CN114618534B - 一种可见光响应的硫掺杂碲化铋纳米线光催化材料及其制备方法 - Google Patents

一种可见光响应的硫掺杂碲化铋纳米线光催化材料及其制备方法 Download PDF

Info

Publication number
CN114618534B
CN114618534B CN202210402493.6A CN202210402493A CN114618534B CN 114618534 B CN114618534 B CN 114618534B CN 202210402493 A CN202210402493 A CN 202210402493A CN 114618534 B CN114618534 B CN 114618534B
Authority
CN
China
Prior art keywords
nanowire
doped
visible light
hydrothermal
sulfur
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210402493.6A
Other languages
English (en)
Other versions
CN114618534A (zh
Inventor
鲍智勇
杜云龙
江宇
吕珺
曹海群
汪嘉恒
张茂峰
蔡婧
张勇
吴玉程
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN202210402493.6A priority Critical patent/CN114618534B/zh
Publication of CN114618534A publication Critical patent/CN114618534A/zh
Application granted granted Critical
Publication of CN114618534B publication Critical patent/CN114618534B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/057Selenium or tellurium; Compounds thereof
    • B01J27/0576Tellurium; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种可见光响应的硫掺杂碲化铋纳米线光催化材料及其制备方法,是首先利用水热合成方式制备Te纳米线前驱体,然后将Te纳米线前驱体与Bi源混合水热制备Bi4Te3纳米线,最后将Bi4Te3纳米线与硫脲混合并恒温水浴磁力搅拌,即获得目标产物S掺杂Bi4Te3纳米线。本发明的制备方法简单成熟、成本低,且所得材料化学稳定性好、在可见光范围内可以光解水、催化效率高。

Description

一种可见光响应的硫掺杂碲化铋纳米线光催化材料及其制备 方法
技术领域
本发明涉及一种可见光响应的S掺杂Bi4Te3纳米线光催化材料及其制备方法,属于纳米材料技术领域。
背景技术
目前,化石类燃料与日俱增的消耗和短缺及其燃烧后生成的CO2带来一系列能源与环境问题。光催化技术在制备清洁能源方面显示了巨大的潜力,因其可以利用丰富的太阳能被广泛研究。近年来,光催化水分解制氢的研究日益得到各国的重视,其机理是半导体材料通过有效吸收光能产生具有还原能力和氧化能力的光生电子-空穴对,在催化剂的表面发生直接或者间接的氧化或还原反应,从而实现水分解为氢气与氧气。然而光催化过程中的三个步骤(光吸收、载流子分离、表面反应)效率较低。尤其是多数催化剂因其带隙较宽,对仅占太阳光5%左右的紫外区波段响应,极大地限制了实际应用。在此提出了一种可以在可见光波段响应的光催化材料,S掺杂Bi4Te3纳米线。Bi4Te3作为一类热电材料被熟知,其带隙较窄,可被光波中长的波段所激发,同时由于量子限域效应,纳米化的材料带隙宽度将增大,能够使得其导带位置在H+/H2还原势之上,这为光催化制氢提供了可能性。通过查找文献得知,有一类Bi2Te2X(X=S,Se)单层材料通过理论模拟,得出具有极高的载流子输运能力和可吸收全波段太阳光的合适带隙的结论,非常适合光催化领域应用。但在实验中制备Bi2Te2X材料尤其是S掺杂Bi4Te3纳米线的制备方法目前还没有报道。
发明内容
基于上述现有技术所存在的问题,本发明提供一种可见光响应的S掺杂Bi4Te3纳米线光催化材料及其制备方法,旨在以操作简单、成本低的方法获得化学稳定性好、在可见光范围内可以光解水且催化效率高的S掺杂Bi4Te3纳米线。
本发明为实现目的,采用如下技术方案:
一种可见光响应的硫掺杂碲化铋纳米线光催化材料的制备方法,其特点在于:首先利用水热合成方式制备Te纳米线前驱体,然后将所述Te纳米线前驱体与Bi源混合水热制备Bi4Te3纳米线,最后将所述Bi4Te3纳米线与硫脲混合并恒温水浴磁力搅拌,即获得目标产物S掺杂Bi4Te3纳米线。具体包括以下步骤:
(1)将0.06~0.08g Na2TeO3、0.9~1.0g PVPK30、3~4mL质量浓度为25~28%的氨水和1~2mL水合肼加入到30~35mL去离子水中,磁力搅拌形成均质溶液,倒入水热反应釜内并封盖,然后转移到水热烘箱中,升温至180℃,保温3h,自然冷却到室温;反应产物用丙酮提取,离心收集,获得Te纳米线前驱体;
(2)将步骤(1)所得Te纳米线前驱体分散于30~35mL去离子水中,超声5~10min,加入0.1~0.15g Bi(NO3)3并磁力搅拌混合均匀,再滴加1mL水合肼,倒入水热反应釜内并封盖,然后转移到水热烘箱中,升温至150℃,保温12h,自然冷却到室温;离心收集所得产物,获得Bi4Te3纳米线;
(3)将步骤(2)所得Bi4Te3纳米线分散于30~35mL去离子水中,同时加入0.1~0.15g硫脲,放于恒温磁力搅拌器中60℃~66℃搅拌12h,然后转移到水热烘箱中,60℃~66℃保温12h,离心、洗涤、60℃干燥,即获得目标产物S掺杂Bi4Te3纳米线。
进一步地,步骤(1)与步骤(2)所用水热反应釜为聚四氟乙烯衬底,容积为50mL。
进一步地,步骤(1)与步骤(2)中的磁力搅拌时间为20~40min。
进一步地,步骤(1)、步骤(2)与步骤(3)中,所述离心的离心力为9000×g、离心时间为5~8min。
本发明的有益效果在于:
1、本发明制备S掺杂Bi4Te3催化材料的方法简单成熟、成本低,所得材料化学稳定性好、在可见光范围内可以光解水,且催化效率高。
2、本发明合成出的S掺杂Bi4Te3纳米线材料,由一维的Bi4Te3纳米线通过S掺杂实现,材料具有合适的带隙,具有在可见光范围内的响应,且具有较高的载流子输运能力可减少内部复合。同时,S替代了Te的位置,电子优先从低电负性的Te迁移到高电负性的S周围,较为均匀分布的表面S原子富集电子,充当了光催化产氢的活性位点,可以表现出显著的光催化效率。由于其比表面积大、化学和热稳定性好、载流子输运能力较强,在Na2S、Na2SO3配置的水溶液稳定高效地产氢6h,速率300μmol/g,是较为优异的产氢光催化剂。
3、本发明所获得的一维纳米线的优点在于:纳米化的线状材料比表面积大,且由于量子限域效应,带隙增大,具有合适的长波段光波响应能力,同时导带位置可在H+/H2还原势之上。
附图说明
图1为实施例1所得Te纳米线、Bi4Te3纳米线及S掺杂Bi4Te3纳米线的XRD图谱;
图2为实施例1所得Bi4Te3纳米线及S掺杂Bi4Te3纳米线的归一化的紫外-可见吸收光谱对比谱;
图3为实施例1所得S掺杂Bi4Te3纳米线在不同放大倍数下的SEM照片;
图4为实施例1所得Bi4Te3纳米线及S掺杂Bi4Te3纳米线的TEM、HRTEM和元素mapping图,其中:(a)、(b)分别为Bi4Te3纳米线及S掺杂Bi4Te3纳米线的TEM;(c)、(d)分别为Bi4Te3纳米线及S掺杂Bi4Te3纳米线的HRTEM;(e)~(h)为S掺杂Bi4Te3纳米线的元素mapping图。
图5为实施例1所得Bi4Te3纳米线及S掺杂Bi4Te3纳米线的XPS图谱,其中:(a)对应全谱图;(b)对应Bi4Te3纳米线的Bi4f谱峰;(c)对应Bi4Te3纳米线的Te3d谱峰;(d)对应S掺杂Bi4Te3纳米线的S2s的谱峰;(e)对应S掺杂Bi4Te3纳米线的Bi4f谱峰;(f)对应S掺杂Bi4Te3纳米线的Te3d谱峰。
图6为实施例1所得Bi4Te3纳米线及S掺杂Bi4Te3纳米线的性能对照,其中(a)为产氢活性图,(b)为在ITO上涂敷成膜的光电流。
图7为实施例1所得Bi4Te3纳米线及S掺杂Bi4Te3纳米线的交流阻抗(EIS)。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似改进,因此本发明不受下面公开的具体实施的限制。
实施例1
本实施例按如下步骤制备S掺杂Bi4Te3纳米线:
(1)制备Te纳米线
将0.07g Na2TeO3(99.9%)、1.0g PVPK30(GR,K值在27.0~32.4)、3.25mL质量浓度为25~28%的氨水和1.5mL水合肼(85%)加入到32mL去离子水中,磁力搅拌30min形成均质溶液,倒入水热反应釜内并封盖。转移到水热烘箱中,以5℃/min的升温速率升温至180℃,保温3h,自然冷却到室温。将反应液与丙酮按照体积比1:2混合,对混合液进行离心(离心力9000xg,离心时间5min),收集离心产物,获得Te纳米线前驱体。
(2)制备Bi4Te3纳米线
将步骤(1)所得Te纳米线前驱体分散于34mL去离子水中,超声5min,加入0.1g Bi(NO3)3(AR)并磁力搅拌混合均匀,再滴加1mL水合肼(85%),倒入水热反应釜内并封盖,然后转移到水热烘箱中,以5℃/min的升温速率升温至150℃,保温12h,自然冷却到室温;离心收集所得产物(离心力9000xg,离心时间5min),获得Bi4Te3纳米线。
(3)制备S掺杂Bi4Te3纳米线
将步骤(2)所得Bi4Te3纳米线分散于35mL去离子水中,同时加入0.1g硫脲(AR),放于恒温磁力搅拌器中60℃~66℃搅拌12h转速设定400r/min,然后转移到水热烘箱中,60℃~66℃保温12h,离心(离心力9000xg,离心时间5min)、洗涤(先用去离子水洗涤两次,再用乙醇洗涤一次)、60℃干燥,即获得目标产物S掺杂Bi4Te3纳米线。
图1为本实施例所得Te纳米线、Bi4Te3纳米线及S掺杂Bi4Te3纳米线的XRD图谱,图中可以明显地看出Te(110)面优势生长,Bi4Te3纳米线在2θ=27.515°、38.033°与40.490°有与文献报道的Bi4Te3一致的特征峰,可确定材料为Bi4Te3。Bi4Te3其它峰位也在图中标出。S掺杂Bi4Te3谱峰较纯Bi4Te3纳米线峰位向更大角度具有微小的偏移(约0.2°),证明了S掺杂进入了Bi4Te3晶格中取代了Te的位置,晶面间距变小。两种材料均沿着(107)面优势生长。
图2为本实施例所得Bi4Te3纳米线及S掺杂Bi4Te3纳米线的归一化的紫外-可见吸收光谱对比谱,可以看到S掺杂Bi4Te3纳米线在250-700nm范围有明显的吸收增强。
图3为本实施例所得S掺杂Bi4Te3纳米线在不同放大倍数下的SEM照片,可以看到最终产物具有明显的纳米线形态,尺寸较为均一,表面较为粗糙,有利于反应物的吸附。
图4为本实施例所得Bi4Te3纳米线及S掺杂Bi4Te3纳米线的TEM、HRTEM和元素mapping图,其中:(a)、(b)分别为Bi4Te3纳米线及S掺杂Bi4Te3纳米线的TEM;(c)、(d)分别为Bi4Te3纳米线及S掺杂Bi4Te3纳米线的HRTEM;(e)~(g)为S掺杂Bi4Te3纳米线的元素mapping图。从图4中可以看出:Bi4Te3纳米线与S掺杂Bi4Te3纳米线尺寸均一,直径约20nm,表面粗糙,与SEM结果吻合。高分辨晶格图表明Bi4Te3纳米线与S掺杂Bi4Te3纳米线的晶格无明显改变,是因为S的掺杂量较少,与下述XPS结果符合,并且S占据Te的格点,可以看出(107)面为Bi4Te3和S掺杂Bi4Te3材料的优势生长面,与XRD对应。元素mapping图中可以清晰地看出S掺杂Bi4Te3纳米线中Bi、Te元素分布均匀,同时S也均匀的掺杂在纳米线中。
图5为本实施例所得Bi4Te3纳米线及S掺杂Bi4Te3纳米线的XPS图谱。全谱(a)可以看到两种材料中Bi和Te的元素谱峰,其中主谱线Bi4f和Te3d十分明显,在S掺杂的Bi4Te3纳米线中出现了S2s的较弱峰,表明最终产物S掺杂的存在,同时也能说明表面S含量较少,与HRTEM中描述吻合。高分辨分析谱(b)为Bi4Te3纳米线中Bi4f谱峰,157.23eV和162.58eV表明Bi-Bi间的结合,158.65eV和163.97eV归于Bi-Te间的结合。(c)为典型的Te3d谱峰。(d)为S掺杂Bi4Te3纳米线中S2s的谱峰,S2s的分峰拟合中225.2eV归属于Bi-S的结合,232.7eV归属于Te-S键,与XRD结果吻合。在(e)Bi4f谱峰的拟合中,可分峰出S2p的峰形,160.78eV归属于Bi-S的结合。对比Te3d峰,可以看出S掺杂Bi4Te3中Te的峰位572.14eV、582.57eV较Bi4Te3的571.89eV、582.27eV正移了0.2~0.3eV,出现了一个573.35eV的峰位,表明S替代了部分Te,电子从低电负性的Te转移到了高电负性的S,有利于富集电子的表面S原子发挥光催化产氢活性位点的作用。
图6为本实施例所得Bi4Te3纳米线及S掺杂Bi4Te3纳米线的性能对照,产氢实验通过泊菲莱生产的Labsolar-6A全玻璃自动在线微量气体分析系统测试,使用泊菲莱氙灯光源PLS-SXE-300模拟太阳光,在0.08M Na2S、0.5M Na2SO3配置的水溶液中进行实验,记录随时间变化的产氢量。光电流测试使用上海辰华仪器有限公司的CHI电化学工作站,模拟光源也是PLS-SXE-300,电解液为0.08M Na2S、0.5M Na2SO3配置的水溶液,加偏压0.2V,三电极电解池中对电极为铂电极、参比电极选用HgCl、工作电极通过样品涂敷在ITO玻璃上制备。具体制备方式为:取2mg样品加入200μL乙醇和5μL nafion,超声分散1h,悬浮液滴加到ITO玻璃上形成1*1cm的涂膜。从(a)可以看到Bi4Te3不具备产氢活性,S掺杂Bi4Te3纳米线在6h内产氢活性高达300μmol/(g·h),分析是富集电子的表面S原子充当了产氢活性位点,且S掺杂调整了纳米线的带隙获得了更高的长波段光波吸收效率,这在紫外-可见吸收光谱中明显可以体现。(b)可以看出在ITO上涂敷S掺杂Bi4Te3纳米线材料成膜的光电流高达80μA/cm2
为了比较光催化性能变化的原因,本发明分析了两种材料的交流阻抗(EIS),如图7所示,明显看出S掺杂Bi4Te3具有较小的阻抗,有利于载流子的输运,提升材料光催化效率。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。

Claims (5)

1.一种可见光响应的硫掺杂碲化铋纳米线光催化材料的制备方法,其特征在于:首先利用水热合成方式制备Te纳米线前驱体,然后将所述Te纳米线前驱体与Bi源混合水热制备Bi4Te3纳米线,最后将所述Bi4Te3纳米线与硫脲混合并恒温水浴磁力搅拌,即获得目标产物S掺杂Bi4Te3纳米线,具体包括以下步骤:
(1)将0.06~0.08g Na2TeO3、0.9~1.0g PVPK30、3~4mL质量浓度为25~28%的氨水和1~2mL水合肼加入到30~35mL去离子水中,磁力搅拌形成均质溶液,倒入水热反应釜内并封盖,然后转移到水热烘箱中,升温至180℃,保温3h,自然冷却到室温;反应产物用丙酮提取,离心收集,获得Te纳米线前驱体;
(2)将步骤(1)所得Te纳米线前驱体分散于30~35mL去离子水中,超声5~10min,加入0.1~0.15g Bi(NO3)3并磁力搅拌混合均匀,再滴加1mL水合肼,倒入水热反应釜内并封盖,然后转移到水热烘箱中,升温至150℃,保温12h,自然冷却到室温;离心收集所得产物,获得Bi4Te3纳米线;
(3)将步骤(2)所得Bi4Te3纳米线分散于30~35mL去离子水中,同时加入0.1~0.15g硫脲,放于恒温磁力搅拌器中60℃~66℃搅拌12h,然后转移到水热烘箱中,60℃~66℃保温12h,离心、洗涤、60℃干燥,即获得目标产物S掺杂Bi4Te3纳米线。
2.根据权利要求1所述的可见光响应的硫掺杂碲化铋纳米线光催化材料的制备方法,其特征在于:步骤(1)与步骤(2)所用水热反应釜为聚四氟乙烯衬底,容积为50mL。
3.根据权利要求1所述的可见光响应的硫掺杂碲化铋纳米线光催化材料的制备方法,其特征在于:步骤(1)与步骤(2)中的磁力搅拌时间为20~40min。
4.根据权利要求1所述的可见光响应的硫掺杂碲化铋纳米线光催化材料的制备方法,其特征在于:步骤(1)、步骤(2)与步骤(3)中,所述离心的离心力为9000×g、离心时间为5~8min。
5.一种权利要求1~4中任意一项所述制备方法所制得的可见光响应的硫掺杂碲化铋纳米线光催化材料。
CN202210402493.6A 2022-04-18 2022-04-18 一种可见光响应的硫掺杂碲化铋纳米线光催化材料及其制备方法 Active CN114618534B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210402493.6A CN114618534B (zh) 2022-04-18 2022-04-18 一种可见光响应的硫掺杂碲化铋纳米线光催化材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210402493.6A CN114618534B (zh) 2022-04-18 2022-04-18 一种可见光响应的硫掺杂碲化铋纳米线光催化材料及其制备方法

Publications (2)

Publication Number Publication Date
CN114618534A CN114618534A (zh) 2022-06-14
CN114618534B true CN114618534B (zh) 2024-02-20

Family

ID=81906279

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210402493.6A Active CN114618534B (zh) 2022-04-18 2022-04-18 一种可见光响应的硫掺杂碲化铋纳米线光催化材料及其制备方法

Country Status (1)

Country Link
CN (1) CN114618534B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011022189A2 (en) * 2009-08-17 2011-02-24 Laird Technologies, Inc. Synthesis of silver, antimony, and tin doped bismuth telluride nanoparticles and bulk bismuth telluride to form bismuth telluride composites
CN102403445A (zh) * 2010-09-07 2012-04-04 中国科学院福建物质结构研究所 一种碲化铋基热电材料及其制备方法
KR20140098353A (ko) * 2013-01-31 2014-08-08 연세대학교 산학협력단 열전성능이 우수한 코어/쉘 구조를 갖는 열전 나노와이어, 및 이를 포함하는 열전 나노소자 제조방법
CN105200520A (zh) * 2015-10-09 2015-12-30 广东工业大学 一种制备Bi2(SexTe1-x)3单晶纳米片的方法
CN106744724A (zh) * 2016-12-08 2017-05-31 广东工业大学 一种三碲化四铋纳米柱阵列膜及其制备方法
CN112340708A (zh) * 2020-10-21 2021-02-09 西安石油大学 一种锯齿状结构的碲化铋纳米线及其制备方法
CN112892563A (zh) * 2021-01-28 2021-06-04 江苏大学 F掺杂ZnCdS固溶体光催化材料及制备方法和应用
CN113562704A (zh) * 2021-07-29 2021-10-29 西安石油大学 一种组分可控的Bi-Te-Se三元纳米线及其制备方法
CN113697780A (zh) * 2021-10-20 2021-11-26 哈尔滨工业大学 一种pH调控碲化铋纳米线的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI610463B (zh) * 2016-07-11 2018-01-01 國立清華大學 成長碲及碲化物奈米線陣列於導電基材上的方法和碲及碲化物奈米線熱電裝置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011022189A2 (en) * 2009-08-17 2011-02-24 Laird Technologies, Inc. Synthesis of silver, antimony, and tin doped bismuth telluride nanoparticles and bulk bismuth telluride to form bismuth telluride composites
CN102403445A (zh) * 2010-09-07 2012-04-04 中国科学院福建物质结构研究所 一种碲化铋基热电材料及其制备方法
KR20140098353A (ko) * 2013-01-31 2014-08-08 연세대학교 산학협력단 열전성능이 우수한 코어/쉘 구조를 갖는 열전 나노와이어, 및 이를 포함하는 열전 나노소자 제조방법
CN105200520A (zh) * 2015-10-09 2015-12-30 广东工业大学 一种制备Bi2(SexTe1-x)3单晶纳米片的方法
CN106744724A (zh) * 2016-12-08 2017-05-31 广东工业大学 一种三碲化四铋纳米柱阵列膜及其制备方法
CN112340708A (zh) * 2020-10-21 2021-02-09 西安石油大学 一种锯齿状结构的碲化铋纳米线及其制备方法
CN112892563A (zh) * 2021-01-28 2021-06-04 江苏大学 F掺杂ZnCdS固溶体光催化材料及制备方法和应用
CN113562704A (zh) * 2021-07-29 2021-10-29 西安石油大学 一种组分可控的Bi-Te-Se三元纳米线及其制备方法
CN113697780A (zh) * 2021-10-20 2021-11-26 哈尔滨工业大学 一种pH调控碲化铋纳米线的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Ultrathin Semiconducting Bi2Te2S and Bi2Te2Se with High Electron Mobilities;Bing Wang et al.;J. Phys. Chem. Lett.;第第9卷卷;第487页左栏第2段 *

Also Published As

Publication number Publication date
CN114618534A (zh) 2022-06-14

Similar Documents

Publication Publication Date Title
Zhang et al. MOFs-derived Cu3P@ CoP pn heterojunction for enhanced photocatalytic hydrogen evolution
Ma et al. Knack behind the high performance CdS/ZnS-NiS nanocomposites: Optimizing synergistic effect between cocatalyst and heterostructure for boosting hydrogen evolution
US20220042184A1 (en) Preparation Method and Application of Non-noble Metal Single Atom Catalyst
Zhang et al. Hollow core–shell Co9S8@ ZnIn2S4/CdS nanoreactor for efficient photothermal effect and CO2 photoreduction
Hu et al. Noble-metal-free Ni2P as cocatalyst decorated rapid microwave solvothermal synthesis of inorganic-organic CdS-DETA hybrids for enhanced photocatalytic hydrogen evolution
Zhao et al. NiCo2S4@ Zn0. 5Cd0. 5S with direct Z-scheme heterojunction constructed by band structure adjustment of ZnxCd1-xS for efficient photocatalytic H2 evolution
Li et al. 2D CoP supported 0D WO3 constructed S-scheme for efficient photocatalytic hydrogen evolution
Yang et al. Porous Sn3O4 nanosheets on PPy hollow rod with photo-induced electrons oriented migration for enhanced visible-light hydrogen production
Zou et al. Synthesis of CdS/CoP hollow nanocages with improved photocatalytic water splitting performance for hydrogen evolution
Mu et al. A review on metal-organic frameworks for photoelectrocatalytic applications
CN110560105B (zh) 磷化镍负载硫铟锌纳米微球复合材料的制备及在光催化产氢中的应用
Yang et al. Constructing 2D/1D heterostructural BiOBr/CdS composites to promote CO2 photoreduction
Yu et al. NiO nanoparticles dotted TiO2 nanosheets assembled nanotubes PN heterojunctions for efficient interface charge separation and photocatalytic hydrogen evolution
CN114588888B (zh) 一种光催化剂及其制备方法与应用
Zou et al. Photocatalytic performance and mechanism of hydrogen evolution from water over ZnCdS/Co@ CoO in sacrificial agent-free system
Li et al. Effect of visible light irradiation on hydrogen production by CoNi2S4/CdWO4 controllable flower spherical photocatalyst
Wang et al. Construction of octahedral BiFeWOx encapsulated in hierarchical In2S3 core@ shell heterostructure for visible-light-driven CO2 reduction
CN112427045A (zh) 一种水热法合成的具有Z型异质结CdS/g-C3N4复合光催化剂材料的制备方法
Wu et al. 0D/2D heterostructure constructed by ultra-small chalcogenide-cluster aggregated quaternary sulfides and g-C3N4 for enhanced photocatalytic H2 evolution
Mao et al. Hydrogen evolution from photocatalytic water splitting by LaMnO 3 modified with amorphous CoS x
Pei et al. Hierarchical Zn1-xCdxS microclusters with superior visible-light-driven photocatalytic hydrogen generation performance
Yang et al. Efficient H 2 evolution on Co 3 S 4/Zn 0.5 Cd 0.5 S nanocomposites by photocatalytic synergistic reaction
CN116139867B (zh) 一种MOFs衍生的ZnO@CDs@Co3O4复合光催化剂及其制备方法和应用
Hu et al. Red/black phosphorus Z-scheme heterogeneous junction modulated by co-MOF for enhanced photocatalytic hydrogen evolution
Jiang et al. ZIF-9 derived cobalt phosphide and In2O3 as co-catalysts for efficient hydrogen production

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant