机配体和去离子水,水热温度140~170℃,时间为6~8h,从而生成甜甜圈状Fe2O3/C材料,经过过滤、洗涤和烘干,从而得到甜甜圈状的锂离子电池负极材料,用于锂离子电池,使得锂离子电池的电化学性能较商业石墨有着明显的提高,本发明通过一锅法合成了甜甜圈状Fe2O3/C,合成工艺简单,反应条件温和,而且制得的甜甜圈状Fe2O3/C具有高质量比容量,这对铁基氧化物材料在锂离子电池领域中进一步发展具有重要意义。

Description

一种甜甜圈状Fe2O3/C锂离子电池负极材料制备方法
技术领域
本发明涉及一种甜甜圈状Fe2O3/C锂离子电池负极材料制备方法,属于锂离子电池领域。
背景技术
随着插电式混合动力汽车的出现,以及人们对储能有了新的认识,电池和电池相关技术已经成为现代社会越来越关键的部分。在最新技术以及最前沿的电池中,锂离子电池已成为最普及的电池。由于它们的高能量密度和安全性,它们在消费类便携式电子设备中很常见,而且众所周知,它们不会受到困扰其他电池的“记忆”效应的影响。尽管它们很受欢迎,在市场上占据主导地位,但仍然有一些不可避免的问题在困扰着人们,特别是容量不高以及随时间衰减这两个方面。事实上,某些混合动力电动汽车的电池组寿命很短,这引起了车主和制造商的极大担忧。这是由于其自身材料问题导致现有的锂离子电池无法满足人们在新时代的要求。锂离子电池负极材料通常为商业石墨,然而,作为 LIBs的重要组成部分,商用石墨负极材料由于其倍率能力差和372mAhg-1的有限容量,无法满足高能量需求。因此如何开发一种具有高的比容量且价格较为低廉的电极材料已成为相关领域科学家关注的焦点。
为了解决上述问题,人们研究了许多金属氧化物,如钼氧化物、Co3O4、 NiO、CuO、锰氧化物和铁氧化物。其中,Fe2O3具有理论比容量高(1007mAhg-1)、资源丰富、成本低、无毒等优点,被认为是最有潜力的锂离子电池负极材料之一从而引起了越来越多人的关注。如陈泽华等人发明的一种高循环性能锂离子电池负极材料Fe2O3纳米针叶的制备方法(CN108264092 B),在用于锂离子电池负极材料时,其独特的结构在充放电过程中缩短了离子的传输路径,对于电池的循环性能有着极大的好处;曹丽云等人发明的一种空心球Fe2O3/rGO锂离子电池负极材料的制备方法(CN 106129373 B),与石墨烯复合不仅能有效解决Fe2O3导电性差的问题,并且这种特殊的自组装空心结构还能有效的缓解体积膨胀,进而防止氧化物在充放电过程中发生的粉化,可以显著提高产物的循环性能。然而,Fe2O3的体积变化大、团聚强、电导率低,导致容量衰减和倍率性能差不能够满足当前社会的需求。所以寻求一种合成工艺简单,反应条件温和,高导电性,具有高质量比容量的Fe2O3的制备方法具有重要意义。
发明内容
本发明需要解决的技术问题是提供一种甜甜圈状Fe2O3/C锂离子电池负极材料制备方法,通过简单的水热法使得有机配体与铁基化合物反应成环,从而生成甜甜圈状Fe2O3/C材料,用于锂离子电池,使得锂离子电池的电化学性能明显提高,这对铁基氧化物材料在锂离子电池领域中进一步发展具有重要意义。
为解决上述技术问题,本发明所采用的技术方案是:
一种甜甜圈状Fe2O3/C锂离子电池负极材料制备方法,包括以下步骤:
S1、将铁源化合物与有机配体按一定摩尔配比分别加入到20~30mL去离子水中进行搅拌得到混合液;
S2、将上述混合液加入到水热反应釜中进行水热反应,一段时间后取出冷却至室温;
S3、将步骤S2中水热反应后的混合液过滤、用蒸馏水离心洗涤至中性得到粉末,将所得的粉末置于真空干燥箱中真空干燥,得到甜甜圈状Fe2O3/C锂离子电池负极材料。
本发明技术方案的进一步改进在于:所述步骤S1中铁源化合物与有机配体的摩尔比为1.3:1.1~1.3:1.4。
本发明技术方案的进一步改进在于:所述步骤S1中铁源化合物为九水合硝酸铁或无水氯化铁。
本发明技术方案的进一步改进在于:所述步骤S1中有机配体为反丁烯二酸。
本发明技术方案的进一步改进在于:所述步骤S1中搅拌温度为60~80℃,搅拌时间为10~30min。
本发明技术方案的进一步改进在于:所述步骤S2中水热反应的温度为 140~170℃,水热时间为6~8h。
本发明技术方案的进一步改进在于:所述步骤S2中从室温升至水热反应温度的升温速率为1~5℃/min。
本发明技术方案的进一步改进在于:所述步骤S3中真空干燥温度为70~ 100℃,真空干燥时间为6~12h。
由于采用了上述技术方案,本发明取得的技术进步是:
1、本发明的原材料简单易得,价格低廉,反应条件温和,采用一步合成法,制备工艺简单可行,重复性高,可大规模生产,实现产业化。
2、本发明制得的甜甜圈状Fe2O3/C材料三维多孔,比表面积大,含碳量丰富导电性高。
3、本发明的甜甜圈状Fe2O3/C材料具有高质量比容量,能用于锂离子电池,使得锂离子电池的电化学性能明显提高。
附图说明
图1是本发明实施例2所制得的甜甜圈状Fe2O3/C的透射电子显微镜图片;
图2是本发明实施例2所制得的甜甜圈状Fe2O3/C材料的扫描电子显微镜图片;
图3是本发明实施例2所制得的甜甜圈状Fe2O3/C的XRD图;
图4是本发明实施例2所制得的甜甜圈状Fe2O3/C做锂离子电池在5mVs-1的扫速下测得的CV曲线图;
图5是本发明实施例2所制得的甜甜圈状Fe2O3/C做锂离子电池在1Ag-1的电流密度下的循环400圈后的性能图;
图6是本发明实施例2所制得的甜甜圈状Fe2O3/C做锂离子电池的阻抗图。
具体实施方式
下面结合实施例对本发明做进一步详细说明:
实施例1
S1、称取1.1mmol分析纯度的反丁烯二酸溶解到20mL的去离子水中,并在60℃下以400rpm的转速搅拌10min。然后,向溶液中加入1.3mmol的九水合硝酸铁,并再搅拌10min得到橙红色液体。
S2、将上述得到的溶液转移至聚四氟乙烯的不锈钢高压釜(总容量为40 mL)中,并在140℃下保持6h,升温速率控制在5℃/min,然后待反应釜自然冷却到室温,取出混合物。
S3、将上述混合物用乙醇和蒸馏水为离心洗涤3至5次,将所得的粉末置于真空干燥箱中70℃下真空干燥6h,得到具有高质量比容量的甜甜圈状 Fe2O3/C材料。
实施例2
S1、称取1.2mmol分析纯度的反丁烯二酸溶解到25mL的去离子水中,并在70℃下以400rpm的转速搅拌10min。然后,向溶液中加入1.3mmol的九水合硝酸铁,并再搅拌10min得到橙红色液体。
S2、将上述得到的溶液转移至聚四氟乙烯的不锈钢高压釜(总容量为40 mL)中,并在150℃下保持6h。升温速率控制在5℃/min,然后待反应釜自然冷却到室温,取出混合物。
S3、将上述混合物用乙醇和蒸馏水为离心洗涤3至5次,将所得的粉末置于真空干燥箱中70℃下真空干燥12h,得到具有高质量比容量的甜甜圈状 Fe2O3/C材料。
如图1所示,实施例2所制得的甜甜圈状Fe2O3/C的透射电子显微镜图片,从透射电镜中可以清楚看到甜甜圈状结构;
如图2所示,实施例2所制得的甜甜圈状Fe2O3/C材料的扫描电子显微镜图片,从图中可以看出Fe2O3/C的形貌与透射电镜相一致为甜甜圈状结构。
如图3所示,实施例2所制得的甜甜圈状Fe2O3/C材料的XRD图,图中(104) 晶面和(110)晶面是该材料的特征峰,25度左右的馒头峰证明了碳的存在, XRD谱图表明合成出Fe2O3材料。
如图4所示,实施例2所制得的甜甜圈状Fe2O3/C材料做锂离子电池在 5mVs-1的扫速下测得的CV曲线图,从图中可以看出曲线在后三圈的重合性较好,表明该材料有较好的循环稳定性。
如图5所示,实施例2所制得的甜甜圈状Fe2O3/C材料做锂离子电池在1Ag-1的电流密度下的循环400圈后的性能图,从图中可以看出电池容量经过400圈循环后稳定在600mAhg-1左右,这表明该材料作锂离子电池的负极有很好的循环稳定性。
图6是本发明实施例2所制得的甜甜圈状Fe2O3/C材料做锂离子电池测得的阻抗图,从图中可以看出锂离子电池的传荷电阻Rct为35欧姆,该材料做锂离子电池的内阻小于其他材料做锂离子电池的内阻。
实施例3
S1、称取1.3mmol分析纯度的反丁烯二酸溶解到25mL的去离子水中,并在70℃下以400rpm的转速搅拌20min。然后,向溶液中加入1.3mmol的九水合硝酸铁,并再搅拌20min得到橙红色液体。
S2、将上述得到的溶液转移至聚四氟乙烯的不锈钢高压釜(总容量为40 mL)中,并在160℃下保持7h。升温速率控制在5℃/min,然后待反应釜自然冷却到室温,取出混合物。
S3、将上述混合物用乙醇和蒸馏水为离心洗涤3至5次,将所得的粉末置于真空干燥箱中80℃下真空干燥8h,得到具有高质量比容量的甜甜圈状 Fe2O3/C材料。
实施例4
S1、称取1.4mmol分析纯度的反丁烯二酸溶解到30mL的去离子水中,并在80℃下以400rpm的转速搅拌30min。然后,向溶液中加入1.3mmol的九水合硝酸铁,并再搅拌30min得到橙红色液体。
S2、将上述得到的溶液转移至聚四氟乙烯的不锈钢高压釜(总容量为40 mL)中,并在170℃下保持8h。升温速率控制在5℃/min,然后待反应釜自然冷却到室温,取出混合物。
S3、将上述混合物用乙醇和蒸馏水为离心洗涤3至5次,将所得的粉末置于真空干燥箱中100℃下真空干燥10h,得到具有高质量比容量的甜甜圈状 Fe2O3/C材料。
综上,本发明的甜甜圈状Fe2O3/C材料具有高质量比容量,能用于锂离子电池,使得锂离子电池的电化学性能明显提高。
最后应说明的是:以上所述的各实施例仅用于说明本发明技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分或全部技术特征进行等同替换;而这些修改或替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (4)

1.一种甜甜圈状Fe2O3/C锂离子电池负极材料制备方法,其特征在于:包括以下步骤:
S1、将铁源化合物与有机配体按一定摩尔配比分别加入到20~30mL去离子水中进行搅拌得到混合液;
S2、将上述混合液加入到水热反应釜中进行水热反应,一段时间后取出冷却至室温;
S3、将步骤S2中水热反应后的混合液过滤、用蒸馏水离心洗涤至中性得到粉末,将所得的粉末置于真空干燥箱中真空干燥,得到甜甜圈状Fe2O3/C锂离子电池负极材料;
所述步骤S1中铁源化合物为九水合硝酸铁或无水氯化铁;所述步骤S1中有机配体为反丁烯二酸;所述步骤S1中铁源化合物与有机配体的摩尔比为1.3:1.1~1.3:1.4;
所述步骤S2中水热反应的温度为140~170℃,水热时间为6~8 h。
2.根据权利要求1所述的一种甜甜圈状Fe2O3/C锂离子电池负极材料制备方法,其特征在于:所述步骤S1中搅拌温度为60~80℃,搅拌时间为10~30 min。
3.根据权利要求1所述的一种甜甜圈状Fe2O3/C锂离子电池负极材料制备方法,其特征在于:所述步骤S2中从室温升至水热反应温度的升温速率为1~5℃/min。
4.根据权利要求1所述的一种甜甜圈状Fe2O3/C锂离子电池负极材料制备方法,其特征在于:所述步骤S3中真空干燥温度为70~100℃,真空干燥时间为6~12h。
CN202011039333.7A 2020-09-28 2020-09-28 一种甜甜圈状Fe2O3/C锂离子电池负极材料制备方法 Active CN112340779B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011039333.7A CN112340779B (zh) 2020-09-28 2020-09-28 一种甜甜圈状Fe2O3/C锂离子电池负极材料制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011039333.7A CN112340779B (zh) 2020-09-28 2020-09-28 一种甜甜圈状Fe2O3/C锂离子电池负极材料制备方法

Publications (2)

Publication Number Publication Date
CN112340779A CN112340779A (zh) 2021-02-09
CN112340779B true CN112340779B (zh) 2021-11-23

Family

ID=74361139

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011039333.7A Active CN112340779B (zh) 2020-09-28 2020-09-28 一种甜甜圈状Fe2O3/C锂离子电池负极材料制备方法

Country Status (1)

Country Link
CN (1) CN112340779B (zh)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104495948B (zh) * 2014-12-30 2016-04-06 南开大学 一种中空多面体纳米α-Fe2O3的制备方法
US10016745B2 (en) * 2016-06-15 2018-07-10 Savannah River Nuclear Solutions, Llc Multifunctional nanomaterials and methods of photothermal heating and catalysis using the same
CN107706381B (zh) * 2017-09-27 2020-05-19 中南大学 一种六角状三氧化二铁/碳负极材料及其制备方法
CN108695512B (zh) * 2018-06-14 2021-06-25 东北大学秦皇岛分校 酸洗铁红作为负极材料的用途
CN108987718B (zh) * 2018-07-24 2021-06-29 西南科技大学 锂离子电池负极材料核壳结构FeS2@C纳米环的制备方法
CN110694627A (zh) * 2019-10-25 2020-01-17 绍兴文理学院 一种三氧化二铁纳米环光催化剂及其制备方法

Also Published As

Publication number Publication date
CN112340779A (zh) 2021-02-09

Similar Documents

Publication Publication Date Title
JP5552709B2 (ja) Liイオン電池用正極活物質、およびその製造方法
CN110518298A (zh) 一种含掺Co高铁酸锂的补锂正极材料及其制备和应用
CN111710860B (zh) 一种磷化钴钼颗粒修饰的氮磷共掺杂碳复合材料及其制备方法和应用
JP7567144B2 (ja) フェロボロン合金被覆リン酸鉄リチウムの製造方法
CN103456939A (zh) 利用偏钛酸制备锂离子电池负极材料碳包覆钛酸锂的方法
CN106935826A (zh) 锂离子电池用纳米氧化铜石墨烯复合材料的制备方法
CN106299344B (zh) 一种钠离子电池钛酸镍负极材料及其制备方法
CN110197769A (zh) 一种复合碳纳米管材料及其制备方法和应用
CN107887583A (zh) 一种掺杂磷酸铁锂正极材料及其制备方法
CN102169980A (zh) 一种负极活性材料的制备方法
CN110600719B (zh) 一种高倍率性能的多孔硅碳锂离子电池负极材料及其制备方法
Cheng et al. In situ topotactic preparation of porous plate-like Li2ZnTi3O8 as the lithium-ion batteries anode for enhancing electrochemical reaction kinetics and Li+ storage
CN113571681A (zh) 一种空心二氧化钛/镍/碳复合材料及其制备方法和应用
CN112340779B (zh) 一种甜甜圈状Fe2O3/C锂离子电池负极材料制备方法
CN108767231A (zh) 一种LiNixCoyMnl-x-yO2/Li2O·B2O3复合正极材料的制备方法
CN114678497B (zh) 一种掺杂改性钠离子电池正极材料及其制备方法
CN108023079B (zh) 一种混合过渡金属硼酸盐负极材料及其制备方法
CN113087014B (zh) 一种碳/硒掺杂的二氧化钛锂硫电池正极材料的制备方法
CN109616656A (zh) 锂电池用铜镁掺杂的包覆磷酸镍锂正极材料及制备方法
CN101764205A (zh) 一种碳包覆磷酸铁锂的制备方法
CN109921005B (zh) 蓝色磷酸根掺杂二氧化钛(b)纳米线及其制备方法和应用
CN107706371B (zh) 一种铁锰复合氧化物材料及其制备方法和应用
CN106571243B (zh) 一种介孔氧化铁/氧化锰/碳复合纳米材料、制备方法及其应用
CN116666582B (zh) 一种金属氧化物包覆氧化锂复合正极材料及其制备方法以及包含该正极材料的正极片和电池
CN115849335B (zh) 一种金属掺杂磷酸铁钠及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240702

Address after: Room 2003, 20th Floor, No. 133 Guangxian Road, High tech Industrial Park, Dalian City, Liaoning Province, 116000

Patentee after: Zhongfeng Xinhe (Dalian) Technology Co.,Ltd.

Country or region after: China

Address before: 066004 No. 438, Hebei Avenue, seaport District, Hebei, Qinhuangdao

Patentee before: Yanshan University

Country or region before: China