CN114520277A - 一种抗辐照硅基雪崩光电二极管的制备方法及结构 - Google Patents

一种抗辐照硅基雪崩光电二极管的制备方法及结构 Download PDF

Info

Publication number
CN114520277A
CN114520277A CN202210147022.5A CN202210147022A CN114520277A CN 114520277 A CN114520277 A CN 114520277A CN 202210147022 A CN202210147022 A CN 202210147022A CN 114520277 A CN114520277 A CN 114520277A
Authority
CN
China
Prior art keywords
trench isolation
layer
type
oxide layer
active region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210147022.5A
Other languages
English (en)
Inventor
杨强
谢儒彬
陈全胜
张明
葛超洋
吴建伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 58 Research Institute
Original Assignee
CETC 58 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 58 Research Institute filed Critical CETC 58 Research Institute
Priority to CN202210147022.5A priority Critical patent/CN114520277A/zh
Publication of CN114520277A publication Critical patent/CN114520277A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/552Protection against radiation, e.g. light or electromagnetic waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开一种抗辐照硅基雪崩光电二极管的制备方法及结构,属于雪崩光电二极管领域。在P‑雪崩区、N+有源区的两侧引入Trench隔离结构,并在Trench隔离结构边缘的Si内进行抗辐照加固注入。Trench隔离结构可阻断辐照引起的漏电通道,提高了硅基APD器件抗辐照能力;另一方面,Trench隔离结构可隔离掉常见APD器件中N保护环与P外围环结构,使得器件结构更简单、尺寸更小,一片晶圆上可得到更多器件,且不需要N保护环与P外围环等相应掩模版及光刻过程,简化了制备工艺,降低了生产成本。

Description

一种抗辐照硅基雪崩光电二极管的制备方法及结构
技术领域
本发明涉及雪崩光电二极管技术领域,特别涉及一种抗辐照硅基雪崩光电二极管的制备方法及结构。
背景技术
APD(Avalanche Photon Diode,雪崩光电二极管)是微弱光及单光子探测领域经常使用的一种半导体器件,具有暗计数低、探测效率高、结构紧凑等优点,广泛应用于航天航天、核技术等领域,如空间量子通讯、空间光通讯、空间激光雷达等。应用于空间技术的APD器件进入太空后,会不可避免受到空间环境的影响,而造成功能失效,严重威胁着航天器工作的可靠性,因此空间辐照效应是空间应用的APD器件面临的重要问题。
目前,应用于空间的APD器件加固方法主要采用金属屏蔽层加固和热加固两种方法。金属屏蔽层加固是在系统外增加铅等屏蔽层,改变其内部辐照粒子的能谱分布,降低在轨期间APD器件受到的辐照剂量,但屏蔽加固会额外增加航天器的载荷;而热加固包括:降低APD工作温度、高温退火、激光退火等,这势必会使APD模块体积大、质量重,增加了设计复杂性等。
因此具有抗辐照性能的硅基APD器件具备小型化、简易化优势。因此抗辐照APD器件作为重要电子元件,对航空航天、军事应用等具有重要意义。
发明内容
本发明的目的在于提供一种抗辐照硅基雪崩光电二极管的制备方法及结构,以解决背景技术中的问题。
为解决上述技术问题,本发明提供了一种抗辐照硅基雪崩光电二极管的制备方法,包括:
提供衬底,在其表面依次形成外延层、薄氧化层和硬掩模层;
表面涂覆光刻胶,依次刻蚀硬掩模层、薄氧化层、外延层和衬底,形成Trench隔离深槽;
去除光刻胶,淀积多晶硅填充Trench隔离深槽,去除表面多晶硅、硬掩模层和薄氧化层,形成Trench隔离结构;
在外延层表面进行场氧氧化,使得表面覆盖厚场氧层;
在表面涂覆光刻胶,刻蚀厚场氧层;
去除光刻胶,注入硼离子,推结后形成雪崩区,注入磷离子,退火后形成有源区;
淀积多层抗反射层,表面重新涂覆光刻胶,依次刻蚀多层抗反射层;
去除剩余光刻胶,淀积金属,利用化学机械抛光平坦化,去除表面金属,表面重新涂覆光刻胶,进行金属刻蚀,去除光刻胶,完成制备阳极金属电极区;在所述衬底的背面淀积形成背面金属。
可选的,所述Trench深槽隔离层位于所述有源区和所述雪崩区的两侧,其深度为0.05μm~50μm,宽度为0.05μm~10μm。
可选的,刻蚀衬底形成Trench隔离深槽后,在Trench隔离深槽的边缘进行抗辐照加固注入,即在Trench隔离深槽的底部和四周内注入包括硼、二氟化硼、铟在内的受主杂质原子。
可选的,在所述外延层上进行一次氧化形成薄氧化层;再在所述薄氧化层上淀积氮化硅,形成硬掩模层。
可选的,在淀积多晶硅填充Trench隔离深槽之前,在Trench隔离深槽表面进行一次氧化形成氧化层,氧化层的厚度为1~100nm。
可选的,所述雪崩区和所述有源区均为注入至所述外延层中的结构,其中所述有源区位于所述雪崩区的上面。
本发明还提供了一种抗辐照硅基雪崩光电二极管结构,包括背面金属、P型衬底、P型π外延层、P型雪崩区、N+有源区、抗反射层、阳极金属电极、场氧化层、Trench隔离结构;
背面金属位于P型衬底的背面、P型π外延层位于P型衬底的正面;其中P型雪崩区、N+有源区均为注入至P型π外延层中的结构;
阳极金属电极、场氧化层、抗反射层均位于P型π外延层的表面,Trench隔离结构位于N+有源区、P型雪崩区的两侧,场氧化层位于Trench隔离结构外侧的P型π外延层表面。
可选的,所述N+有源区位于所述P型雪崩区的上面。
可选的,所述抗反射层位于所述N+有源区的上面,所述阳极金属电极位于所述N+有源区的两侧表面。
在本发明提供的抗辐照硅基雪崩光电二极管的制备方法及结构中,在P-雪崩区、N+有源区的两侧引入Trench隔离结构,并在Trench隔离结构边缘的Si内进行抗辐照加固注入。Trench隔离结构可阻断辐照引起的漏电通道,提高硅基APD器件抗辐照能力;另一方面,Trench隔离结构可隔离掉常见APD器件中N保护环与P外围环结构,使得器件结构更简单、尺寸更小,一片晶圆上可得到更多器件,且不需要N保护环与P外围环等相应掩模版及光刻过程,简化了制备工艺,降低了生产成本。
附图说明
图1是在衬底表面依次形成外延层、薄氧化层和硬掩模层的示意图;
图2是形成Trench隔离深槽的示意图;
图3是形成Trench深槽隔离层的示意图;
图4是在外延层表面进行场氧氧化形成厚场氧层的示意图;
图5是表面涂覆光刻胶、刻蚀厚场氧层形成有源区的示意图;
图6是形成雪崩区和有源区的示意图;
图7是淀积多层抗反射层的示意图;
图8是准备金属电极区形成抗辐照硅基雪崩光电二极管的示意图;
图9是为APD500-8型硅基APD的X光辐照测试结果示意图;
图10是本发明提供的抗辐照硅基雪崩光电二极管辐照前后器件I-V曲线仿真结果示意图。
具体实施方式
以下结合附图和具体实施例对本发明提出的一种抗辐照硅基雪崩光电二极管的制备方法及结构作进一步详细说明。根据下面说明和权利要求书,本发明的优点和特征将更清楚。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。
如图1所示,提供P型衬底22,在其表面形成P型π外延层23,在所述P型π外延层23上进行一次氧化形成薄氧化层;再在所述薄氧化层上淀积氮化硅,形成硬掩模层;
如图2所示,在硬掩膜层的表面涂覆光刻胶,依次刻蚀所述硬掩模层、所述薄氧化层、所述P型π外延层23和所述P型衬底22,形成Trench隔离深槽;在形成Trench隔离深槽后,在Trench隔离深槽的边缘进行抗辐照加固注入,即在Trench隔离深槽的底部和四周内注入包括硼、二氟化硼、铟在内的受主杂质原子;
如图3所示,去除光刻胶,在Trench隔离深槽表面进行一次氧化形成氧化层,氧化层的厚度为1~100nm;再淀积多晶硅填充Trench隔离深槽,去除表面多晶硅、硬掩模层和薄氧化层,形成Trench隔离结构31;
如图4所示,在P型π外延层23表面进行场氧氧化,使得其表面覆盖厚场氧层;
如图5所示,在表面涂覆光刻胶,刻蚀厚场氧层;
如图6所示,去除剩余光刻胶,注入硼离子,推结后形成P-雪崩区24,注入磷离子,退火后形成N+有源区25;
如图7所示,依次淀积多层抗反射层26,表面重新涂覆光刻胶,依次刻蚀多层抗反射层;
如图8所示,去除剩余光刻胶,淀积金属,利用化学机械抛光平坦化,去除表面金属,表面重新涂覆光刻胶,进行金属刻蚀,去除光刻胶,完成制备阳极金属电极区27;在所述P型衬底22的背面淀积形成背面金属21。
如图8所示为本发明提供的一种抗辐照硅基雪崩光电二极管结构示意图,包括背面金属21、P型衬底22、P型π外延层23、P-雪崩区24、N+有源区25、抗反射层26、阳极金属电极27、场氧化层28、Trench隔离结构31。本发明APD器件为SAM型APD,所述P型衬底22背面是背面金属21、正面是P型π外延层23;其中所述P-雪崩区24、所述N+有源区25均为注入至所述P型π外延层23中的结构,具体的所述N+有源区25位于P-雪崩区24上面。阳极金属电极27、场氧化层28、抗反射层26均位于P型π外延层23的表面,具体的所述抗反射层26位于所述N+有源区25上面,所述阳极金属电极27位于所述N+有源区25的两侧表面,所述Trench隔离结构31位于N+有源区25、P-雪崩区24的两侧,场氧化层28位于Trench隔离结构31外侧的P型π外延层23表面。
本发明的工作原理为:当目前传统的硅基APD器件处于总剂量辐照环境下时,辐照后场氧化层中陷阱电荷建立并增加,形成空间电荷区,当APD阳极加正电压时,场氧化层中空间电荷区存在而导致在P外围环和N保护环之间形成漏电沟道。本发明的抗辐照硅基雪崩光电二极管中,Trench隔离结构31位于N+有源区25、P-雪崩区24两侧,可阻断漏电通道,提高硅基APD器件抗辐照能力。
如图9所述,为APD500-8型硅基APD的X光辐照测试结果,APD500-8型硅基APD器件结构为目前常见SAM型硅基APD,辐照时对阳极加0.9BV(90.0V)电压,辐照速率为50rad(Si)/s,辐照剂量分别为50、100、150、200、250、300krad(Si)。可以看出随着辐照剂量剂量的增加,暗电流也显著增加,当无辐照时,暗电流为0.466nA,辐照剂量增加到100krad(Si)时,暗电流增加到90nA,远大于器件合格范围(1nA)。
如图10所示,为本发明提供的抗辐照硅基雪崩光电二极管辐照前后器件I-V曲线仿真结果,定义氧化层中陷阱密度来模拟器件的辐照效应仿真,此处氧化层中陷阱密度Fixedcharge=1e12cm-2。本发明APD辐照后的暗电流与辐照前相比并未明显增加。硅基APD器件总剂量辐照后的暗电流主要由N保护环与P外围环之间的场氧化层下方形成漏电通道引起,本发明中Trench隔离结构阻断了场氧化层的漏电通道,因此具备抗辐照能力,本发明另一方面可减小器件尺寸,简化器件结构与工艺过程,降低了器件的生产成本。
上述描述仅是对本发明较佳实施例的描述,并非对本发明范围的任何限定,本发明领域的普通技术人员根据上述揭示内容做的任何变更、修饰,均属于权利要求书的保护范围。

Claims (9)

1.一种抗辐照硅基雪崩光电二极管的制备方法,其特征在于,包括:
提供衬底,在其表面依次形成外延层、薄氧化层和硬掩模层;
表面涂覆光刻胶,依次刻蚀硬掩模层、薄氧化层、外延层和衬底,形成Trench隔离深槽;
去除光刻胶,淀积多晶硅填充Trench隔离深槽,去除表面多晶硅、硬掩模层和薄氧化层,形成Trench隔离结构;
在外延层表面进行场氧氧化,使得表面覆盖厚场氧层;
在表面涂覆光刻胶,刻蚀厚场氧层;
去除光刻胶,注入硼离子,推结后形成雪崩区,注入磷离子,退火后形成有源区;
淀积多层抗反射层,表面重新涂覆光刻胶,依次刻蚀多层抗反射层;
去除剩余光刻胶,淀积金属,利用化学机械抛光平坦化,去除表面金属,表面重新涂覆光刻胶,进行金属刻蚀,去除光刻胶,完成制备阳极金属电极区;在所述衬底的背面淀积形成背面金属。
2.如权利要求1所述的抗辐照硅基雪崩光电二极管的制备方法,其特征在于,所述Trench隔离结构位于所述有源区和所述雪崩区的两侧,其深度为0.05μm~50μm,宽度为0.05μm~10μm。
3.如权利要求1所述的抗辐照硅基雪崩光电二极管的制备方法,其特征在于,刻蚀衬底形成Trench隔离深槽后,在Trench隔离深槽的边缘进行抗辐照加固注入,即在Trench隔离深槽的底部和四周内注入包括硼、二氟化硼、铟在内的受主杂质原子。
4.如权利要求1所述的抗辐照硅基雪崩光电二极管的制备方法,其特征在于,在所述外延层上进行一次氧化形成薄氧化层;再在所述薄氧化层上淀积氮化硅,形成硬掩模层。
5.如权利要求1所述的抗辐照硅基雪崩光电二极管的制备方法,其特征在于,在淀积多晶硅填充Trench隔离深槽之前,在Trench隔离深槽表面进行一次氧化形成氧化层,氧化层的厚度为1~100nm。
6.如权利要求1所述的抗辐照硅基雪崩光电二极管的制备方法,其特征在于,所述雪崩区和所述有源区均为注入至所述外延层中的结构,其中所述有源区位于所述雪崩区的上面。
7.一种抗辐照硅基雪崩光电二极管结构,其特征在于,包括背面金属(21)、P型衬底(22)、P型π外延层(23)、P型雪崩区(24)、N+有源区(25)、抗反射层(26)、阳极金属电极(27)、场氧化层(28)、Trench隔离结构(31);
背面金属(21)位于P型衬底(22)的背面、P型π外延层(23)位于P型衬底(22)的正面;其中P型雪崩区(24)、N+有源区(25)均为注入至P型π外延层(23)中的结构;
阳极金属电极(27)、场氧化层(28)、抗反射层(26)均位于P型π外延层(23)的表面,Trench隔离结构(31)位于N+有源区(25)、P型雪崩区(24)的两侧,场氧化层(28)位于Trench隔离结构(31)外侧的P型π外延层(23)表面。
8.如权利要求7所述的抗辐照硅基雪崩光电二极管结构,其特征在于,所述N+有源区(25)位于所述P型雪崩区(24)的上面。
9.如权利要求7所述的抗辐照硅基雪崩光电二极管结构,其特征在于,所述抗反射层(26)位于所述N+有源区(25)的上面,所述阳极金属电极(27)位于所述N+有源区(25)的两侧表面。
CN202210147022.5A 2022-02-17 2022-02-17 一种抗辐照硅基雪崩光电二极管的制备方法及结构 Pending CN114520277A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210147022.5A CN114520277A (zh) 2022-02-17 2022-02-17 一种抗辐照硅基雪崩光电二极管的制备方法及结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210147022.5A CN114520277A (zh) 2022-02-17 2022-02-17 一种抗辐照硅基雪崩光电二极管的制备方法及结构

Publications (1)

Publication Number Publication Date
CN114520277A true CN114520277A (zh) 2022-05-20

Family

ID=81598662

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210147022.5A Pending CN114520277A (zh) 2022-02-17 2022-02-17 一种抗辐照硅基雪崩光电二极管的制备方法及结构

Country Status (1)

Country Link
CN (1) CN114520277A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI828436B (zh) * 2022-11-23 2024-01-01 力晶積成電子製造股份有限公司 影像感測器結構的製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060141732A1 (en) * 2004-12-29 2006-06-29 Dongbuanam Semiconductor Inc. Method for forming isolation region in semiconductor device
CN101350376A (zh) * 2007-07-18 2009-01-21 Jds尤尼弗思公司 具有边缘击穿抑制的雪崩光电二极管
CN104752513A (zh) * 2015-03-12 2015-07-01 西安电子科技大学 基于65nm工艺的冗余掺杂抗辐照MOS场效应管
US20170098730A1 (en) * 2015-10-06 2017-04-06 Stmicroelectronics S.R.L. Avalanche photodiode for detecting ultraviolet radiation and manufacturing method thereof
CN108231947A (zh) * 2017-12-27 2018-06-29 上海集成电路研发中心有限公司 一种单光子雪崩二极管探测器结构及其制造方法
CN109004022A (zh) * 2018-08-13 2018-12-14 深圳市天佑照明有限公司 一种二极管及其制造方法
CN112289882A (zh) * 2020-10-30 2021-01-29 无锡中微晶园电子有限公司 一种雪崩光电二极管的制造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060141732A1 (en) * 2004-12-29 2006-06-29 Dongbuanam Semiconductor Inc. Method for forming isolation region in semiconductor device
CN101350376A (zh) * 2007-07-18 2009-01-21 Jds尤尼弗思公司 具有边缘击穿抑制的雪崩光电二极管
CN104752513A (zh) * 2015-03-12 2015-07-01 西安电子科技大学 基于65nm工艺的冗余掺杂抗辐照MOS场效应管
US20170098730A1 (en) * 2015-10-06 2017-04-06 Stmicroelectronics S.R.L. Avalanche photodiode for detecting ultraviolet radiation and manufacturing method thereof
CN108231947A (zh) * 2017-12-27 2018-06-29 上海集成电路研发中心有限公司 一种单光子雪崩二极管探测器结构及其制造方法
CN109004022A (zh) * 2018-08-13 2018-12-14 深圳市天佑照明有限公司 一种二极管及其制造方法
CN112289882A (zh) * 2020-10-30 2021-01-29 无锡中微晶园电子有限公司 一种雪崩光电二极管的制造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI828436B (zh) * 2022-11-23 2024-01-01 力晶積成電子製造股份有限公司 影像感測器結構的製造方法

Similar Documents

Publication Publication Date Title
JP4446292B2 (ja) 光子感知エレメント及びこれを用いたデバイス
US8759140B2 (en) Solar cell and method for manufacturing the same
US11239382B2 (en) Semiconductor photomultiplier
CN115117205B (zh) 一种硅基雪崩光电二极管的抗辐照加固方法
ITTO20080945A1 (it) Fotodiodo operante in modalita' geiger con resistore di soppressione integrato e controllabile, schiera di fotodiodi e relativo procedimento di fabbricazione
KR101254565B1 (ko) 태양 전지용 기판의 텍스처링 방법 및 태양 전지의 제조 방법
CN114520277A (zh) 一种抗辐照硅基雪崩光电二极管的制备方法及结构
KR20140007055A (ko) 다중 접합 광전 소자
CN103875082B (zh) 光伏装置的制造方法及光伏装置
CN112230448A (zh) 微环电光调制器及其制备方法
KR20110089497A (ko) 기판에의 불순물 도핑 방법, 이를 이용한 태양 전지의 제조 방법 및 이를 이용하여 제조된 태양 전지
WO2010045655A1 (en) Thick semiconductor drift detector fabrication
CN110854223B (zh) 一种漂移探测器的制备方法及漂移探测器
CN110854222B (zh) 一种漂移探测器的双面制备方法及漂移探测器
CN112162446A (zh) Mz电光调制器及其制备方法
CN115548157B (zh) 一种具有宽漂移区的双结单光子雪崩二极管及其制备方法
CN106298966A (zh) 半导体器件及其制备方法和电子装置
US9520531B2 (en) Systems and methods for depositing and charging solar cell layers
CN113013188A (zh) 一种红外焦平面探测器及其制作方法
CN109712999B (zh) 蓝光增敏硅基雪崩光电二极管阵列器件
US20140057387A1 (en) Systems and Methods for Depositing and Charging Solar Cell Layers
CN113451216B (zh) 成套硅基抗辐射高压cmos器件集成结构及其制造方法
Kaye et al. Optimum bulk drift-field thicknesses in solar cells
KR20200086511A (ko) 태양 전지 및 그 제조 방법
CN110534537B (zh) 一种cmos图像传感器像素结构及其制作方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination