CN110298892B - 一种单线阵相机内外参数标定方法 - Google Patents
一种单线阵相机内外参数标定方法 Download PDFInfo
- Publication number
- CN110298892B CN110298892B CN201910605979.8A CN201910605979A CN110298892B CN 110298892 B CN110298892 B CN 110298892B CN 201910605979 A CN201910605979 A CN 201910605979A CN 110298892 B CN110298892 B CN 110298892B
- Authority
- CN
- China
- Prior art keywords
- theoretical
- parameter matrix
- matrix
- actual
- internal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 30
- 239000011159 matrix material Substances 0.000 claims abstract description 94
- 238000003384 imaging method Methods 0.000 claims abstract description 44
- 238000004364 calculation method Methods 0.000 claims description 10
- 238000009795 derivation Methods 0.000 claims description 3
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/80—Analysis of captured images to determine intrinsic or extrinsic camera parameters, i.e. camera calibration
Landscapes
- Engineering & Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Studio Devices (AREA)
- Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
Abstract
一种单线阵相机内外参数标定方法,包括如下步骤:S1、根据单线阵相机成像模型得到单线阵相机的理论内参数矩阵、理论外参数矩阵和理论单应性矩阵,其中理论外参数矩阵包括理论旋转参数矩阵;S2、根据单线阵相机成像模型得到理论单应性矩阵与理论内参数矩阵的关系;S3、基于理论旋转参数矩阵确定理论内参数矩阵与理论单应性矩阵的约束关系;S4、利用标定板上目标点的坐标到成像点的坐标求出多个目标点到成像点之间的实际单应性矩阵;S5、根据实际单应性矩阵求解实际内参数矩阵;S6、根据实际内参数矩阵求解实际外参数矩阵。本发明提供一种单线阵相机内外参数标定方法,简化了标定流程,能够提高标定效率。
Description
技术领域
本发明涉及相机标定技术领域,具体的说是一种单线阵相机内外参数标定方法。
背景技术
摄像机的标定是确定空间物体表面某点的三维几何位置与其在图像中对应点之间的相互关系。摄像机标定是非常关键的环节,其标定结果的精度及算法的稳定性将直接影响摄像机工作产生结果的准确性。因此,提高摄像机标定精度是摄像机标定的重点。
由于单线阵相机每次成像只能成像一行,单线阵成像模型不同于传统的面阵相机成像模型,导致适用于面阵相机的内外参数计算方法不适用于单线阵相机。现有的单线阵相机内外参数约束方程较复杂,需要求取标定物特征点映射到相机成像点的多个不同单应性矩阵H才能求取约束方程中的多个未知参数。
发明内容
为了解决现有技术中的不足,本发明提供一种单线阵相机内外参数标定方法,简化了标定流程,能够提高标定效率。
为了实现上述目的,本发明采用的具体方案为:一种单线阵相机内外参数标定方法,包括如下步骤:
S1、根据单线阵相机成像模型得到单线阵相机的理论内参数矩阵、理论外参数矩阵和理论单应性矩阵,其中理论外参数矩阵包括理论旋转参数矩阵;
S2、根据单线阵相机成像模型得到理论单应性矩阵与理论内参数矩阵的关系;
S3、基于理论旋转参数矩阵确定理论内参数矩阵与理论单应性矩阵的约束关系;
S4、利用标定板上目标点的坐标到成像点的坐标求出多个目标点到成像点之间的实际单应性矩阵;
S5、根据实际单应性矩阵求解实际内参数矩阵;
S6、根据实际内参数矩阵求解实际外参数矩阵。
作为一种优选方案,S1的具体方法为:
S1.1、确定单线阵相机成像模型
S1.2、基于成像模型得到包含内外参数的扩充成像模型
m=[0 y 1]T;
M=[X Y Z 1]T;
s为任意实数;
S1.3、基于线阵相机x轴坐标成像坐标为零的特性,对扩充成像模型进行转化,得到
S1.5、提取理论内参数矩阵A和理论外参数矩阵[r1 r2 r3 t]:
作为一种优选方案,S2的具体方法为:
S2.1、基于扩充成像模型的推导得到:
S2.2、根据S1.2,得到
ε为任意实数。
作为一种优选方案,S3的具体方法为:
S3.1、计算
S3.2、计算
S3.4、由r12 2+r22 2+r32 2=1,r12r13+r22r23+r32r33=0,r13 2+r23 2+r33 2=1得
h12h13+h22h23+h32h33=ε2c;
S3.5、理论内参数矩阵和理论单应性矩阵之间的约束关系为
作为一种优选方案,S5的具体方法包括:
S5.1、计算实际内参数矩阵中的c
S5.2、计算实际内参数矩阵中的f
作为一种优选方案,S6的具体方法为:
S6.1、根据[h1 h2 h3 h4]=δA[r1 r2 r3 t]获得
h1=δAr1,并推导出r1=[r12 r13]T=λA-1h1;
h2=δAr2或r2=[r22 r23]T=λA-1h2;
h3=δAr3或r3=[r32 r33]T=λA-1h3;
h4=δAt或t=[t2 t3]T=λA-1h4;其中,δ是;
S6.3、由外参数矩阵特性,得到
r11=r22r33-r32r23
r12=r21r33-r31r23;
r13=r21r32-r31r22
S6.4、由0=r11X+r21Y+r31Z+t1,得到
t1=-(r11X+r21Y+r31Z)。
有益效果:本发明根据单线阵相机成像模型理论内参数矩阵中的参数与理论单应性矩阵中的参数的关联,形成约束方程。只需要根据相机与标定物空间位置固定,利用标定目标点坐标到成像点坐标计算出一个H矩阵,就可得到内参数A,进而得到单线阵相机的外参数。本方法进一步简化标定流程,提高了标定效率,对于单线阵相机标定的应用具有重要意义和实用价值。
附图说明
图1是本发明的流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1,一种单线阵相机内外参数标定方法,包括S1至S6。
S1、根据单线阵相机成像模型得到单线阵相机的理论内参数矩阵、理论外参数矩阵和理论单应性矩阵,其中理论外参数矩阵包括理论旋转参数矩阵。S1的具体方法为S1.1至S1.5。
S1.1、确定单线阵相机成像模型
S1.2、基于成像模型得到包含内外参数的扩充成像模型
m=[0 y 1]T;
M=[X Y Z 1]T;
s为任意实数。
S1.3、基于线阵相机x轴坐标成像坐标为零的特性,对扩充成像模型进行转化,得到
S1.5、提取理论内参数矩阵A和理论外参数矩阵[r1 r2 r3 t]:
S2、根据单线阵相机成像模型得到理论单应性矩阵与理论内参数矩阵的关系。S2的具体方法为S2.1至S2.2。
S2.1、基于扩充成像模型的推导得到:
S2.2、根据S1.2,得到
ε为任意实数。
S3、基于理论旋转参数矩阵确定理论内参数矩阵与理论单应性矩阵的约束关系。S3的具体方法为S3.1至S3.5。
S3.1、计算
S3.2、计算
S3.4、由r12 2+r22 2+r32 2=1,r12r13+r22r23+r32r33=0,r13 2+r23 2+r33 2=1得
h12h13+h22h23+h32h33=ε2c;
S3.5、理论内参数矩阵和理论单应性矩阵之间的约束关系为
S4、利用标定板上目标点的坐标到成像点的坐标求出多个目标点到成像点之间的实际单应性矩阵。
S5、根据实际单应性矩阵求解实际内参数矩阵。S5的具体方法为S5.1至S5.2。
S5.1、计算实际内参数矩阵中的c
S5.2、计算实际内参数矩阵中的f
S6、根据实际内参数矩阵求解实际外参数矩阵。S6的具体方法为S6.1至S6.4。
S6.1、根据[h1 h2 h3 h4]=δA[r1 r2 r3 t]获得
h1=δAr1,并推导出r1=[r12 r13]T=λA-1h1;
h2=δAr2或r2=[r22 r23]T=λA-1h2;
h3=δAr3或r3=[r32 r33]T=λA-1h3;
h4=δAt或t=[t2 t3]T=λA-1h4。其中,δ是。
S6.3、由外参数矩阵特性,得到
r11=r22r33-r32r23
r12=r21r33-r31r23。
r13=r21r32-r31r22
S6.4、由0=r11X+r21Y+r31Z+t1,得到
t1=-(r11X+r21Y+r31Z)。
本发明根据单线阵相机成像模型理论内参数矩阵中的参数与理论单应性矩阵中的参数的关联,形成约束方程。只需要根据相机与标定物空间位置固定,利用标定目标点坐标到成像点坐标计算出一个H矩阵,就可得到内参数A,进而得到单线阵相机的外参数。本方法进一步简化标定流程,对于单线阵相机标定的应用具有重要意义和实用价值。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。
Claims (1)
1.一种单线阵相机内外参数标定方法,其特征在于:包括如下步骤:
S1、根据单线阵相机成像模型得到单线阵相机的理论内参数矩阵、理论外参数矩阵和理论单应性矩阵,其中理论外参数矩阵包括理论旋转参数矩阵;
S2、根据单线阵相机成像模型得到理论单应性矩阵与理论内参数矩阵的关系;
S3、基于理论旋转参数矩阵确定理论内参数矩阵与理论单应性矩阵的约束关系;
S4、利用标定板上目标点的坐标到成像点的坐标求出多个目标点到成像点之间的实际单应性矩阵;
S5、根据实际单应性矩阵求解实际内参数矩阵;
S6、根据实际内参数矩阵求解实际外参数矩阵;
其中,S1的具体方法为:
S1.1、确定单线阵相机成像模型
S1.2、基于成像模型得到包含内外参数的扩充成像模型
m=[0 y 1]T;
M=[X Y Z 1]T;
s为任意实数;
S1.3、基于线阵相机x轴坐标成像坐标为零的特性,对扩充成像模型进行转化,得到
m=[y 1]T;
S1.5、提取理论内参数矩阵A和理论外参数矩阵[r1 r2 r3 t]:
S2的具体方法为:
S2.1、基于扩充成像模型的推导得到:
S2.2、根据S1.2,得到
ε为任意实数;
S3的具体方法为:
S3.1、计算
S3.2、计算
h12h13+h22h23+h32h33=ε2c;
S3.5、理论内参数矩阵和理论单应性矩阵之间的约束关系为
S5的具体方法包括:
S5.1、计算实际内参数矩阵中的c
S5.2、计算实际内参数矩阵中的f
S6的具体方法为:
S6.1、根据[h1 h2 h3 h4]=δA[r1 r2 r3 t]获得
h1=δAr1,并推导出r1=[r12 r13]T=λA-1h1;
h2=δAr2或r2=[r22 r23]T=λA-1h2;
h3=δAr3或r3=[r32 r33]T=λA-1h3;
h4=δAt或t=[t2 t3]T=λA-1h4;其中,δ是任意实数;
S6.3、由外参数矩阵特性,得到
S6.4、由0=r11X+r21Y+r31Z+t1,得到
t1=-(r11X+r21Y+r31Z)。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910605979.8A CN110298892B (zh) | 2019-07-05 | 2019-07-05 | 一种单线阵相机内外参数标定方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910605979.8A CN110298892B (zh) | 2019-07-05 | 2019-07-05 | 一种单线阵相机内外参数标定方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110298892A CN110298892A (zh) | 2019-10-01 |
CN110298892B true CN110298892B (zh) | 2022-10-11 |
Family
ID=68030543
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910605979.8A Active CN110298892B (zh) | 2019-07-05 | 2019-07-05 | 一种单线阵相机内外参数标定方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110298892B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112985265B (zh) * | 2021-04-20 | 2021-07-30 | 苏州维嘉科技股份有限公司 | 线阵相机及其精度补偿方法、存储介质 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104182969A (zh) * | 2014-08-08 | 2014-12-03 | 河南科技大学 | 一种单线阵相机内外参数标定方法 |
WO2017161608A1 (zh) * | 2016-03-21 | 2017-09-28 | 完美幻境(北京)科技有限公司 | 一种相机几何标定处理方法及装置 |
CN107633536A (zh) * | 2017-08-09 | 2018-01-26 | 武汉科技大学 | 一种基于二维平面模板的相机标定方法及系统 |
-
2019
- 2019-07-05 CN CN201910605979.8A patent/CN110298892B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104182969A (zh) * | 2014-08-08 | 2014-12-03 | 河南科技大学 | 一种单线阵相机内外参数标定方法 |
WO2017161608A1 (zh) * | 2016-03-21 | 2017-09-28 | 完美幻境(北京)科技有限公司 | 一种相机几何标定处理方法及装置 |
CN107633536A (zh) * | 2017-08-09 | 2018-01-26 | 武汉科技大学 | 一种基于二维平面模板的相机标定方法及系统 |
Non-Patent Citations (1)
Title |
---|
基于投影矩阵的摄像机标定新方法;吴琼等;《半导体光电》;20131015(第05期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN110298892A (zh) | 2019-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104182982B (zh) | 双目立体视觉摄像机标定参数的整体优化方法 | |
CN104851104B (zh) | 采用柔性靶标高速摄相机近景大视场标定方法 | |
CN106981083B (zh) | 双目立体视觉系统摄像机参数的分步标定方法 | |
CN107358631B (zh) | 一种虑及三维畸变的双目视觉重建方法 | |
CN103837869B (zh) | 基于向量关系的单线激光雷达和ccd相机标定方法 | |
CN103530880B (zh) | 基于投影高斯网格图案的摄像机标定方法 | |
CN107886547B (zh) | 一种鱼眼相机标定方法及系统 | |
CN111667536A (zh) | 一种基于变焦相机深度估计的参数标定方法 | |
CN104809739B (zh) | 一种超广角镜头相机视频实时校正的方法 | |
CN105678757B (zh) | 一种物体位移测量方法 | |
CN111047649A (zh) | 一种基于最优偏振角的相机高精度标定方法 | |
CN109272555B (zh) | 一种rgb-d相机的外部参数获得及标定方法 | |
CN103971378A (zh) | 一种混合视觉系统中全景图像的三维重建方法 | |
CN111768453A (zh) | 航天器集群地面模拟系统中导航定位装置与方法 | |
CN110706291A (zh) | 一种适用于水池实验中运动物体三维轨迹的视觉测量方法 | |
CN110060304B (zh) | 一种生物体三维信息采集方法 | |
CN109949232B (zh) | 图像与rtk结合的测量方法、系统、电子设备及介质 | |
CN106157322B (zh) | 一种基于平面镜的像机安装位置标定方法 | |
CN112132908A (zh) | 一种基于智能检测技术的相机外参数标定方法及设备 | |
CN109443200B (zh) | 一种全局视觉坐标系和机械臂坐标系的映射方法及装置 | |
CN115018920B (zh) | 一种相机阵列标定方法、装置、电子设备及存储介质 | |
CN104048649B (zh) | 一种多视影像与三维模型的快速配准方法 | |
CN110378967B (zh) | 一种光栅投射与立体视觉结合的虚拟靶标标定方法 | |
CN115187612A (zh) | 一种基于机器视觉的平面面积测量方法、装置及系统 | |
CN114998447A (zh) | 多目视觉标定方法及系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |