CN112251766B - 一种二氧化碳电化学还原制备一氧化碳的方法 - Google Patents

一种二氧化碳电化学还原制备一氧化碳的方法 Download PDF

Info

Publication number
CN112251766B
CN112251766B CN201910593401.5A CN201910593401A CN112251766B CN 112251766 B CN112251766 B CN 112251766B CN 201910593401 A CN201910593401 A CN 201910593401A CN 112251766 B CN112251766 B CN 112251766B
Authority
CN
China
Prior art keywords
carbon dioxide
electrochemical reduction
electrode
gas diffusion
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910593401.5A
Other languages
English (en)
Other versions
CN112251766A (zh
Inventor
毛松柏
傅杰
李海涛
黎梓浩
汪东
吕秀阳
陈曦
郭本帅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Chemical Corp
Zhejiang University ZJU
Research Institute of Sinopec Nanjing Chemical Industry Co Ltd
Original Assignee
China Petroleum and Chemical Corp
Zhejiang University ZJU
Research Institute of Sinopec Nanjing Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp, Zhejiang University ZJU, Research Institute of Sinopec Nanjing Chemical Industry Co Ltd filed Critical China Petroleum and Chemical Corp
Priority to CN201910593401.5A priority Critical patent/CN112251766B/zh
Publication of CN112251766A publication Critical patent/CN112251766A/zh
Application granted granted Critical
Publication of CN112251766B publication Critical patent/CN112251766B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Catalysts (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

本发明涉及一种二氧化碳电化学还原制备一氧化碳的方法,包括:采用H型双电化学池反应器,以质子交换膜隔离为阴极室和阳极室;反应前阴极室通入二氧化碳气体;采用三电极体系,以气体扩散电极为工作电极,铂电极为辅助电极,银/氯化银电极为参比电极;气体扩散电极包括气体扩散电极本体,以及负载在气体扩散电极本体上的二氧化碳电化学还原催化剂;二氧化碳电化学还原催化剂为多壁碳纳米管担载的金基双金属。该方法能够提高产物一氧化碳的法拉第效率。

Description

一种二氧化碳电化学还原制备一氧化碳的方法
技术领域
本发明涉及电化学还原二氧化碳技术,具体涉及一种二氧化碳电化学还原制备一氧化碳的方法。
背景技术
目前全世界所需的能量,大约80%通过燃烧化石燃料获得,其燃烧过程引起全世界每年向大气中排放约340亿吨的CO2。由于CO2的热动力很低,它很难被还原成为可再生利用的产物,使得大部分CO2被作为废气排出,例如一个褐煤发电站每天能产生共计达到5万吨的CO2。此外CO2属于温室气体,它引起全球气候变暖、海洋酸化、土壤荒漠化,对环境造成极大的负面效应。
CO2的转化是降低CO2排量的有效措施之一。主要可通过热化学转化、光化学转化、电化学转化、光电化学转化、生物转化、无机转化等方式进行。其中热化学转化(如CO2与甲烷的重构)需要在高温(900~1200K)进行,输入输出能量不匹配。而光化学转化的效率小于1%,最大效率仅为4.5%,反应选择性及效率均限制了其应用。CO2的无机转化易形成CaCO3废弃物。生物转化CO2反应器仍处于探索阶段。
电化学还原法的优势在于能够有效克服CO2/CO2 ·-的高氧化还原电位(-1.9Vvs.SHE),常温常压下即可实现反应,反应条件温和、操作简单;且在电还原过程中可通过控制电极及反应条件实现对产物的选择性合成。如中国发明专利(CN103160849A)公开一种二氧化碳电化学还原转化利用的方法,提供一膜反应器,该膜反应器包括一燃料电池;一腔体;一电解质隔膜设置在该腔体中,并将该腔体分隔为阴极室以及阳极室。将阴极电解液以及二氧化碳持续并流通入膜反应器的阴极室,同时将阳极电解液以及阳极活性物质持续通入膜反应器的阳极室。利用燃料电池在该膜反应器的阴极与阳极之间提供电解电压以分解二氧化碳,并获得预期产物。可知相对于其它还原方法,电化学还原CO2具有更好的应用前景。
目前二氧化碳电化学还原的产物主要为一氧化碳、甲酸、甲醇等,但是,高选择性地、高效率地将二氧化碳转化为一氧化碳的催化材料仍十分稀少。因此,开发一种能够提高一氧化碳的法拉第效率的电化学还原方法是非常重要的。
发明内容
本发明的目的在于针对现有技术的不足,提供一种二氧化碳电化学还原制备一氧化碳的方法,提高产物一氧化碳的法拉第效率和产率。
本发明所提供的技术方案为:
一种二氧化碳电化学还原制备一氧化碳的方法,包括:采用H型双电化学池反应器,H型双电化学池反应器中间以质子交换膜隔离为阴极室和阳极室,H型双电化学池反应器密封;反应前阴极室通入二氧化碳气体;采用三电极体系,以气体扩散电极为工作电极,铂电极为辅助电极,银/氯化银电极为参比电极,工作电极与辅助电极相对,参比电极靠近工作电极;加入电解液,工作电极所在的阴极室进行磁力搅拌,施加工作电压,反应室温下进行。
所述气体扩散电极包括气体扩散电极本体,以及负载在气体扩散电极本体上的二氧化碳电化学还原催化剂;所述二氧化碳电化学还原催化剂为多壁碳纳米管担载金基双金属,所述金基双金属由银、铜、镍、铋、锌、铁、铟、钴中的一种和金两种金属构成。
本发明中气体扩散电极本体上负载有二氧化碳电化学还原催化剂,而二氧化碳电化学还原催化剂包括多壁碳纳米管以及银、铜、镍、铋、锌、铁、铟、钴中的一种和金两种金属,形成具有均匀分散性的多壁碳纳米管担载的金基双金属纳米结构,显著增大了催化剂对二氧化碳还原的电化学还原催化活性,提高产物一氧化碳的法拉第效率,有效抑制析氢反应。
此外,气体扩散电极还可将生成的副产物氢气等顺利排出至工作电极之外,增大二氧化碳与催化剂的接触面积,提高法拉第效率和电流效率。
作为优选,所述电解液选自碳酸氢钾水溶液、碳酸氢钠水溶液、氢氧化钾水溶液、氢氧化钠水溶液、氯化钾水溶液、溴化钾水溶液、碘化钾水溶液中的一种或几种。
作为优选,所述电化学还原反应时间为600~7200秒,收集气相产物通过气相色谱进行分析,液相产物通过核磁共振氢谱进行分析。
作为优选,所述H型双电化学池反应器的单室容积为10~100mL。
作为优选,所述二氧化碳气体为高纯二氧化碳气体,纯度可以选用99.999%,通入时长为10~60分钟,通入流量为10~50sccm。
作为优选,所述铂电极包括铂片电极、铂网电极、铂棒电极、铂条电极或铂丝电极。
作为优选,所述碳酸氢钾水溶液浓度为0.1~1mol/L,体积为5~100mL。
作为优选,所述工作电压为0~-1.5V vs.RHE(Reversible Hydrogen Electrode,可逆氢电极)。
作为优选,所述磁力搅拌速率为100~1000rpm。
本发明中所述二氧化碳电化学还原催化剂的负载量为0.5~10mg/cm2
本发明中所述二氧化碳电化学还原催化剂的制备方法包括:将硼氢化钠配成水溶液作为还原剂,将二水合柠檬酸三钠配成水溶液作为稳定剂,将四水合氯金酸配成水溶液作为金的前驱体,将硝酸银、乙酰丙酮铜、四水合醋酸镍、五水合硝酸铋、二水合乙酸锌、醋酸亚铁、氯化铟、乙酰丙酮钴等配成水溶液为第二种金属元素银、铜、镍、铋、锌、铁、铟、钴的前驱体,将金属前驱体溶液、柠檬酸三钠溶液、硼氢化钠溶液以及超声分散后的多壁碳纳米管逐一加入到圆底烧瓶中,在水浴中均匀搅拌。
作为优选,本发明中所述二氧化碳电化学还原催化剂的制备具体包括:将氯金酸溶液、硝酸银溶液、硼氢化钠溶液、柠檬酸三钠溶液和超声分散后的多壁碳纳米管逐一加入到圆底烧瓶中,在水浴中均匀搅拌,得到多壁碳纳米管担载的金银双金属催化剂。该方法通过液相还原反应合成,形成具有均匀分散性的多壁碳纳米管担载的金基双金属纳米结构,显著增大了催化剂对二氧化碳还原的电化学还原催化活性。
本发明中所述硼氢化钠溶液的浓度为0.01%~1%,柠檬酸三钠溶液的浓度为0.1%~10%,金属前驱体溶液的浓度为0.01%~10%。
本发明中所述液相还原反应的反应温度为0~50℃,反应时间为0.5~5h。
本发明中所述气体扩散电极的制备具体包括:
1)将二氧化碳电化学还原催化剂分散到异丙醇和去离子水的混合液中,并加入Nafion溶液,得到混合溶液;
2)将混合溶液涂覆到气体扩散电极本体上,烘干后得到负载有二氧化碳电化学还原催化剂的气体扩散电极。
本发明中所述气体扩散电极本体选自碳纸、碳布或碳毡。作为改进,所述气体扩散电极本体上可以采用多孔碳、碳纳米管、碳纳米纤维材料、石墨烯中的一种或几种进行修饰改性。
本发明中所述气体扩散电极本体的尺寸为0.5cm×0.5cm~2.0cm×2.0cm。
本发明中所述二氧化碳电化学还原催化剂在异丙醇和去离子水的混合液中的浓度为1~100g/L。
本发明中所述异丙醇和去离子水的体积比例为1:10~10:1。
本发明中所述Nafion溶液与混合液的体积比例为1:1000~1:100。
本发明中所述Nafion溶液的浓度为0.5~5wt%。
同现有技术相比,本发明的有益效果体现在:
(1)本发明中气体扩散电极本体上负载有二氧化碳电化学还原催化剂,而二氧化碳电化学还原催化剂包括多壁碳纳米管以及银、铜、镍、铋、锌、铁、铟、钴中的一种和金两种金属,形成具有均匀分散性的多壁碳纳米管担载的金基双金属纳米结构,显著增大了催化剂对二氧化碳还原的电化学还原催化活性,提高产物一氧化碳的法拉第效率,有效抑制析氢反应。
(2)本发明中气体扩散电极还可将生成的副产物氢气等顺利排出至工作电极之外,增大二氧化碳与催化剂的接触面积,提高法拉第效率和电流效率。
(3)本发明中将气体扩散电极应用到二氧化碳电化学还原中,极大地降低了水溶液中二氧化碳电化学还原时电极的析氢反应和催化剂失活效应,同时高选择性地将二氧化碳还原为一氧化碳,电流效率高。
附图说明
图1为实施例9~14制备得到的催化剂的X射线衍射图;
图2为实施例16制备得到的气体扩散电极的线性扫描伏安图;
图3为实施例33~46中获得的气相产物一氧化碳的法拉第效率。
具体实施方式
下面结合具体的实施例对本发明作进一步详细地说明。
实施例1:催化剂制备
配制浓度为0.075%的硼氢化钠溶液、浓度为1%的柠檬酸三钠溶液、浓度为10%的氯金酸溶液以及浓度为10%的硝酸银溶液,将100mg多壁碳纳米管置于含有50mL去离子水的烧杯中并超声分散30min,量取150mL去离子水加入到500mL圆底烧瓶中,加入1mL氯金酸溶液和1mL硝酸银溶液,逐滴加入2mL柠檬酸三钠溶液和2mL硼氢化钠溶液,最后加入超声分散后的多壁碳纳米管,在冰水浴中均匀搅拌2h,搅拌速率为500rpm,经离心、洗涤、真空干燥后得到多壁碳纳米管担载的金银双金属催化剂,即为二氧化碳电化学还原催化剂,称为AuAg/CNTs催化剂。
实施例2:催化剂制备
具体制备过程如实施例1所示,仅改变第二种金属的前驱体溶液的种类,加入1mL浓度为10%的乙酰丙酮铜溶液,可以得到多壁碳纳米管担载的金铜双金属催化剂,称为AuCu/CNTs催化剂。
实施例3:催化剂制备
具体制备过程如实施例1所示,仅改变第二种金属的前驱体溶液的种类,加入1mL浓度为10%的氯化镍溶液,可以得到多壁碳纳米管担载的金镍双金属催化剂,称为AuNi/CNTs催化剂。
实施例4:催化剂制备
具体制备过程如实施例1所示,仅改变第二种金属的前驱体溶液的种类,加入1mL浓度为10%的硝酸铋溶液,可以得到多壁碳纳米管担载的金铋双金属催化剂,称为AuBi/CNTs催化剂。
实施例5:催化剂制备
具体制备过程如实施例1所示,仅改变第二种金属的前驱体溶液的种类,加入1mL浓度为10%的乙酸锌溶液,可以得到多壁碳纳米管担载的金锌双金属催化剂,称为AuZn/CNTs催化剂。
实施例6:催化剂制备
具体制备过程如实施例1所示,仅改变第二种金属的前驱体溶液的种类,加入1mL浓度为10%的醋酸亚铁溶液,可以得到多壁碳纳米管担载的金铁双金属催化剂,称为AuFe/CNTs催化剂。
实施例7:催化剂制备
具体制备过程如实施例1所示,仅改变第二种金属的前驱体溶液的种类,加入1mL浓度为10%的氯化铟溶液,可以得到多壁碳纳米管担载的金铟双金属催化剂,称为AuIn/CNTs催化剂。
实施例8:催化剂制备
具体制备过程如实施例1所示,仅改变第二种金属的前驱体溶液的种类,加入1mL浓度为10%的乙酰丙酮钴溶液,可以得到多壁碳纳米管担载的金钴双金属催化剂,称为AuCo/CNTs催化剂。
实施例9:催化剂制备
具体制备过程如实施例1所示,改变第二种金属的前驱体溶液的种类,加入1mL浓度为10%的乙酰丙酮铜溶液;其次,改变氯金酸溶液的浓度为1%,加入量为2mL,同样可以得到多壁碳纳米管担载的金铜双金属催化剂,称为AuCu/CNTs-0.2催化剂。针对实施例9中的AuCu/CNTs-0.2催化剂进行X射线衍射表征,如图1所示,可知催化剂包括多壁碳纳米管以及金和铜两种金属单质。
实施例10:催化剂制备
具体制备过程如实施例1所示,改变第二种金属的前驱体溶液的种类,加入1mL浓度为10%的乙酰丙酮铜溶液;其次,改变氯金酸溶液的浓度为1%,加入量为1.5mL,同样可以得到多壁碳纳米管担载的金铜双金属催化剂,称为AuCu/CNTs-0.15催化剂。针对实施例10中的AuCu/CNTs-0.15催化剂进行X射线衍射表征,如图1所示,可知催化剂包括多壁碳纳米管以及金和铜两种金属单质。
实施例11:催化剂制备
具体制备过程如实施例1所示,改变第二种金属的前驱体溶液的种类,加入1mL浓度为10%的乙酰丙酮铜溶液;其次,改变氯金酸溶液的浓度为1%,加入量为1mL,同样可以得到多壁碳纳米管担载的金铜双金属催化剂,称为AuCu/CNTs-0.1催化剂。针对实施例11中的AuCu/CNTs-0.1催化剂进行X射线衍射表征,如图1所示,可知催化剂包括多壁碳纳米管以及金和铜两种金属单质。
实施例12:催化剂制备
具体制备过程如实施例1所示,改变第二种金属的前驱体溶液的种类,加入1mL浓度为10%的乙酰丙酮铜溶液;其次,改变氯金酸溶液的浓度为1%,加入量为0.5mL,同样可以得到多壁碳纳米管担载的金铜双金属催化剂,称为AuCu/CNTs-0.05催化剂。针对实施例12中的AuCu/CNTs-0.05催化剂进行X射线衍射表征,如图1所示,可知催化剂包括多壁碳纳米管以及金和铜两种金属单质。
实施例13:催化剂制备
具体制备过程如实施例1所示,改变第二种金属的前驱体溶液的种类,加入1mL浓度为10%的乙酰丙酮铜溶液;其次,改变氯金酸溶液的浓度为0.5%,加入量为0.75mL,同样可以得到多壁碳纳米管担载的金铜双金属催化剂,称为AuCu/CNTs-0.0375催化剂。针对实施例13中的AuCu/CNTs-0.0375催化剂进行X射线衍射表征,如图1所示,可知催化剂包括多壁碳纳米管以及金和铜两种金属单质。
实施例14:催化剂制备
具体制备过程如实施例1所示,改变第二种金属的前驱体溶液的种类,加入1mL浓度为10%的乙酰丙酮铜溶液;其次,改变氯金酸溶液的浓度为0.5%,加入量为0.5mL,同样可以得到多壁碳纳米管担载的金铜双金属催化剂,称为AuCu/CNTs-0.025催化剂。针对实施例14中的AuCu/CNTs-0.025催化剂进行X射线衍射表征,如图1所示,可知催化剂包括多壁碳纳米管以及金和铜两种金属单质。
实施例15:气体扩散电极制备
将10mg实施例1中合成的多壁碳纳米管担载的金银双金属催化剂分散到1000μL的异丙醇和去离子水(体积比例为1:3)混合液中,加入10μL质量分数为5%的Nafion溶液,在搅拌下得到混合溶液。
每次用微量移液枪取20μL上述混合溶液涂抹至气体扩散电极本体(1cm×1cm的上海河森电气有限公司生产的HCP120碳纸)上,用红外灯照射烘干,如此往复5次,得到负载有二氧化碳电化学还原催化剂的气体扩散电极,二氧化碳电化学还原催化剂的负载量为1mg/cm2
实施例16~32:气体扩散电极制备
具体制备过程如实施例15所示,具体改变的制备条件如下表1所示。为便于比较,将实施例15的相关数据也列入表1中。
表1为实施例12~26的制备条件比较
Figure BDA0002116819250000061
Figure BDA0002116819250000071
针对实施例16制备得到的气体扩散电极在氩气饱和与二氧化碳气体饱和的状态下分别进行线性扫描伏安法测试,扫描范围为0~-1.2V,扫描频率为10mV/s,得到相应的线性扫描伏安曲线。如图2所示,分析可知二氧化碳气体饱和状态下测得的线性扫描伏安曲线位于氩气饱和状态下测得的线性扫描伏安曲线的下方,表明在相同电势下,二氧化碳气体饱和时,实施例16制得的气体扩散电极的电流密度更大,即该气体扩散电极具有二氧化碳电化学还原性能。
实施例33~46:二氧化碳电化学还原
采用H型双电化学池反应器,H型双电化学池反应器中间以质子交换膜隔离为阴极室和阳极室,每室容积为100mL,反应前阴极室以20sccm的速率通入高纯二氧化碳气体30min。
采用三电极体系,实施例33~46按序依次以实施例15~28所制得的气体扩散电极为工作电极,面积为2cm×2cm的铂片电极为辅助电极,银/氯化银电极为参比电极,工作电极与辅助电极相对,参比电极靠近工作电极,电解液为0.5mol/L碳酸氢钾水溶液,施加工作电压-0.5V vs.RHE。
工作电极所在的阴极室进行磁力搅拌,搅拌速率为500rpm,反应室温下进行,反应时间为3600秒。
收集气相产物通过气相色谱分析,气相产物有氢气、一氧化碳等;液相产物通过核磁共振氢谱分析,液相产物有甲醇、甲酸等。
其中气相产物一氧化碳的法拉第效率如图3所示,可知本发明制备的气体扩散电极由于电化学还原催化剂中包括多壁碳纳米管以及银、铜、镍、铋、锌、铁、铟、钴中的一种和金两种金属,形成具有均匀分散性的多壁碳纳米管担载的金基双金属纳米结构,显著增大了催化剂对二氧化碳还原的电化学还原催化活性,提高产物一氧化碳的法拉第效率。尤其是实施例33产物一氧化碳的法拉第效率最高。

Claims (10)

1.一种二氧化碳电化学还原制备一氧化碳的方法,其特征在于,包括:采用H型双电化学池反应器,H型双电化学池反应器中间以质子交换膜隔离为阴极室和阳极室,H型双电化学池反应器密封;反应前阴极室通入二氧化碳气体;采用三电极体系,以气体扩散电极为工作电极,铂电极为辅助电极,银/氯化银电极为参比电极,工作电极与辅助电极相对,参比电极靠近工作电极;加入电解液,工作电极所在的阴极室进行磁力搅拌,施加工作电压,反应室温下进行;
所述气体扩散电极包括气体扩散电极本体,以及负载在气体扩散电极本体上的二氧化碳电化学还原催化剂;所述二氧化碳电化学还原催化剂为多壁碳纳米管担载金基双金属,所述金基双金属由银、铜、镍、铋、锌、铁、铟、钴中的一种和金两种金属构成;
气体扩散电极的制备具体包括:
1)将二氧化碳电化学还原催化剂分散到异丙醇和去离子水的混合液中,并加入Nafion溶液,得到混合溶液;
2)将混合溶液涂覆到气体扩散电极本体上,烘干后得到负载有二氧化碳电化学还原催化剂的气体扩散电极。
2.根据权利要求1所述的二氧化碳电化学还原制备一氧化碳的方法,其特征在于,所述二氧化碳电化学还原催化剂的负载量为0.5~10mg/cm2
3.根据权利要求1所述的二氧化碳电化学还原制备一氧化碳的方法,其特征在于,所述二氧化碳电化学还原催化剂的制备具体包括:
以硼氢化钠为还原剂、柠檬酸三钠为稳定剂、四水合氯金酸为金的前驱体,分别以硝酸银、乙酰丙酮铜、四水合醋酸镍、五水合硝酸铋、二水合乙酸锌、醋酸亚铁、氯化铟、乙酰丙酮钴为第二种金属元素银、铜、镍、铋、锌、铁、铟、钴的前驱体,以多壁碳纳米管为前驱体,采用液相还原法,得到多壁碳纳米管担载的金基双金属催化剂。
4.根据权利要求3所述的二氧化碳电化学还原制备一氧化碳的方法,其特征在于,所述硼氢化钠溶液的浓度为0.01%~1%。
5.根据权利要求3所述的二氧化碳电化学还原制备一氧化碳的方法,其特征在于,所述柠檬酸三钠溶液的浓度为0.1%~10%。
6.根据权利要求3所述的二氧化碳电化学还原制备一氧化碳的方法,其特征在于,所述金属前驱体溶液的浓度为0.01%~10%。
7.根据权利要求6所述的二氧化碳电化学还原制备一氧化碳的方法,其特征在于,所述气体扩散电极本体选自碳纸、碳布或碳毡。
8.根据权利要求6所述的二氧化碳电化学还原制备一氧化碳的方法,其特征在于,所述二氧化碳电化学还原催化剂在异丙醇和去离子水的混合液中的浓度为1~100g/L。
9.根据权利要求6所述的二氧化碳电化学还原制备一氧化碳的方法,其特征在于,所述异丙醇和去离子水的体积比例为1:10~10:1。
10.根据权利要求6所述的二氧化碳电化学还原制备一氧化碳的方法,其特征在于,所述Nafion溶液与混合液的体积比例为1:1000~1:100。
CN201910593401.5A 2019-07-03 2019-07-03 一种二氧化碳电化学还原制备一氧化碳的方法 Active CN112251766B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910593401.5A CN112251766B (zh) 2019-07-03 2019-07-03 一种二氧化碳电化学还原制备一氧化碳的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910593401.5A CN112251766B (zh) 2019-07-03 2019-07-03 一种二氧化碳电化学还原制备一氧化碳的方法

Publications (2)

Publication Number Publication Date
CN112251766A CN112251766A (zh) 2021-01-22
CN112251766B true CN112251766B (zh) 2021-12-31

Family

ID=74223802

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910593401.5A Active CN112251766B (zh) 2019-07-03 2019-07-03 一种二氧化碳电化学还原制备一氧化碳的方法

Country Status (1)

Country Link
CN (1) CN112251766B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113481536B (zh) * 2021-06-30 2023-08-11 河南师范大学 一种合金立方空壳结构电催化co2电还原催化剂的制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103741164B (zh) * 2014-01-03 2016-07-06 南开大学 一种电化学还原co2制甲酸的气体扩散电极的制备方法
CN105322185B (zh) * 2014-07-29 2019-02-26 中国科学院大连化学物理研究所 一种二氧化碳电化学还原反应用气体扩散电极及其制备
CN106890639A (zh) * 2015-12-18 2017-06-27 中国科学院大连化学物理研究所 铟基双组元或三组元纳米催化剂及其制备和应用
CN108823596B (zh) * 2018-06-11 2020-06-16 浙江大学 气体扩散电极及其制备方法以及在二氧化碳电化学还原中的应用
CN108588748B (zh) * 2018-06-11 2020-06-26 浙江大学 一种二氧化碳电化学还原制备甲烷和乙烯的方法
CN108907232A (zh) * 2018-07-31 2018-11-30 江苏大学 一步还原法合成铜-铟/碳双金属纳米材料及其应用
CN109175347B (zh) * 2018-08-31 2020-10-02 中国科学院福建物质结构研究所 一种Au-Ir纳米合金、其制备方法及作为催化剂的应用

Also Published As

Publication number Publication date
CN112251766A (zh) 2021-01-22

Similar Documents

Publication Publication Date Title
Li et al. Coupling overall water splitting and biomass oxidation via Fe-doped Ni2P@ C nanosheets at large current density
CN108588748B (zh) 一种二氧化碳电化学还原制备甲烷和乙烯的方法
CN112176359B (zh) 一种双金属气体扩散电极及其制备方法和应用
CN108745340B (zh) 一种碳负载铋纳米颗粒催化剂的制备方法及应用
CN108823596B (zh) 气体扩散电极及其制备方法以及在二氧化碳电化学还原中的应用
Liu et al. Isolated ultrasmall Bi nanosheets for efficient CO2-to-formate electroreduction
Liu et al. Design and engineering of urchin-like nanostructured SnO2 catalysts via controlled facial hydrothermal synthesis for efficient electro-reduction of CO2
Ai et al. Carbon dioxide electroreduction into formic acid and ethylene: a review
Wu et al. Ultrafine CuS anchored on nitrogen and sulfur Co-doped graphene for selective CO2 electroreduction to formate
CN113136597B (zh) 一种铜锡复合材料及其制备方法和应用
CN111659394A (zh) 一种铜基催化剂及其制备方法和应用
CN114277398A (zh) 一种纳米铜催化剂的制备方法与应用
CN112251766B (zh) 一种二氧化碳电化学还原制备一氧化碳的方法
CN112176360B (zh) 一种二氧化碳电化学还原制备合成气的方法
Unnikrishnan et al. Electrocatalytic Behavior of Carbon Quantum Dots in Sustainable Applications: A Review
CN113737218A (zh) 铜基石墨烯气凝胶复合催化剂、气体扩散电极和应用
CN113862715A (zh) 一种多价态铜纳米材料、其制备方法及其作为电催化剂在碳捕获技术中的应用
Wei et al. Alloying Pd with Cu boosts hydrogen production via room-temperature electrochemical water-gas shift reaction
CN111686766B (zh) 一种金属-氟掺杂碳复合材料及其制备方法和在电催化固氮中的应用
He et al. Grain boundary and interface interaction of metal (copper/indium) oxides to boost efficient electrocatalytic carbon dioxide reduction into syngas
CN113430567B (zh) 一种碳纳米管负载的金纳米簇催化剂的制备方法及其应用
CN113774428B (zh) 一种高效钴铑氢氧化物纳米颗粒/碳布电极的制备方法及其产品和应用
CN110560083A (zh) 一种双金属多孔银铜网络结构氮还原催化剂及其制备方法
Li et al. Application of two-dimensional materials for electrochemical carbon dioxide reduction
CN111804314B (zh) 一种催化甲醇氧化反应的糖葫芦状铑碲纳米链催化剂及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address

Address after: 100027 Chaoyangmen North Street, Chaoyang District, Chaoyang District, Beijing

Patentee after: CHINA PETROLEUM & CHEMICAL Corp.

Patentee after: SINOPEC NANJING CHEMICAL RESEARCH INSTITUTE Co.,Ltd.

Patentee after: ZHEJIANG University

Address before: Liuhe District of Nanjing City, Jiangsu province 210048 geguan Road No. 699

Patentee before: SINOPEC NANJING CHEMICAL RESEARCH INSTITUTE Co.,Ltd.

Patentee before: CHINA PETROLEUM & CHEMICAL Corp.

Patentee before: ZHEJIANG University

CP03 Change of name, title or address