CN112289882A - 一种雪崩光电二极管的制造方法 - Google Patents
一种雪崩光电二极管的制造方法 Download PDFInfo
- Publication number
- CN112289882A CN112289882A CN202011190083.7A CN202011190083A CN112289882A CN 112289882 A CN112289882 A CN 112289882A CN 202011190083 A CN202011190083 A CN 202011190083A CN 112289882 A CN112289882 A CN 112289882A
- Authority
- CN
- China
- Prior art keywords
- substrate
- avalanche photodiode
- trench
- manufacturing
- avalanche
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 24
- 239000000758 substrate Substances 0.000 claims abstract description 29
- 238000000034 method Methods 0.000 claims abstract description 23
- 238000000407 epitaxy Methods 0.000 claims abstract description 17
- 238000002955 isolation Methods 0.000 claims abstract description 17
- 239000002019 doping agent Substances 0.000 claims abstract description 15
- 230000001590 oxidative effect Effects 0.000 claims abstract description 13
- 238000005530 etching Methods 0.000 claims abstract description 10
- 238000001259 photo etching Methods 0.000 claims abstract description 8
- 239000002184 metal Substances 0.000 claims abstract description 6
- 230000003647 oxidation Effects 0.000 claims abstract description 5
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 5
- 238000000151 deposition Methods 0.000 claims abstract description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 11
- 229910052681 coesite Inorganic materials 0.000 claims description 7
- 229910052906 cristobalite Inorganic materials 0.000 claims description 7
- 239000000377 silicon dioxide Substances 0.000 claims description 7
- 229910052682 stishovite Inorganic materials 0.000 claims description 7
- 229910052905 tridymite Inorganic materials 0.000 claims description 7
- 230000005684 electric field Effects 0.000 abstract description 6
- 239000000463 material Substances 0.000 abstract description 6
- 238000010521 absorption reaction Methods 0.000 abstract description 3
- 230000000694 effects Effects 0.000 abstract description 3
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 235000012239 silicon dioxide Nutrition 0.000 description 4
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000009827 uniform distribution Methods 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/08—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
- H01L31/10—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
- H01L31/101—Devices sensitive to infrared, visible or ultraviolet radiation
- H01L31/102—Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
- H01L31/107—Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0352—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
- H01L31/035272—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
- H01L31/035281—Shape of the body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0352—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
- H01L31/035272—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
- H01L31/03529—Shape of the potential jump barrier or surface barrier
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Light Receiving Elements (AREA)
Abstract
本发明公开一种雪崩光电二极管的制造方法,属于二极管技术领域。首先提供第一导电类型的衬底,在所述衬底上进行两次外延;氧化所述衬底,再生长出SIN层;光刻开出沟槽区,并进行Trench沟槽刻蚀;进行热氧化隔离,并用多晶POLY填充Trench沟槽;去除表面多晶POLY后再次氧化形成隔离;使用第二导电类型的掺杂剂进行高掺杂,形成第二导电电极区;光刻正面打孔,正反面沉积金属电极,形成雪崩光电二极管。本发明的制造方法步骤简单,能实现高增益高速雪崩光电二极管和实现单元间隔离的效果;增加光电流吸收效率,并且降低雪崩电场从而提高耐压;本发明的工艺涉及的设备、材料为常用MOS器件制作中的通用设备,不需新增材料及设备。
Description
技术领域
本发明涉及二极管技术领域,特别涉及一种雪崩光电二极管的制造方法。
背景技术
随着微电子技术的发展,雪崩光电二极管器件得到广泛的使用。由于雪崩光电二极管技术具有内部高增益、低漏电、高速响应等特性的优点,已逐渐成为制造高速,低功耗、高可靠性集成电路的主流。研制出高灵敏APD芯片,打破国际上对我国的垄断,满足我国在军事、航天、医疗等仪器对高灵敏APD的迫切需求,提升我国在微弱信号感知、高灵敏APD产业的实力,其中雪崩光电二极管的使用也越来越受到重视。
随着无人驾驶和激光测距等领域中雪崩光电二极管的应用,常规雪崩光电二极管的结构得到不断地更新。原有结构的雪崩光电二极管,需要高能量的注入条件,工艺集成复杂;且当二极管作为阵列产品时其像素间存在电信号串扰等问题。而如何满足高度集成,防串扰,工艺简便的光电雪崩二极管的需求,是需要解决的问题。
发明内容
本发明的目的在于提供一种雪崩光电二极管的制造方法,以解决现有雪崩光电二极管在频率和暗电流方面的缺点,实现高速、高可靠雪崩光电二极管。
为解决上述技术问题,本发明提供一种雪崩光电二极管的制造方法,包括:
提供第一导电类型的衬底,在所述衬底上进行两次外延;
氧化所述衬底,再生长出SIN层;
光刻开出沟槽区,并进行Trench沟槽刻蚀;
进行热氧化隔离,并用多晶POLY填充Trench沟槽;
去除表面多晶POLY后再次氧化形成隔离;
使用第二导电类型的掺杂剂进行高掺杂,形成第二导电电极区;
光刻正面打孔,正反面沉积金属电极,形成雪崩光电二极管。
可选的,在形成第二导电电极区之后,光刻正面打孔之前,该制造方法还包括:
去除表面的SIN层。
可选的,所述衬底的厚度为200~600μm,其掺杂浓度大于1×1019cm-3。
可选的,在所述衬底上进行两次外延包括:
第一次外延以第一导电类型的掺杂剂被轻度掺杂,掺杂浓度小于5×1014cm-3,外延厚度为10~70μm;
第二次外延以第一导电类型的掺杂剂被中度掺杂,掺杂浓度为8×1014cm-3~5×1015cm-3,外延厚度为2~5μm。
可选的,所述Trench沟槽的刻蚀深度为20~70μm。
可选的,所述第二导电类型的掺杂剂掺杂浓度大于1×1019cm-3。
在本发明中提供了一种雪崩光电二极管的制造方法,提供第一导电类型的衬底,在所述衬底上进行两次外延;氧化所述衬底,再生长出SIN层;光刻开出沟槽区,并进行Trench沟槽刻蚀;进行热氧化隔离,并用多晶POLY填充Trench沟槽;去除表面多晶POLY后再次氧化形成隔离;使用第二导电类型的掺杂剂进行高掺杂,形成第二导电电极区;光刻正面打孔,正反面沉积金属电极,形成雪崩光电二极管。
本发明具有以下有益效果:
1、工艺步骤简单,可与现有普通二极管工艺兼容,通过多次外延加沟槽隔离的方式实现了高增益高速雪崩光电二极管和实现单元间隔离的效果,所有工艺步骤都参照常规工艺,操作简单;对生产影响小;
2、低掺杂耗尽区外延掺杂浓度低,相比传统的二极管可以降低电容,增加光电流吸收效率,并且降低雪崩电场从而提高耐压;此外该外延低掺杂区在位于上下高掺杂区间比传统二极管存在增大的电场,可以使载流子快速流走,从而提高响应速度;
3、光电雪崩二极管结构的雪崩区的形成采用外延方式进行,可以方便和调节载流子浓度和深度,纵向浓度分布均匀,避免了常规雪崩二极管工艺采用高能注入机受限于注入深度能量的影响和扩散浓度分布的不一致,有利于雪崩电场均匀分布和光电信号线性增益稳定;
4、采用Trench深槽隔离的方式可以有效屏蔽二级管单元间光信号和电信号的串扰,减少非光敏区信号的噪声干扰和像素间的信号串扰,提高像素点的分辨率和精度;
5、本发明的工艺涉及的设备、材料为常用MOS器件制作中的通用设备,不需新增材料及设备。
附图说明
图1是本发明提供的雪崩光电二极管的制造方法的流程示意图;
图2是提供的第一导电类型的衬底示意图;
图3是在衬底上进行第一次外延的示意图;
图4是在衬底上进行第二次外延的示意图;
图5是生长SIN层的示意图;
图6是开出沟槽区的示意图;
图7是进行Trench沟槽刻蚀的示意图;
图8是在Trench沟槽中形成SiO2的示意图;
图9是在Trench沟槽中和SIN层表面形成多晶POLY的示意图;
图10是去除SIN层表面的多晶POLY的示意图;
图11通过氧化将Trench沟槽中顶端的多晶POLY形成SiO2的示意图;
图12使用第二导电类型的掺杂剂进行高掺杂形成第二导电电极区的示意图;
图13是去除表面的SIN层的示意图;
图14是光刻正面打孔,正反面沉积金属电极,形成雪崩光电二极管的示意图。
具体实施方式
以下结合附图和具体实施例对本发明提出的一种雪崩光电二极管的制造方法作进一步详细说明。根据下面说明和权利要求书,本发明的优点和特征将更清楚。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。
实施例一
本发明提供了一种雪崩光电二极管的制造方法,其流程如图1所示,包括如下步骤:
首先提供第一导电类型的衬底,所述衬底的厚度为200~600μm,其掺杂浓度大于1×1019cm-3;本实施例一中以硅衬底为例,如图2所示;
在所述衬底上进行两次外延:
第一次外延以第一导电类型的掺杂剂被轻度掺杂,形成耗尽区;掺杂浓度小于5×1014cm-3,外延厚度为10~70μm,如图3所示;
第二次外延以第一导电类型的掺杂剂被中度掺杂,形成雪崩区;掺杂浓度为8×1014cm-3~5×1015cm-3,外延厚度为2~5μm,如图4所示;
通过常规光刻腐蚀步骤开出沟槽区,如图6所示;开出的沟槽区在雪崩区表面截止;
然后在沟槽区的基础上进行Trench沟槽刻蚀,所述Trench沟槽的刻蚀深度为20~70μm;如图7所示,Trench沟槽刻蚀穿过所述雪崩区和所述耗尽区,直至所述衬底中;
如图8所示,对Trench沟槽进行热氧化,在Trench沟槽中形成起隔离作用的SiO2;
用多晶POLY填充所述Trench沟槽,并在SIN层表面形成多晶POLY,如图9所示;
去除SIN层表面的多晶POLY,如图10所示;
再次氧化将Trench沟槽中顶端的多晶POLY形成起隔离作用的SiO2,如图11;
请参阅图12,使用第二导电类型的掺杂剂进行高掺杂,将所述雪崩区的上层部分形成第二导电电极区;所述第二导电类型的掺杂剂掺杂浓度大于1×1019cm-3;本实施例一中,是进行N+离子注入;
去除表面的SIN层,如图13所示;
光刻正面打孔,正反面沉积金属电极,最终形成如图14所示的雪崩光电二极管。
本发明的工艺步骤简单,与现有普通二极管工艺可兼容,通过多次外延加沟槽隔离的方式实现了高增益高速雪崩光电二极管和实现单元间隔离的效果,所有工艺步骤都参照常规工艺,操作简单,对生产影响小;低掺杂耗尽区外延掺杂浓度低,相比传统的二极管可以降低电容,增加光电流吸收效率,并且降低雪崩电场从而提高耐压,此外该外延低掺杂区在位于上下高掺杂区间比传统二极管存在增大的电场,可以使载流子快速流走,从而提高响应速度;光电雪崩二极管结构的雪崩区的形成采用外延方式进行,可以方便和调节载流子浓度和深度,纵向浓度分布均匀,避免了常规雪崩二极管工艺采用高能注入机受限于注入深度能量的影响和扩散浓度分布的不一致,有利于雪崩电场均匀分布和光电信号线性增益稳定;采用Trench深槽隔离的方式,可以有效屏蔽二级管单元间光信号和电信号的串扰,减少非光敏区信号的噪声干扰和像素间的信号串扰,提高像素点的分辨率和精度;本发明的工艺涉及的设备和材料均为常用MOS器件制作中的通用设备,不需新增材料及设备。
上述描述仅是对本发明较佳实施例的描述,并非对本发明范围的任何限定,本发明领域的普通技术人员根据上述揭示内容做的任何变更、修饰,均属于权利要求书的保护范围。
Claims (7)
1.一种雪崩光电二极管的制造方法,其特征在于,包括:
提供第一导电类型的衬底,在所述衬底上进行两次外延;
氧化所述衬底,再生长出SIN层;
光刻开出沟槽区,并进行Trench沟槽刻蚀;
进行热氧化隔离,并用多晶POLY填充Trench沟槽;
去除表面多晶POLY后再次氧化形成隔离;
使用第二导电类型的掺杂剂进行高掺杂,形成第二导电电极区;
光刻正面打孔,正反面沉积金属电极,形成雪崩光电二极管。
2.如权利要求1所述的雪崩光电二极管的制造方法,其特征在于,在形成第二导电电极区之后,光刻正面打孔之前,该制造方法还包括:
去除表面的SIN层。
3.如权利要求1所述的雪崩光电二极管的制造方法,其特征在于,所述衬底的厚度为200~600μm,其掺杂浓度大于1×1019cm-3。
4.如权利要求1所述的雪崩光电二极管的制造方法,其特征在于,在所述衬底上进行两次外延包括:
第一次外延以第一导电类型的掺杂剂被轻度掺杂,掺杂浓度小于5×1014cm-3,外延厚度为10~70μm;
第二次外延以第一导电类型的掺杂剂被中度掺杂,掺杂浓度为8×1014cm-3~5×1015cm-3,外延厚度为2~5μm。
6.如权利要求1所述的雪崩光电二极管的制造方法,其特征在于,所述Trench沟槽的刻蚀深度为20~70μm。
7.如权利要求1所述的雪崩光电二极管的制造方法,其特征在于,所述第二导电类型的掺杂剂掺杂浓度大于1×1019cm-3。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011190083.7A CN112289882B (zh) | 2020-10-30 | 2020-10-30 | 一种雪崩光电二极管的制造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011190083.7A CN112289882B (zh) | 2020-10-30 | 2020-10-30 | 一种雪崩光电二极管的制造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112289882A true CN112289882A (zh) | 2021-01-29 |
CN112289882B CN112289882B (zh) | 2024-06-11 |
Family
ID=74352636
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011190083.7A Active CN112289882B (zh) | 2020-10-30 | 2020-10-30 | 一种雪崩光电二极管的制造方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112289882B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114520277A (zh) * | 2022-02-17 | 2022-05-20 | 中国电子科技集团公司第五十八研究所 | 一种抗辐照硅基雪崩光电二极管的制备方法及结构 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55162279A (en) * | 1979-06-01 | 1980-12-17 | Mitsubishi Electric Corp | Manufacture of silicon avalanche photodiode |
CN201000897Y (zh) * | 2006-12-20 | 2008-01-02 | 厦门大学 | 4H-SiC雪崩光电探测器 |
US20100276779A1 (en) * | 2009-04-30 | 2010-11-04 | Alpha & Omega Semiconductor, Inc. | Transient Voltage Suppressor Having Symmetrical Breakdown Voltages |
CN104465853A (zh) * | 2014-12-24 | 2015-03-25 | 中国科学院半导体研究所 | 一种雪崩光电二极管及其制作方法 |
CN104752341A (zh) * | 2013-12-31 | 2015-07-01 | 上海丽恒光微电子科技有限公司 | 红外雪崩二极管阵列装置及形成方法、激光三维成像装置 |
CN106711274A (zh) * | 2016-11-30 | 2017-05-24 | 武汉光迅科技股份有限公司 | 一种雪崩光电二极管及其制造方法 |
CN108231947A (zh) * | 2017-12-27 | 2018-06-29 | 上海集成电路研发中心有限公司 | 一种单光子雪崩二极管探测器结构及其制造方法 |
CN110504278A (zh) * | 2019-08-28 | 2019-11-26 | 无锡中微晶园电子有限公司 | 一种防串流光敏二极管芯片及其制造方法 |
-
2020
- 2020-10-30 CN CN202011190083.7A patent/CN112289882B/zh active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55162279A (en) * | 1979-06-01 | 1980-12-17 | Mitsubishi Electric Corp | Manufacture of silicon avalanche photodiode |
CN201000897Y (zh) * | 2006-12-20 | 2008-01-02 | 厦门大学 | 4H-SiC雪崩光电探测器 |
US20100276779A1 (en) * | 2009-04-30 | 2010-11-04 | Alpha & Omega Semiconductor, Inc. | Transient Voltage Suppressor Having Symmetrical Breakdown Voltages |
CN104752341A (zh) * | 2013-12-31 | 2015-07-01 | 上海丽恒光微电子科技有限公司 | 红外雪崩二极管阵列装置及形成方法、激光三维成像装置 |
CN104465853A (zh) * | 2014-12-24 | 2015-03-25 | 中国科学院半导体研究所 | 一种雪崩光电二极管及其制作方法 |
CN106711274A (zh) * | 2016-11-30 | 2017-05-24 | 武汉光迅科技股份有限公司 | 一种雪崩光电二极管及其制造方法 |
CN108231947A (zh) * | 2017-12-27 | 2018-06-29 | 上海集成电路研发中心有限公司 | 一种单光子雪崩二极管探测器结构及其制造方法 |
CN110504278A (zh) * | 2019-08-28 | 2019-11-26 | 无锡中微晶园电子有限公司 | 一种防串流光敏二极管芯片及其制造方法 |
Non-Patent Citations (2)
Title |
---|
I. NÉMETH ET AL: ""Heteroepitaxy of GaP on Si: Correlation of morphology, anti-phase-domain structure and MOVPE growth conditions"", 《JOURNAL OF CRYSTAL GROWTH》, vol. 310, no. 7, 30 April 2008 (2008-04-30), pages 1595 - 1601, XP022697496, DOI: 10.1016/j.jcrysgro.2007.11.127 * |
吴其祥: ""LED驱动系统用超结VDMOS雷击浪涌鲁棒性分析及优化"", 《中国优秀硕士学位论文全文数据库信息科技辑》, pages 135 - 138 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114520277A (zh) * | 2022-02-17 | 2022-05-20 | 中国电子科技集团公司第五十八研究所 | 一种抗辐照硅基雪崩光电二极管的制备方法及结构 |
Also Published As
Publication number | Publication date |
---|---|
CN112289882B (zh) | 2024-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5401203B2 (ja) | 半導体受光装置及びその製造方法 | |
KR100205017B1 (ko) | 이종접합 바이폴러 트랜지스터의 제조방법 | |
CN111129228B (zh) | 光电探测器的制造方法 | |
CN111509078B (zh) | 硅基光电探测器及其制造方法 | |
CN112289882B (zh) | 一种雪崩光电二极管的制造方法 | |
CN111508834A (zh) | 硅基光电探测器的制造方法 | |
CN111999917A (zh) | 一种电光移相器掺杂结构、制备方法及电光调制器 | |
CN109087942A (zh) | 一种沟槽型三极管及其制作方法 | |
EP0045848A1 (en) | Planar semiconductor integrated circuits including improved bipolar transistor structures and method of fabricating such circuits | |
US11164987B2 (en) | Si—Ge—Si phototransistor | |
CN105762077A (zh) | 绝缘栅双极晶体管的制造方法 | |
CN111048627B (zh) | 半导体器件的制造方法 | |
CN114566557B (zh) | 雪崩光电探测器及其制备方法 | |
JPH0276260A (ja) | 集積半導体デバイスとその製法 | |
CN111048626B (zh) | 硅基光电探测器的制造方法 | |
US20230343886A1 (en) | Photodiodes with serpentine shaped electrical junction | |
CN116110990A (zh) | 一种基于soi结构的雪崩光电二极管器件及其制备方法 | |
KR940010915B1 (ko) | 동종접합 및 이종접합 쌍극자 트랜지스터 장치의 제조방법 | |
KR0161197B1 (ko) | 자기정렬 바이폴러 트랜지스터의 제조공정 | |
KR100286349B1 (ko) | 반도체 소자의 제조방법 | |
JP3152046B2 (ja) | バイポーラトランジスタおよびその製造方法 | |
WO2022161991A1 (de) | Lawinenfotodiode mit orthogonalem schichtaufbau | |
KR20010078344A (ko) | 집적된 주입 논리 셀의 반도체 장치 및 그 제조 프로세스 | |
KR940010146B1 (ko) | 고속용 트랜지스터 제조방법 | |
KR930010826B1 (ko) | 바이폴라 소자의 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |