CN112340708A - 一种锯齿状结构的碲化铋纳米线及其制备方法 - Google Patents
一种锯齿状结构的碲化铋纳米线及其制备方法 Download PDFInfo
- Publication number
- CN112340708A CN112340708A CN202011133325.9A CN202011133325A CN112340708A CN 112340708 A CN112340708 A CN 112340708A CN 202011133325 A CN202011133325 A CN 202011133325A CN 112340708 A CN112340708 A CN 112340708A
- Authority
- CN
- China
- Prior art keywords
- solution
- bismuth telluride
- nanowire
- bismuth
- tellurium oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002070 nanowire Substances 0.000 title claims abstract description 65
- 229910052797 bismuth Inorganic materials 0.000 title claims abstract description 47
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 title claims abstract description 46
- XSOKHXFFCGXDJZ-UHFFFAOYSA-N telluride(2-) Chemical compound [Te-2] XSOKHXFFCGXDJZ-UHFFFAOYSA-N 0.000 title claims abstract description 35
- 238000002360 preparation method Methods 0.000 title claims abstract description 12
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims abstract description 69
- 239000000243 solution Substances 0.000 claims abstract description 59
- 229910052714 tellurium Inorganic materials 0.000 claims abstract description 52
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 claims abstract description 52
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims abstract description 39
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims abstract description 30
- 239000011259 mixed solution Substances 0.000 claims abstract description 22
- 238000000034 method Methods 0.000 claims abstract description 21
- 238000002156 mixing Methods 0.000 claims abstract description 21
- 238000010438 heat treatment Methods 0.000 claims abstract description 20
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims abstract description 14
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims abstract description 14
- NWZSZGALRFJKBT-KNIFDHDWSA-N (2s)-2,6-diaminohexanoic acid;(2s)-2-hydroxybutanedioic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O.NCCCC[C@H](N)C(O)=O NWZSZGALRFJKBT-KNIFDHDWSA-N 0.000 claims abstract description 12
- IKDUDTNKRLTJSI-UHFFFAOYSA-N hydrazine monohydrate Substances O.NN IKDUDTNKRLTJSI-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims abstract description 10
- 238000006243 chemical reaction Methods 0.000 claims description 19
- 239000002245 particle Substances 0.000 claims description 15
- 238000001816 cooling Methods 0.000 claims description 13
- FBXVOTBTGXARNA-UHFFFAOYSA-N bismuth;trinitrate;pentahydrate Chemical compound O.O.O.O.O.[Bi+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O FBXVOTBTGXARNA-UHFFFAOYSA-N 0.000 claims description 12
- 239000007788 liquid Substances 0.000 claims description 12
- 238000005406 washing Methods 0.000 claims description 12
- 238000004321 preservation Methods 0.000 claims description 11
- 239000000203 mixture Substances 0.000 claims description 10
- 239000002243 precursor Substances 0.000 claims description 10
- 239000000843 powder Substances 0.000 claims description 8
- 238000003756 stirring Methods 0.000 claims description 6
- 238000001035 drying Methods 0.000 claims description 5
- RXPAJWPEYBDXOG-UHFFFAOYSA-N hydron;methyl 4-methoxypyridine-2-carboxylate;chloride Chemical compound Cl.COC(=O)C1=CC(OC)=CC=N1 RXPAJWPEYBDXOG-UHFFFAOYSA-N 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 2
- 239000002244 precipitate Substances 0.000 claims description 2
- 239000000047 product Substances 0.000 claims description 2
- 239000000463 material Substances 0.000 abstract description 22
- -1 sodium bismuthate pentahydrate Chemical class 0.000 abstract description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 2
- 239000011261 inert gas Substances 0.000 abstract description 2
- 239000001301 oxygen Substances 0.000 abstract description 2
- 229910052760 oxygen Inorganic materials 0.000 abstract description 2
- 238000004729 solvothermal method Methods 0.000 abstract description 2
- 238000003760 magnetic stirring Methods 0.000 description 14
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 238000005245 sintering Methods 0.000 description 9
- 229910002899 Bi2Te3 Inorganic materials 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- 230000007547 defect Effects 0.000 description 5
- 239000008367 deionised water Substances 0.000 description 5
- 229910021641 deionized water Inorganic materials 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000001228 spectrum Methods 0.000 description 5
- 229910003069 TeO2 Inorganic materials 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910001451 bismuth ion Inorganic materials 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 210000000003 hoof Anatomy 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B19/00—Selenium; Tellurium; Compounds thereof
- C01B19/007—Tellurides or selenides of metals
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/547—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on sulfides or selenides or tellurides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B28/00—Production of homogeneous polycrystalline material with defined structure
- C30B28/04—Production of homogeneous polycrystalline material with defined structure from liquids
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/46—Sulfur-, selenium- or tellurium-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/04—Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/10—Particle morphology extending in one dimension, e.g. needle-like
- C01P2004/16—Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/32—Thermal properties
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/66—Specific sintering techniques, e.g. centrifugal sintering
- C04B2235/666—Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
- C04B2235/9607—Thermal properties, e.g. thermal expansion coefficient
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Ceramic Engineering (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Metallurgy (AREA)
- Structural Engineering (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
Abstract
本发明公开一种锯齿状结构的碲化铋纳米线及其制备方法。采用溶剂热合成的方法,将氧化碲、聚乙烯吡咯烷酮和氢氧化钾混合溶于乙二醇,并在惰性气体保护环境下排除溶液中的氧气后,将溶液升至一定温度,再加入水合肼并保温一段时间。随后加入五水铋酸钠和乙二醇的混合溶液,同时注射一定量的浓盐酸,反应得到锯齿状结构碲化铋纳米线。本发明能够在保持高电导率的情况下,显著降低材料的晶格热导率。
Description
【技术领域】
本发明属于纳米材料制备技术领域,具体涉及一种锯齿状结构的碲化铋纳米线及其制备方法。
【背景技术】
热电转换技术能够利用材料的本征传输特性,实现热能和电能间的相互转换。该技术具有无污染、无噪音、寿命长和可靠性高等优势,是理想的绿色环保型全固态能源利用方式。但当前的热电技术仍存在转化效率偏低的问题。
热电组件的转化效率主要取决于材料的无量纲热电优值,ZT=(α2σ/κ)·T,其中T为温度,σ、α、κ分别代表材料的电导率、Seebeck系数和热导率。要提高ZT值,就必须提高材料的电导率,降低热导率。但两者之间的强关联性导致在通常条件下电/热性能同增同减,由此带来热电优值提升的技术挑战。
Bi2Te3是低温和常温区性能最优异的传统热电材料,但其能量转换效率仍不能满足商业化应用的需求。
【发明内容】
本发明的目的在于克服上述现有技术的缺点,提供一种锯齿状结构的碲化铋纳米线及其制备方法,以解决现有技术中Bi2Te3作为传统的热电材料,其能量效率难以满足商业化应用的问题。
为达到上述目的,本发明采用以下技术方案予以实现:
一种锯齿状结构的碲化铋纳米线制备方法,包括以下步骤:
步骤1,将氧化碲、聚乙烯吡咯酮和氢氧化钾加入至乙二醇中,搅拌至为透明液体,将透明液体加热后,加入水合肼,保温反应1小时后,生成碲纳米线溶液;
步骤2,将五水硝酸铋颗粒和乙二醇混合后,加热搅拌至溶液成透明状,生成铋前驱体溶液,将铋前驱体溶液加入到碲纳米线溶液中,生成混合溶液,在混合溶液中加入浓盐酸,保温反应2小时后,冷却至室温,得到生成物溶液;
步骤3,将生成物溶液离心洗涤后,将洗涤后的沉淀物烘干,得到黑色粉末为具有锯齿状结构的碲化铋纳米线。
本发明的进一步改进在于:
优选的,步骤1中,氧化碲和氢氧化钾的混合摩尔比为(0.1-0.15):1,氧化碲和聚乙烯吡咯烷酮的混合比例为1mmol:0.5g,氧化碲和乙二醇的混合比例为1mmol:20mL。
优选的,步骤1中,透明液体的加热温度为120℃。
优选的,步骤1中,1mmol的氧化碲加入3mL的水合肼。
优选的,步骤2中,五水硝酸铋颗粒和乙二醇的混合比例为(0.33-2)mmol:5mL
优选的,步骤2中,将五水硝酸铋颗粒和乙二醇混合后,加热至120℃,同时搅拌。
优选的,步骤2中的无水硝酸铋颗粒和步骤1中的氧化碲的摩尔比为1:3。
优选的,步骤2中浓盐酸的加入量以步骤1中的氧化碲为依据,1mmol的氧化碲加入3mL的浓盐酸。
优选的,步骤3中,烘干温度为50℃。
一种通过上述任意一项制备方法制得的锯齿状结构的碲化铋纳米线。
与现有技术相比,本发明具有以下有益效果:
本发明公开一种表面具有锯齿状结构碲化铋纳米线的制备方法。采用溶剂热合成的方法,将氧化碲、聚乙烯吡咯烷酮和氢氧化钾混合溶于乙二醇,并在惰性气体保护环境下排除溶液中的氧气后,将溶液升至一定温度,再加入水合肼并保温一段时间。随后加入五水铋酸钠和乙二醇的混合溶液,同时注射一定量的浓盐酸,反应得到锯齿状结构碲化铋纳米线。当氧化碲被还原为单质碲后,聚乙烯吡咯烷酮作为表面活性剂吸附于碲表面,在单质碲结晶生长过程中起到模板作用,使其沿单一方向生长为一维纳米线结构。由于聚乙烯比咯烷酮在碲纳米线表面不同位置的吸附量有差异,加入铋反应源与碲纳米线反应时,导致不同位置处的反应速率有所不同,最终形成表面起伏变化较大的锯齿状纳米线结构,本发明的合成过程简单,重复性好,本发明能够在保持高电导率的情况下,显著降低材料的晶格热导率,在热电材料领域具有很高的价值。低维化和引入缺陷是提高材料热电优值的主要途径。
本发明还公开了一种锯齿状结构的碲化铋纳米线,该材料因其材料表面成锯齿状,一方面,随着材料维度的降低,载流子的能量分布由连续态转变为分立态,费米面附近的态密度大幅度增加,可提高材料的电输运性能;另一方面,声子受到低维材料表面和晶体内部缺陷的强烈散射,导致晶格热导率远低于块体材料,即可实现材料的热导率与电导率的独立调控,进而提高材料的热电优值。
【附图说明】
图1为本发明的锯齿结构Bi2Te3纳米线的合成原理图;
图2为实施例1所得锯齿结构Bi2Te3纳米线SEM示意图;
其中,(a)图的放大倍数为2μm;(b)图的放大倍数为300nm;
图3为实施例1所得200nm下单根锯齿结构Bi2Te3纳米线TEM示意图;
图4为实施例1所得单根锯齿结构Bi2Te3纳米线能谱面扫描及组分示意图;
其中,(a)图为TEM示意图;(b)图为纳米线中Te的能谱面扫描图;
(c)图为纳米线中Bi的能谱面扫描图;(d)图为纳米线的组分图;
图5为实施例1所得锯齿结构Bi2Te3纳米线XRD示意图;
图6为实施例1,2,3与块体Bi2Te3热导率测试对比示意图;
【具体实施方式】
下面结合附图对本发明做进一步详细描述:
本发明提出一种表面具有锯齿状结构的碲化铋纳米线及其制备方法,目的在于碲化铋纳米线中引入大量表/界面缺陷,并通过缺陷对声子的散射作用,实现材料热导率的大幅度降低,同时材料仍保持较高的电导率。本发明制备工艺简单,操作过程安全,且无污染,制备出的碲化铋结构是单相粉体,比表面积大,形状、大小均匀。
步骤1,将氧化碲、聚乙烯吡咯烷酮和氢氧化钾在室温下混合溶于乙二醇,氧化碲和氢氧化钾的摩尔比为(0.1-0.15):1,氧化碲和聚乙烯吡咯烷酮的配比关系为1mmol:0.5g,氧化碲和乙二醇的混合摩尔比为1mmol:20mL,混合后通过磁力搅拌使其充分溶解为透明液体,使得氧化碲充分溶解,随后将液体倒入三颈瓶中,在氮气保护、循环水冷却以及磁力搅拌条件下,将混合溶液加热至160℃,随后快速注入水合肼,1mmol的氧化碲加入3mL的水合肼,保温反应1小时后,氧化碲被还原并生成碲纳米线(本质为蹄单质)。将碲纳米线溶液温度降低,等待下一步使用。
步骤2,将五水硝酸铋颗粒与乙二醇在烧杯中混合,混合比例为0.33-2mmol的五水硝酸铋颗粒溶解于5-10mL的乙二醇中,保证无水硝酸铋颗粒能够溶解到乙二醇中,作为铋的前驱体溶液,并在磁力搅拌下将混合溶液加热至120℃,当溶液呈现无色透明状后,用注射器将铋前驱体溶液热注到上一步的碲纳米线溶液中,氧化碲和五水硝酸铋的摩尔比为3:1,随后向混合溶液中注入一定量的浓盐酸(35%),1mmol的氧化碲配合加入3mL的浓盐酸,在120℃下保温反应2小时后,自然冷却至室温。加入浓盐酸能够中和KOH,使溶液酸碱度偏中性,能够放缓碲与铋的反应速率,锯齿结构更加明显。
步骤3,取出溶液并高速离心洗涤,采用去离子水和无水乙醇各洗涤3次,将沉淀出的锯齿结构的碲化铋纳米线放置于真空烘箱中50℃烘干,得到黑色粉末即为具有锯齿结构的碲化铋纳米线。
参见图1,为本发明复合材料的合成过程,从图中可以看出,锯齿状碲化铋纳米线的形成主要分为三步:首先,氧化碲在碱性环境及还原剂的作用下,被还原为碲单质并结晶生长,在生长过程中,其表面被聚乙烯吡络烷酮包覆,只能沿单一方向生长为一维碲纳米线结构;随后,加入铋反应源,并调控溶液中的反应速率。铋离子一般优先选择表面能更低的纳米线两端聚集,并与碲反应形成I型结构;最后,铋离子在加热作用下扩散至碲纳米线表面和内部继续反应,形成锯齿结构的碲化铋纳米线。
实施例1
步骤1,将0.1596g(1mmol)的TeO2、0.5g PVP和3.74g(8mmol)KOH,在室温下混合溶于20ml EG,通过磁力搅拌使其充分溶解为透明液体;随后倒入100ml的三颈瓶中,在氮气保护、循环水冷却以及磁力搅拌条件下,将混合溶液加热至160℃,快速注入3ml水合肼,保温反应1小时后,将温度降至120℃待使用;
步骤2,将0.310g(0.33mmol)的五水硝酸铋(Bi(NO3)3·5H2O)颗粒与5ml乙二醇混合,在磁力搅拌下将混合溶液加热至120℃,当溶液呈无色透明状时,用注射器将120℃的Bi前驱体溶液热注到Te纳米线溶液中,随后向混合溶液中注入3ml浓度为35%的浓盐酸,保温反应2h后自然冷却至室温。
步骤3,取出溶液并用高速离心机离心洗涤,采用去离子水和无水乙醇各洗涤3次,随后放置于真空烘箱中50℃烘干,得到黑色粉末即为表面具有锯齿结构的Bi2Te3纳米线。
利用石墨模具,在Ar气氛下进行等离子活化烧结。烧结温度为350℃,烧结压力为80MPa,保温时间5min。采用激光导热法测试所获得的烧结体热导率为0.87W·m-1·K-1。
图2是通过扫描电镜观察锯齿结构碲化铋纳米线的形貌。图中碲化铋纳米线长度约为1微米,表面为致密均匀的锯齿状结构。图3为单根碲化铋纳米线的透射电镜图,可以看出纳米线直径约为100-150nm,形貌规整,锯齿分布均匀。图4为单根锯齿结构Bi2Te3纳米线局部的能谱面扫描及组分示意图,可以发现碲、铋两元素均匀的分布在纳米线内部,且两者原子比例为Bi:Te=42.80:57.20,基本符合碲化铋Bi2Te3的化学计量比。图5为样品的XRD图谱,图中的衍射峰位置和强度可以说明所得材料为纯相的多晶态碲化铋。
实施例2
步骤1,将0.2394g(1.5mmol)的TeO2、0.75g PVP和5.6g(10mmol)KOH,在室温下混合溶于30ml EG,通过磁力搅拌使其充分溶解为透明液体;随后倒入100ml的三颈瓶中,在氮气保护、循环水冷却以及磁力搅拌条件下,将混合溶液加热至160℃,快速注入4.5ml水合肼,保温反应1小时后,将温度降至120℃待使用;
步骤2,同时,将0.466g(1mmol)的五水硝酸铋(Bi(NO3)3·5H2O)颗粒与5ml乙二醇混合,在磁力搅拌下将混合溶液加热至120℃,当溶液呈无色透明状时,用注射器将120℃的Bi前驱体溶液热注到Te纳米线溶液中,随后向混合溶液中注入4.5ml浓度为35%的浓盐酸,保温反应2h后自然冷却至室温;
步骤3,取出溶液并用高速离心机离心洗涤,采用去离子水和无水乙醇各洗涤3次,随后放置于真空烘箱中50℃烘干,得到黑色粉末即为表面具有锯齿结构的Bi2Te3纳米线。
利用石墨模具,在Ar气氛下进行等离子活化烧结。烧结温度为350℃,烧结压力为80MPa,保温时间5min。采用激光导热法测试所获得的烧结体热导率最低为0.73W·m-1·K-1。,
实施例3
步骤1,将0.4788g(3mmol)的TeO2、1.5g PVP和11.2g(20mmol)KOH,在室温下混合溶于60ml EG,通过磁力搅拌使其充分溶解为透明液体;随后倒入200ml的三颈瓶中,在氮气保护、循环水冷却以及磁力搅拌条件下,将混合溶液加热至160℃,快速注入8ml水合肼,保温反应1小时后,将温度降至120℃待使用;
步骤2,同时,将0.932g(1mmol)的五水硝酸铋(Bi(NO3)3·5H2O)颗粒与10ml乙二醇混合,在磁力搅拌下将混合溶液加热至120℃,当溶液呈无色透明状时,用注射器将120℃的Bi前驱体溶液热注到Te纳米线溶液中,随后向混合溶液中注入8ml浓度为35%的浓盐酸,保温反应2h后自然冷却至室温;
步骤3,取出溶液并用高速离心机离心洗涤,采用去离子水和无水乙醇各洗涤3次,随后放置于真空烘箱中50℃烘干,得到黑色粉末即为表面具有锯齿结构的Bi2Te3纳米线。
利用石墨模具,在Ar气氛下进行等离子活化烧结。烧结温度为350℃,烧结压力为80MPa,保温时间5min。采用激光导热法测试所获得的烧结体热导率最低为0.77W·m-1·K-1。
参见图6,为本发明制备出的Bi2Te3纳米线的热导率和块体Bi2Te3的热导率对比图,从图中可以看出,本发明三个实施例的热导率显著低于Bi2Te3的热导率。
实施例4
步骤1,将0.1596g(1mmol)的TeO2、0.5g PVP和4.675g(10mmol)KOH,在室温下混合溶于20ml EG,通过磁力搅拌使其充分溶解为透明液体;随后倒入100ml的三颈瓶中,在氮气保护、循环水冷却以及磁力搅拌条件下,将混合溶液加热至160℃,快速注入3mL水合肼,保温反应1小时后,将温度降至120℃待使用;
步骤2,将0.310g(0.33mmol)的五水硝酸铋(Bi(NO3)3·5H2O)颗粒与5ml乙二醇混合,在磁力搅拌下将混合溶液加热至120℃,当溶液呈无色透明状时,用注射器将120℃的Bi前驱体溶液热注到Te纳米线溶液中,随后向混合溶液中注入3ml浓度为35%的浓盐酸,保温反应2h后自然冷却至室温。
步骤3,取出溶液并用高速离心机离心洗涤,采用去离子水和无水乙醇各洗涤3次,随后放置于真空烘箱中50℃烘干,得到黑色粉末即为表面具有锯齿结构的Bi2Te3纳米线。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (10)
1.一种锯齿状结构的碲化铋纳米线制备方法,其特征在于,包括以下步骤:
步骤1,将氧化碲、聚乙烯吡咯酮和氢氧化钾加入至乙二醇中,搅拌至为透明液体,将透明液体加热后,加入水合肼,保温反应1小时后,生成碲纳米线溶液;
步骤2,将五水硝酸铋颗粒和乙二醇混合后,加热搅拌至溶液成透明状,生成铋前驱体溶液,将铋前驱体溶液加入到碲纳米线溶液中,生成混合溶液,在混合溶液中加入浓盐酸,保温反应2小时后,冷却至室温,得到生成物溶液;
步骤3,将生成物溶液离心洗涤后,将洗涤后的沉淀物烘干,得到黑色粉末为具有锯齿状结构的碲化铋纳米线。
2.根据权利要求1所述的一种锯齿状结构的碲化铋纳米线制备方法,其特征在于,步骤1中,氧化碲和氢氧化钾的混合摩尔比为(0.1-0.15):1,氧化碲和聚乙烯吡咯烷酮的混合比例为1mmol:0.5g,氧化碲和乙二醇的混合比例为1mmol:20mL。
3.根据权利要求1所述的一种锯齿状结构的碲化铋纳米线制备方法,其特征在于,步骤1中,透明液体的加热温度为120℃。
4.根据权利要求1所述的一种锯齿状结构的碲化铋纳米线制备方法,其特征在于,步骤1中,1mmol的氧化碲加入3mL的水合肼。
5.根据权利要求1所述的一种锯齿状结构的碲化铋纳米线制备方法,其特征在于,步骤2中,五水硝酸铋颗粒和乙二醇的混合比例为(0.33-2)mmol:5mL。
6.根据权利要求1所述的一种锯齿状结构的碲化铋纳米线制备方法,其特征在于,步骤2中,将五水硝酸铋颗粒和乙二醇混合后,加热至120℃,同时搅拌。
7.根据权利要求1所述的一种锯齿状结构的碲化铋纳米线制备方法,其特征在于,步骤2中的无水硝酸铋颗粒和步骤1中的氧化碲的摩尔比为1:3。
8.根据权利要求1所述的一种锯齿状结构的碲化铋纳米线制备方法,其特征在于,步骤2中浓盐酸的加入量以步骤1中的氧化碲为依据,1mmol的氧化碲加入3mL的浓盐酸。
9.根据权利要求1所述的一种锯齿状结构的碲化铋纳米线制备方法,其特征在于,步骤3中,烘干温度为50℃。
10.一种通过权利要求1-9任一项所述制备方法制得的锯齿状结构的碲化铋纳米线。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011133325.9A CN112340708A (zh) | 2020-10-21 | 2020-10-21 | 一种锯齿状结构的碲化铋纳米线及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011133325.9A CN112340708A (zh) | 2020-10-21 | 2020-10-21 | 一种锯齿状结构的碲化铋纳米线及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN112340708A true CN112340708A (zh) | 2021-02-09 |
Family
ID=74359523
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011133325.9A Pending CN112340708A (zh) | 2020-10-21 | 2020-10-21 | 一种锯齿状结构的碲化铋纳米线及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112340708A (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113582143A (zh) * | 2021-07-29 | 2021-11-02 | 西安石油大学 | 一种金属碲化物纳米管及其普适性的制备方法 |
CN114618534A (zh) * | 2022-04-18 | 2022-06-14 | 合肥工业大学 | 一种可见光响应的硫掺杂碲化铋纳米线光催化材料及其制备方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104362248A (zh) * | 2014-10-10 | 2015-02-18 | 浙江理工大学 | 溶剂热制备高塞贝克系数碲/氧化碲纳米复合材料的方法 |
CN104555952A (zh) * | 2013-10-22 | 2015-04-29 | 浙江理工大学 | 一种纳米级棒状碲化铋纳米材料的制备方法 |
-
2020
- 2020-10-21 CN CN202011133325.9A patent/CN112340708A/zh active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104555952A (zh) * | 2013-10-22 | 2015-04-29 | 浙江理工大学 | 一种纳米级棒状碲化铋纳米材料的制备方法 |
CN104362248A (zh) * | 2014-10-10 | 2015-02-18 | 浙江理工大学 | 溶剂热制备高塞贝克系数碲/氧化碲纳米复合材料的方法 |
Non-Patent Citations (1)
Title |
---|
SHUAI LIU ET AL.: "Realizing the Interface Tuned Thermoelectric Transport Performance in Bi2Te-Based Hierarchical Nanostructures", 《J. PHYS. CHEM. C》 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113582143A (zh) * | 2021-07-29 | 2021-11-02 | 西安石油大学 | 一种金属碲化物纳米管及其普适性的制备方法 |
CN114618534A (zh) * | 2022-04-18 | 2022-06-14 | 合肥工业大学 | 一种可见光响应的硫掺杂碲化铋纳米线光催化材料及其制备方法 |
CN114618534B (zh) * | 2022-04-18 | 2024-02-20 | 合肥工业大学 | 一种可见光响应的硫掺杂碲化铋纳米线光催化材料及其制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wei et al. | Review of current high-ZT thermoelectric materials | |
Sulaiman et al. | Review on grain size effects on thermal conductivity in ZnO thermoelectric materials | |
CN102760827B (zh) | Bi2Te3薄片/石墨烯复合材料及其制备方法和应用 | |
CN112028632B (zh) | 一种非化学计量比碲化铋基热电材料及其制备方法 | |
EP2560917A2 (en) | Ultrathin nanowire-based and nanoscale heterostructure-based thermoelectric conversion structures and method of making same | |
CN112340708A (zh) | 一种锯齿状结构的碲化铋纳米线及其制备方法 | |
KR20130121546A (ko) | 열전성능이 증대된 열전소재 및 그 제조 방법 | |
Zhu et al. | Synthesis of PbTe thermoelectric materials by alkaline reducing chemical routes | |
CN101164893A (zh) | 一种四针状纳米硫化锌的制备方法 | |
CN101486450B (zh) | 一种碲化铅基块体热电材料的制备方法 | |
CN113562704A (zh) | 一种组分可控的Bi-Te-Se三元纳米线及其制备方法 | |
CN1384048A (zh) | 一种纳米级金属碲化物的制备方法 | |
Yuan et al. | Preparation of zinc and cerium or both doped Cu2O photoelectric material via hydrothermal method | |
KR101509332B1 (ko) | 입자 크기 및 조성을 제어할 수 있는 구리 셀레나이드의 제조방법 | |
CN113582143A (zh) | 一种金属碲化物纳米管及其普适性的制备方法 | |
US20140261609A1 (en) | Ultrathin nanowire-based and nanoscale heterostructure based thermoelectronic conversion structures and method of making the same | |
CN112607714B (zh) | 一种PbSe基热电材料的制备方法 | |
CN110444656B (zh) | 一种硫化亚铜复合碳化硅块体热电材料的制备方法 | |
CN112531098B (zh) | 一种柔性热电材料及其制备方法 | |
CN118284298A (zh) | 一种Cu2Te1-xSx热电材料及其制备方法 | |
KR101872095B1 (ko) | A-Bi-Te 화합물 및 그 형성 방법 | |
CN112323138B (zh) | 一种含有孪晶的纳米氧化亚铜粉末及其制备方法 | |
JP4340768B2 (ja) | 熱電変換層状コバルト酸化物NaxCoO2のウィスカー結晶及びその作製法 | |
CN113683063A (zh) | 一种表面负载金颗粒的碲化铋纳米片及其制备方法 | |
CN111441087B (zh) | 一种6h-碳化硅二维单晶纳米片的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20210209 |