CN112257722B - 基于抗差非线性高斯-赫尔默特模型的点云拟合方法 - Google Patents

基于抗差非线性高斯-赫尔默特模型的点云拟合方法 Download PDF

Info

Publication number
CN112257722B
CN112257722B CN202011250790.0A CN202011250790A CN112257722B CN 112257722 B CN112257722 B CN 112257722B CN 202011250790 A CN202011250790 A CN 202011250790A CN 112257722 B CN112257722 B CN 112257722B
Authority
CN
China
Prior art keywords
point
point cloud
model
data
points
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011250790.0A
Other languages
English (en)
Other versions
CN112257722A (zh
Inventor
王彬
赵志胜
吴学雨
张丹丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Priority to CN202011250790.0A priority Critical patent/CN112257722B/zh
Publication of CN112257722A publication Critical patent/CN112257722A/zh
Application granted granted Critical
Publication of CN112257722B publication Critical patent/CN112257722B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/30Noise filtering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/213Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods
    • G06F18/2135Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods based on approximation criteria, e.g. principal component analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/23Clustering techniques
    • G06F18/232Non-hierarchical techniques
    • G06F18/2321Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Multimedia (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Probability & Statistics with Applications (AREA)
  • Image Analysis (AREA)

Abstract

本发明提供了一种基于抗差非线性高斯‑赫尔默特模型的点云拟合方法,首先,预先获取被测物体的三维点云数据,通过去噪和精简对点云进行预处理,剔除粗差较大的离群数据点;其次,对预处理后点云进行特征点提取;再利用改进的RANSAC算法选取合适的拟合模型数据点;最后,将得到的模型数据点利用基于抗差非线性高斯‑赫尔默特模型,求出拟合参数以完成点云数据的拟合。本发明有效解决被测物体点云数据量大、数据不完整,精度不高以及参数方程求解复杂,粗差剔除效率低的情况;避免在求解过程中陷入局部收敛,增强参数求解的稳健性,提高数据拟合的精度。

Description

基于抗差非线性高斯-赫尔默特模型的点云拟合方法
技术领域
本发明属于计算机视觉领域,具体涉及一种基于抗差非线性高斯-赫尔默特(Gauss-Helmert)模型的点云拟合方法。
背景技术
三维激光扫描技术已被广泛应用于工业设计、土木工程及建筑物变形监测等领域。三维点云数据集合中包含大量的表面特征,这些特征可以被用于3D建模以及在建模中简化数据等,因此,三维点云精确的平面拟合具有非常重要的意义。由于设备精度的限制、光照的影响、目标物表面材料的反射以及扫描作业时的外界干扰(如行人和车辆)等原因,使得获取的点云数据中总会不可避免的产生错误点和差点,从而影响建模的精度。点云拟合的目的是根据扫描点集中的点云匹配出特定的曲面模型,求取出最佳模型参数,使点云子集合与模型参数之间达到高度吻合的目的。
针对点云拟合,国内外学者进行了大量的研究,但大部分研究方法通常局限于粗差较少的点云数据拟合,最常用的方法有最小二乘法、整体最小二乘法、特征值法和RANSAC算法等,其中效果比较好的是整体最小二乘法和RANSAC算法,这两种算法依然都具有稳健性不强的缺点,前者不适用于异常点较多误差较大的情况,后者的缺点是限定迭代次数使得拟合结果可能不是最优解,甚至可能是错误结果。另外,RANSAC算法主要适用于等精度观测,是一种粗略的粗差处理方法,在一定程度上限制了点云拟合的精度。
发明内容
发明目的:为解决上述问题,本发明提供了一种基于抗差非线性高斯-赫尔默特模型的点云拟合方法,能进行任意角度、包含大量粗差的点云数据拟合,提高了参数求解的精度,增强了点云拟合的稳健性。
技术方案:本发明所述的一种基于抗差非线性高斯-赫尔默特模型的点云拟合方法,包括以下步骤:
(1)对预先获取的被测物体的三维点云数据进行预处理;
(2)基于FPFH的点云特征点提取算法对预处理后的点云进行特征点提取;
(3)通过改进的RANSAC算法选取粗差最小的有效点作为模型数据点;
(4)将得到的模型数据点利用抗差非线性高斯-赫尔默特模型,求出拟合参数,直至点云的拟合精度满足预先设定的阈值。
进一步地,所述步骤(1)包括以下步骤:
(11)建立点云数据集P={pi∈R3∣i=1,2,3,…,n}的KD-tree结构;
(12)对于点云中的每个点pi,定义所需近邻点参数k,建立k邻域,并计算其与最近k近邻点的平均距离:
式中,dij是点pi和点pj的空间距离,是点pi与其k近邻点的平均距离;
(13)计算点云集中所有点的k近邻点平均距离的平均距离/>和其标准差dstd
(14)计算当前pi与k近邻点的平均距离是否大于设定的阈值L,当/>时,删除点pi;当/>时,保留点pi
式中,σ为计算系数,一般根据被测点云数据的分布进行取值;
(15)将完成大尺度离群点去除的点云,利用DBSCAN密度聚类算法完成小尺度离群点去噪:初始化邻域Eps和阈值Neps,min并建立点云的KD-tree和k邻域数据结构;
(16)随机选择点pi,通过Eps和Neps,min判断其是否为核心点,遍历所有点,找到点pi的所有密度可达对象,通过密度连接得到小尺度去噪离群点后的点云数据。
进一步地,所述步骤(2)包括以下步骤:
(21)根据扫描的点云模型数据排列特点,采用主成分分析法估算法向向量,计算点云的FPFH值;
(22)用FPFH在各子区间的均值代替非特征点的FPFH各区间的值,引入点云模型FPFH各区间的均值,记为MFPFH,根据FPFH在各子区间的均值与均值的欧式距离提取初始特征点;
(23)通过判断特征点临近点夹角的方法对特征点进行优化,再通过判断点云邻近投影点相邻向量夹角大小的方法来增强模型整体轮廓特征。
进一步地,所述步骤(3)包括以下步骤:
(31)在提取后的特征点云中,任意选取数个不共线的点,组成初始面,并计算点云到该初始面的距离di
(32)选取阈值t=2σ0,σ0为点云到初始面模型距离的标准偏差,当di>t时该点被当作异常点剔除,反之被当作有效数据保留;
(33)重复(31)、(32),直至包含的有效点数量最多,停止迭代,选取粗差最小且含有效数据点数量最大的作为模型点。
进一步地,所述步骤(4)包括以下步骤:
(41)对步骤(3)得到的点云数据根据扫描时的测距误差、垂直角误差和水平角误差计算出严密的随机模型;
(42)构造关于误差向量e和待定参数向量X的非线性Gauss-Helmert模型;
(43)通过经典最小二乘引入初值X0,e0取0,采用泰勒级数将其线性化;
(44)构造拉格朗日目标函数,对各变量求偏导数并令导数为零,求出误差向量e的具体表达式;
(45)通过计算标准残差向量,并根据IGGⅢ权函数得到相应的权因子,再通过双因子模型得到相应的协因数,在准则下更新误差向量e和待定参数向量X的协因数阵;
(46)重复步骤(44)-(45),直到停止迭代,输出拟合参数,ε0一般取10-10
有益效果:与现有技术相比,本发明的有益效果:1、有效解决了原始点云数据量大、数据不完整,精度不高(包含大量离群点)以及参数求解复杂、稳健性不高的情况,通过改进后的RANSAC算法自动设置阈值提取模型数据点,避免在求解过程中陷入局部收敛;2、相比于传统的点云拟合方法,抗差非线性高斯-赫尔默特模型考虑所有观测误差的影响,是一种通用求参模型;将由几何关系(采集的数据点三维坐标与测距和测角的关系)导出的严格随机模型纳入拟合参数求解中;3、通过构造IGGⅢ权因子函数和双因子模型,顾及了随机模型和观测空间的影响,能有效剔除粗差,进一步提高点云拟合参数的精度。
附图说明
图1为本发明的流程图;
图2为密度聚类示意图;
图3为特征点提取前后的点云数据示意图;其中,(a)为提取前的点云数据,(b)为提取后的点云数据。
具体实施方式
下面结合附图对本发明作进一步详细描述。
本发明提供了一种基于抗差非线性高斯-赫尔默特模型的点云拟合方法,该方法首先对被测物体三维点云数据进行去噪、精简处理,随后对点云数据利用基于FPFH的点云特征点提取算法进行特征点提取,通过改进的RANSAC算法对提取后的数据选取合适的模型数据点,最后将得到的模型数据点利用抗差非线性高斯-赫尔默特模型,求出具有稳健性的拟合参数,直至点云的拟合精度满足阈值δ。如图1所示,具体包括以下步骤:
步骤一,对被测物体的三维点云数据进行预处理。
采用基于DBSCAN密度聚类离群噪声去除算法对点云进行去噪滤波处理,该方法先利用KD-tree原理完成大尺度离群点的去噪处理,然后利用DBSCAN密度聚类算法对小尺度离群点进行去噪处理。具体包括以下步骤:
1)建立点云数据集P={pi∈R3∣i=1,2,3,…,n}的KD-tree结构;
2)对于点云中的每个点pi,定义所需近邻点参数k,建立k邻域,并计算其与最近k近邻点的平均距离:
式中,dij是点pi和点pj的空间距离,是点pi与其k近邻点的平均距离。
3)计算点云集所有点的k近邻点平均距离的平均距离/>和其标准差dstd
4)计算当前pi与k近邻点的平均距离是否大于设定的阈值L,当/>时,删除点pi;当/>时,保留点pi
式中,σ为计算系数,一般根据被测点云数据的分布进行取值。
5)将完成大尺度离群点去除的点云,利用DBSCAN密度聚类算法完成小尺度离群点去噪,首先初始化参数Eps(邻域)和阈值Neps,min并建立点云的KD-tree和k邻域数据结构,其密度聚类示意图如图2所示。
6)随机选择点pi,通过Eps和Neps,min判断其是否为核心点,遍历点云数据集中的所有点,找到点pi的所有密度可达对象,通过密度连接得到小尺度去噪后的点云数据。
步骤二,通过基于FPFH的点云特征点提取算法对预处理后的点云进行特征点提取。
首先,根据扫描的点云模型数据排列特点,采用PCA(Principal ComponentAnalysis,简称PCA),即主成分分析法估算法向向量,计算点云的FPFH值。
其次,用FPFH在各子区间的均值代替非特征点的FPFH各区间的值,引入点云模型FPFH各区间的均值,记为MFPFH,根据FPFH在各子区间的均值与均值的欧式距离提取初始特征点:
在此基础上计算每一点的FPFH各区间的值与MFPFH的欧式距离d:
式中,f代表直方图子区间个数;pi表示点云的FPFH,第i个区间的值;ui表示点云特征直方图中第i个区间的MFPFH值。若d超出阈值,则标记为特征点。
最后,通过判断特征点临近点夹角的方法对特征点进行优化,再通过判断点云邻近投影点相邻向量夹角大小的方法来增强模型整体轮廓特征,从而保证提取的特征点不会丢失细节特征。
步骤三,利用改进后的RANSAC算法选取合适的模型点。
1)在提取后的特征点云中,任意选取数个不共线的点,组成初始面,并计算点云到该初始面的距离di
2)选取阈值t=2σ0,σ0为点云到初始面模型距离的标准偏差。当di>t时该点被当作异常点剔除,反之被当作有效数据保留。
3)重复1),2)步骤,迭代多次,选取含有效数据点数量最大的作为模型点。
改进后的RANSAC算法处利用点到初始平面模型距离的标准偏差来自动选取阈值t。该方法能有效地剔除异常数据,保留有效数据,且能自动选择阈值,不需要人为设定其参数,图3为特征点提取前后的点云数据示意图,其中,图3(a)为提取前的点云数据,图3(b)为提取后的点云数据,“*”表示提取的模型数据点。
步骤四,将得到的模型数据点利用抗差非线性高斯-赫尔默特模型,求出拟合参数,直至点云的拟合精度满足预先设定的阈值δ。
点云拟合的实质是求解精度更高,稳健性更强的拟合参数。抗差非线性高斯-赫尔默特模型关于参数是非线性的,采用抗差估计算法进行参数估计,即通过构造双因子模型和IGGⅢ权函数。相比于传统的参数求解模型,抗差非线性高斯-赫尔默特模型充分考虑观测值的各项误差,是一种顾及随机模型和结构空间影响的严格粗差处理方法,抵御粗差的能力显著增强。具体包括以下步骤:
(1)对步骤三得到的点云数据根据扫描时的测量斜距ρ以及激光束的水平角及竖直角θ误差计算目标点的三维坐标:
z=ρsinθ
对上式两边同时微分得:
故坐标点内协方差阵为:
式中,σρ、σθ分别为测距误差、垂直角误差和水平角误差,为仪器出厂自带的标称精度,σx 2、σy 2、σz 2为观测值x、y、z的方差,σxy、σxz、σyz为观测值x、y、z之间的协方差。计算出所有数据点的协方差阵,按对角线排列在矩阵D中:
(2)构造关于误差向量e和待定参数向量X的非线性Gauss-Helmert模型:
ψ(e,X)=h(L-e,X)=0
上式中,L为观测向量,ψ和h均为可微的非线性向量函数。
(3)通过经典最小二乘引入合适的初值X0,e0一般取0,采用泰勒级数将其线性化:
ψ(e0,X0)+AδX+B(e-e0)=0
式中,δX=X-X0为参数X的改正向量,此外,
(4)令向量w=-ψ(e0,X0)+Be0,构造拉格朗日目标函数:
Φ=eTQ-1e-2λT(Be+AδX-w)
对各变量求偏导数并令导数为零,求出误差向量的具体表达式:
式中,Q是误差向量e的协因数,
(5)通过计算各个观测值对应的标准化残差
式中,σ0表示单位权中误差,表示观测值第i个观测值残差向量/>的协因数。
通过IGGⅢ函数得到相应的权因子Rii
式中,Rii表示观测值第i点的权因子,k0和k1均为常数,k0一般取2.0~3.0,k1一般取4.5左右。
由于IGG III函数的第三段为0,对应协因数因子的理论值应为无穷,为了方便实际计算,用一个常数C(1010)代替,这样在数值计算上完全能够满足要求。
为满足准则,通过双因子模型/>求出协因数Q,对协因数求逆得到/>
(6)重复步骤(4)-(5),直到停止迭代,输出拟合参数,ε0一般取10-10
双因子模型保持观测值间的原始相关性不变,抗差估计的加入,有效地将点云进行分层定权处理,通过多次迭代,有效降低淘汰段的小粗差对点云拟合的影响。利用IGGⅢ权函数求出未知数参数向量X,直至拟合精度满足阈值δ。若不满足,则继续执行步骤三至步骤四,满足阈值δ后,输出拟合参数。

Claims (3)

1.一种基于抗差非线性高斯-赫尔默特模型的点云拟合方法,其特征在于,包括以下步骤:
(1)对预先获取的被测物体的三维点云数据进行预处理;
(2)基于FPFH的点云特征点提取算法对预处理后的点云进行特征点提取;
(3)通过改进的RANSAC算法选取粗差最小的有效点作为模型数据点;
(4)将得到的模型数据点利用抗差非线性高斯-赫尔默特模型,求出拟合参数,直至点云的拟合精度满足预先设定的阈值;
所述步骤(3)包括以下步骤:
(31)在提取后的特征点云中,任意选取数个不共线的点,组成初始面,并计算点云到该初始面的距离di
(32)选取阈值t=2σ0,σ0为点云到初始面模型距离的标准偏差,当di>t时该点被当作异常点剔除,反之被当作有效数据保留;
(33)重复(31)、(32),直至包含的有效点数量最多,停止迭代,选取粗差最小且含有效数据点数量最大的作为模型点;
所述步骤(4)包括以下步骤:
(41)对步骤(3)得到的点云数据根据扫描时的测距误差、垂直角误差和水平角误差计算出严密的随机模型;
(42)构造关于误差向量e和待定参数向量X的非线性Gauss-Helmert模型;
(43)通过经典最小二乘引入初值X0,e0取0,采用泰勒级数将其线性化;
(44)构造拉格朗日目标函数,对各变量求偏导数并令导数为零,求出误差向量e的具体表达式;
(45)通过计算标准残差向量,并根据IGGⅢ权函数得到相应的权因子,再通过双因子模型得到相应的协因数,在准则下更新误差向量e和待定参数向量X的协因数阵;
(46)重复步骤(44)-(45),直到停止迭代,输出拟合参数,ε0取10-10
2.根据权利要求1所述的基于抗差非线性高斯-赫尔默特模型的点云拟合方法,其特征在于,所述步骤(1)包括以下步骤:
(11)建立点云数据集P={pi∈R3∣i=1,2,3,…,n}的KD-tree结构;
(12)对于点云中的每个点pi,定义所需近邻点参数k,建立k邻域,并计算其与最近k近邻点的平均距离:
式中,dij是点pi和点pj的空间距离,是点pi与其k近邻点的平均距离;
(13)计算点云集中所有点的k近邻点平均距离的平均距离/>和其标准差dstd
(14)计算当前pi与k近邻点的平均距离是否大于设定的阈值L,当/>时,删除点pi;当/>时,保留点pi
式中,σ为计算系数,根据被测点云数据的分布进行取值;
(15)将完成大尺度离群点去除的点云,利用DBSCAN密度聚类算法完成小尺度离群点去噪:初始化邻域Eps和阈值Neps,min并建立点云的KD-tree和k邻域数据结构;
(16)随机选择点pi,通过Eps和Neps,min判断其是否为核心点,遍历所有点,找到点pi的所有密度可达对象,通过密度连接得到小尺度去噪离群点后的点云数据。
3.根据权利要求1所述的基于抗差非线性高斯-赫尔默特模型的点云拟合方法,其特征在于,所述步骤(2)包括以下步骤:
(21)根据扫描的点云模型数据排列特点,采用主成分分析法估算法向向量,计算点云的FPFH值;
(22)用FPFH在各子区间的均值代替非特征点的FPFH各区间的值,引入点云模型FPFH各区间的均值,记为MFPFH,根据FPFH在各子区间的均值与均值的欧式距离提取初始特征点;
(23)通过判断特征点临近点夹角的方法对特征点进行优化,再通过判断点云邻近投影点相邻向量夹角大小的方法来增强模型整体轮廓特征。
CN202011250790.0A 2020-11-11 2020-11-11 基于抗差非线性高斯-赫尔默特模型的点云拟合方法 Active CN112257722B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011250790.0A CN112257722B (zh) 2020-11-11 2020-11-11 基于抗差非线性高斯-赫尔默特模型的点云拟合方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011250790.0A CN112257722B (zh) 2020-11-11 2020-11-11 基于抗差非线性高斯-赫尔默特模型的点云拟合方法

Publications (2)

Publication Number Publication Date
CN112257722A CN112257722A (zh) 2021-01-22
CN112257722B true CN112257722B (zh) 2023-08-01

Family

ID=74265452

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011250790.0A Active CN112257722B (zh) 2020-11-11 2020-11-11 基于抗差非线性高斯-赫尔默特模型的点云拟合方法

Country Status (1)

Country Link
CN (1) CN112257722B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022165672A1 (zh) * 2021-02-03 2022-08-11 深圳市大疆创新科技有限公司 点云处理方法、装置和计算机可读存储介质
CN113513978B (zh) * 2021-06-02 2023-04-14 北京卫星制造厂有限公司 高低温环境下的端面位姿相对变化高精度测量方法和系统
CN113340215B (zh) * 2021-06-04 2022-11-04 工极智能科技(苏州)有限公司 基于平行约束的平面间断差在线测量方法
CN113628335A (zh) * 2021-07-28 2021-11-09 深圳优艾智合机器人科技有限公司 点云地图构建方法、装置及计算机可读存储介质
CN118013636A (zh) * 2024-04-07 2024-05-10 资阳建工建筑有限公司 一种砌体结构抗压性能检测设备及检测方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104298737A (zh) * 2014-10-08 2015-01-21 同济大学 一种基于抽样最大核密度稳健模型的离散点云拟合方法
CN110781444A (zh) * 2019-11-03 2020-02-11 南京市测绘勘察研究院股份有限公司 一种基于高斯赫尔默特模型的eiv平差算法
CN111696210A (zh) * 2020-04-22 2020-09-22 北京航天控制仪器研究所 一种基于三维点云数据特征轻量化的点云重构方法及系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103489218B (zh) * 2013-09-17 2016-06-29 中国科学院深圳先进技术研究院 点云数据质量自动优化方法及系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104298737A (zh) * 2014-10-08 2015-01-21 同济大学 一种基于抽样最大核密度稳健模型的离散点云拟合方法
CN110781444A (zh) * 2019-11-03 2020-02-11 南京市测绘勘察研究院股份有限公司 一种基于高斯赫尔默特模型的eiv平差算法
CN111696210A (zh) * 2020-04-22 2020-09-22 北京航天控制仪器研究所 一种基于三维点云数据特征轻量化的点云重构方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
On least-squares solution to 3D similarity transformation problem under Gauss–Helmert model;Chang G.;Journal of Geodesy;573-576 *

Also Published As

Publication number Publication date
CN112257722A (zh) 2021-01-22

Similar Documents

Publication Publication Date Title
CN112257722B (zh) 基于抗差非线性高斯-赫尔默特模型的点云拟合方法
CN109903327B (zh) 一种稀疏点云的目标物尺寸测量方法
CN107481274B (zh) 一种三维作物点云的鲁棒性重构方法
CN105021124B (zh) 一种基于深度图的平面零件三维位置和法向量计算方法
CN112017220B (zh) 一种基于抗差约束最小二乘算法的点云精确配准方法
CN110443836A (zh) 一种基于平面特征的点云数据自动配准方法及装置
CN109147040B (zh) 基于模板的人体点云孔洞修补方法
CN112381862B (zh) 一种cad模型与三角网格全自动配准方法和装置
CN113628263A (zh) 一种基于局部曲率及其近邻特征的点云配准方法
CN116402866A (zh) 基于点云的零件数字孪生几何建模与误差评定方法及系统
CN102129716A (zh) 一种用于水火弯板曲面拟合的方法
CN112132875B (zh) 一种基于面特征的多平台点云匹配方法
CN117132630A (zh) 一种基于二阶空间兼容性度量的点云配准方法
CN115018249A (zh) 一种基于激光扫描技术的地铁站施工质量评价方法
CN110942077A (zh) 基于权重局部变化度和l1中值优化的特征线提取方法
CN108520550B (zh) 基于噪声分类与mls的点云数据泊松曲面重建方法
CN113313200A (zh) 一种基于法向约束的点云精匹配方法
CN116051540B (zh) 基于点云模型的互感器接线端子定位位姿获取方法及系统
CN113406658A (zh) 一种基于点线特征扫描匹配的移动机器人定位方法
Diao et al. Complex parts machining path planning through cross-source point cloud processing
CN116309026A (zh) 一种基于统计局部特征描述与匹配的点云配准方法及系统
CN116563354A (zh) 一种结合特征提取和聚类算法的激光点云配准方法
CN115147471A (zh) 一种基于曲率密度特征的激光点云自动配准方法
CN115131417A (zh) 激光点云2d-3d双模态交互增强不规则电线检测方法
CN110298892B (zh) 一种单线阵相机内外参数标定方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant