CN112220938A - 基于金属富勒烯的磁共振成像造影剂及其制备方法 - Google Patents

基于金属富勒烯的磁共振成像造影剂及其制备方法 Download PDF

Info

Publication number
CN112220938A
CN112220938A CN202011302768.6A CN202011302768A CN112220938A CN 112220938 A CN112220938 A CN 112220938A CN 202011302768 A CN202011302768 A CN 202011302768A CN 112220938 A CN112220938 A CN 112220938A
Authority
CN
China
Prior art keywords
solution
metal fullerene
fullerene
magnetic resonance
resonance imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011302768.6A
Other languages
English (en)
Inventor
刘万云
霍平
周秀明
司梦雅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yichun University
Original Assignee
Yichun University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yichun University filed Critical Yichun University
Priority to CN202011302768.6A priority Critical patent/CN112220938A/zh
Publication of CN112220938A publication Critical patent/CN112220938A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
    • A61K49/10Organic compounds
    • A61K49/101Organic compounds the carrier being a complex-forming compound able to form MRI-active complexes with paramagnetic metals
    • A61K49/103Organic compounds the carrier being a complex-forming compound able to form MRI-active complexes with paramagnetic metals the complex-forming compound being acyclic, e.g. DTPA
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1818Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
    • A61K49/1821Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles
    • A61K49/1824Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles
    • A61K49/1827Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle
    • A61K49/183Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an inorganic material or being composed of an inorganic material entrapping the MRI-active nucleus, e.g. silica core doped with a MRI-active nucleus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1818Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
    • A61K49/1821Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles
    • A61K49/1824Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles
    • A61K49/1827Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle
    • A61K49/1833Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with a small organic molecule

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Radiology & Medical Imaging (AREA)
  • Medicinal Chemistry (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

本发明公开了一种基于金属富勒烯的磁共振成像造影剂及其制备方法,技术方案是,将钆基富勒烯Gd@C82与亲水性基团三缩四乙二醇自组装成为纳米粒子得到水溶性良好且能稳定包覆金属钆原子的纳米粒子;制备过程简单,反应条件温和。利用本发明技术制备的产品水溶性衍生物生物相容性好,具有高磁靶向性,副作用小等,可有效解决治疗肿瘤疗效差、靶向性差、毒副作用大等问题。其水质子弛豫率的测定结果表明该物质的磁共振成像造影效率明显高于现在临床使用的Gd‑DTPA造影剂,具有极大的推广应用价值。

Description

基于金属富勒烯的磁共振成像造影剂及其制备方法
技术领域:
本发明涉及应用于临床医疗中诊断肿瘤的磁共振成像造影领域,主要是涉及一种基于金属富勒烯的磁共振成像造影剂及其制备方法。
背景技术:
磁共振成像(MRI)是医学上最有力的无创检查方法之一,也是诊断肿瘤最为行之有效的方法之一,在临床诊断中占有重要地位。在临床诊断中,利用核磁成像增强剂,可以缩短扫描时间并获得更清晰的图象,目前,临床上常用的核磁造影剂为金属鳌合物Gd-DTPA,但由于在多数的螯合物中,Gd+与配体形成螯合物稳定性不好,导致释放的毒性Gd+会对细胞的正常生长造成伤害。金属富勒烯的出现能够很好地解决这个问题,由于金属富勒烯能够将金属原子包含在碳笼内,不会释放出金属离子对细胞造成伤害,所以金属富勒烯成为一种更为理想的核磁造影剂。但是金属富勒烯水溶性差的问题,常常限制其在医药领域上的应用。研究制备水溶性的金属富勒烯衍生物已成为一个热点。研究表明,水溶性金属富勒烯衍生物HOx@C82(OH)y 和Gd@C82(OH)y 都具有很好的弛豫能力,在放射治疗、放射诊断和磁共振造影剂等方面表现出优异的性能。
钆元素凭借其在室温下良好的超顺磁性在生物成像领域得到了广泛的研究应用。在将重金属物质用于生物体内的成像研究上,不仅需要解决重金属对机体可能带来的危害,而且需要改善其在生物体内的溶解性。为了解决上述难题,研究者们考虑制备一种能够稳定将钆元素包含的载体,并且该载体要具有很好的水溶性才能应用于机体组织内。水溶性钆基富勒烯纳米粒子的制备能够很好地符合上面的要求。富勒烯中空的碳笼结构能很好地实现对钆原子包合,而其易于修饰的表面结构能够衍生出多种水溶性富勒烯。
中国专利公告号为CN101062422A公开的《基于金属富勒烯的磁共振成像造影剂与抗体的耦联物和检测技术》,基于金属富勒烯的磁共振成像造影剂与抗体的耦联物,可按如下步骤制备:(a)将含羧基的水溶性金属富勒烯衍生物用新鲜制备的1-乙基-3(3-二甲基-氨基-戊基)碳二亚胺盐酸盐水溶液活化;(b)将相对于含羧基的水溶性金属富勒烯衍生物1/10~1/20摩尔当量的抗体加到步骤(a)得到的溶液中搅拌反应即可。利用上述技术制备的耦联物可以使抗体富集并保持其活性,可成为靶向性磁共振成像诊断材料。
还有如中国专利公告号CN1810293A,公告的《一种基于金属富勒烯的磁共振成像造影剂及制备方法》,该造影剂的分子表达式为Gd@C82(OH)x(NH2CH2CH2COOH)y或Gd@C82(OH)x(HNCH2CH2SO3H)y;式中x=16~22,y=6~8。制备方法是:用金属富勒烯Gd@C82为原料直接与β-丙氨酸或氨基乙磺酸的碱溶液发生亲核加成反应来一步大规模合成笼外修饰羧基或磺酸基的水溶性金属富勒烯衍生物,制备过程简单,反应条件温和,有扩大成工业生产的巨大的应用前景。利用本发明技术制备的水溶性衍生物其水质子弛豫率的测定结果表明该物质的磁共振成像造影效率明显高于现在临床使用的Gd-二乙烯三胺五醋酸的螯合物。
还有中国专利CN1480459A公开的《金属富勒烯磁共振成像造影对比度增强剂及其制备方法和用途》,其具体公开了一种金属富勒烯碳纳米材料Gd@C2n及其相关衍生物,及它们的制备方法,以及以该类化合物为活性成份的磁共振(MRI)成像造影剂的制备和应用;这种金属富勒烯碳纳米材料MRI造影对比度增强剂具有低毒、高效、高驰豫效能等优点。
从上述技术方案可以看出,他们的技术方案均存在过程复杂,容易引入有毒的有机试剂以及金属钆原子的外泄容易造成机体组织损伤的问题,而且普通的制备工艺较为复杂。
Gd-DTPA是目前临床上应用最为广泛的一种磁共振成像造影剂,其制备原理也是应用水溶性二乙基精氨酸五乙酸(DTPA)实现对钆原子的螯合。虽然钆元素在磁共振成像领域有着不可替代的优势,但研究其作为成像材料应用于机体组织之中时,则一方面要考虑其成像性能,另一方面更要是考虑其安全性的应用。
因此,如何来提供一种基于金属富勒烯的磁共振成像造影剂及其制备方法;主要是针对钆基富勒烯应用于磁共振成像过程中存在的溶解性差以及金属钆原子的外泄容易造成机体组织损伤的问题,通过将钆基富勒烯纳米粒子与亲水性基团三缩四乙二醇分子组装成为纳米粒子得到水溶性良好且能稳定包覆金属钆原子的纳米粒子。利用激光纳米粒度仪、透射电子显微镜对纳米粒子的粒径及形貌进行分析与表征,利用低磁场磁共振成像仪其弛豫性能及磁共振成像能力。通过将水溶性钆基富勒烯纳米粒子与人乳腺癌细胞共培养,了解并克服Gd@C82-TEGs的细胞毒性。
发明内容:
本发明提供一种基于金属富勒烯的磁共振成像造影剂及其制备方法。针对上述技术问题存在的技术缺陷,制备出可有效解决金属富勒烯水溶性差和治疗肿瘤毒副作用大等问题的金属富勒烯的磁共振成像造影剂及方法;具有广泛的市场与应用前景。
本发明公开一种基于金属富勒烯的磁共振成像造影剂,其表达式为Gd@C82-TEGs。
本发明的另一目的是提供一种基于金属富勒烯的磁共振成像造影剂的制备方法,以金属富勒烯为原料,其特征是包括如下工艺步骤:
a、 将金属富勒烯和有机溶剂充分振荡使其完全溶解为金属富勒烯溶液;
b、于室温下,向步骤a的金属富勒烯溶液中加入催化剂,在醇溶液中进行充分催化混合反应,得到混合溶液;
C、于室温下,将步骤b得到的混和物溶液搅拌反应,随着不断搅拌溶液颜色由浅黑色变为棕黑色,加入酯溶液来终止反应,静置0.5-1小时,得酯混合物溶液;
d、室温下,将步骤c得到的酯混合物溶液,进行高速离心处理,沉淀,得到棕色固体;
e、 将步骤d的棕色固体用纯水溶解,进行透析处理,透析处理过程中,控制每隔3-5h更换一次纯水,透析结束后,得透析水溶液,经冷冻干燥,得到目标产物金属富勒烯为Gd@C82-TEGs。
所述的一种基于金属富勒烯的磁共振成像造影剂的制备方法,其步骤a所述有机溶剂为甲苯或二甲苯,所述振荡是采用超声振荡。
所述的一种基于金属富勒烯的磁共振成像造影剂的制备方法,其步骤b所述醇溶液为三缩四乙二醇溶液,所述催化剂为氢氧化锂或含锂离子的碱溶液;控制三缩四乙二醇溶液和金属富勒烯溶液的体积比为1:1,控制催化剂加入的量与金属富勒烯溶液的质量相当。
所述的一种基于金属富勒烯的磁共振成像造影剂的制备方法,其步骤C所述酯溶液为乙酸乙酯溶液,控制乙酸乙酯溶液加入的量以体积计为金属富勒烯溶液的10-15倍。
优选的,是步骤C控制搅拌反应时间为15-25小时。
进一步的,是步骤d所述高速离心处理是控制高速离心转速为 11000- 13000 r/min,控制离心时间为8-15 min。
进一步的,是步骤e中所述透析处理是使用透析袋,控制透析袋截留分子量为3-4kDa。
对于可临床使用的MRI对比造影剂,其最基本的具有以下条件,(1)低毒或无毒,(2)高弛豫效能,(3)选择性分布,(4)水溶性良好,(5)易于排出体外,不会残留于体内等。本发明提供的一种基于金属富勒烯的磁共振成像造影剂及其制备方法,具备上述的技术要求特点;其还具有合成工艺简单方便,具有良好的生物相容性、低毒性等优点,能有效用于诊断、治疗肿瘤作为磁共振成像造影剂,与其它现有技术比较,本发明还具有以下特点:
1). 本发明利用钆基富勒烯Gd@C82与亲水性小分子基团三缩四乙二醇(TEG),室温下在催化剂氢氧化锂作用下,经过一步反应制得Gd@C82的水溶性衍生物,因而具有简单经济、操作方便的优点;
2). 低毒性,本发明利用金属富勒烯纳米材料的独特性,合成金属富勒烯MRI造影剂,将Gd内包在金属富勒烯的碳笼的真空球体空间内,克服了因为高毒性的Gd离子解离对人体组织细胞产生的巨大毒性作用的难题;
3). 高效,高驰豫效能,本发明制备的基于金属富勒烯的MRI造影剂具有造影效率优于现临床所用的Gd-DTPA,且在水溶液中溶解性良好且不发生沉淀的特点。
附图说明:
图l,是本发明的笼外修饰有小分子基团三缩四乙二醇分子的钆基富勒烯的水溶性衍生物Gd@C82-TEGs的合成步骤以及结构示意图;
图2,是本发明制备的Gd@C82-TEGs的激光动态散射粒度分布图,结果表明平均纳米粒子的平均粒径为70 nm;
图3,是本发明制备的钆基富勒烯纳米粒子的透射电镜图,钆基富勒烯的纳米粒子形态类似于球状,具有良好的分散性,未见聚集。从放大的电镜图片上可以看到有小的黑色金属原子簇聚集在富勒烯的碳笼结构内部,其纳米粒子大多处于70 nm左右与纳米粒径表征结果保持一致;
图4,是本发明制备的Gd@C82-TEGs同其它造影剂在同一浓度下的体外T1加权像对比图。
图4中所示的①②③是分别为低中高同浓度的Gd@C82-TEGs。
具体实施方式:
下面结合具体实施方式对本发明作进一步的详细说明。下面具体实施方式中除有说明的外,其余均为质量比或质量百分比浓度。为了更好的理解发明的实质,下面通过实例来详细说明发明内容,但本发明内容并不局限于此,基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,本发明公开的一种基于金属富勒烯的磁共振成像造影剂,其表达式为Gd@C82-TEGs。
本发明公开的一种基于金属富勒烯的磁共振成像造影剂的制备方法,以金属富勒烯为原料,其包括如下工艺步骤:
a、 将金属富勒烯和有机溶剂甲苯或二甲苯,用超声装置充分振荡使其完全溶解为金属富勒烯溶液即金属富勒烯甲苯溶液或金属富勒烯二甲苯溶液;
b、于室温下,向步骤a的金属富勒烯溶液中加入三缩四乙二醇醇溶液和催化剂氢氧化锂或氧化锂溶液,控制三缩四乙二醇溶液和金属富勒烯甲苯溶液的体积比为1:1,控制催化剂加入的量与金属富勒烯溶液的质量相当,如量取20 mL金属富勒烯的甲苯溶液则加入的催化剂氢氧化锂的质量则为20 mg;充分催化混合反应,得到混合物溶液;
c、于室温下,将步骤b得到的混和物溶液搅拌反应,控制搅拌反应时间为15-25小时,随着不断搅拌溶液颜色由浅黑色变为棕黑色,加入大量的乙酸乙酯溶液来终止反应,控制乙酸乙酯溶液加入的量以体积计为金属富勒烯溶液的10-15倍;静置0.5-1小时,得酯混合物溶液;
d、室温下,将步骤c得到的酯混合物溶液,进行高速离心处理,高速离心处理是控制高速离心转速为 11000- 13000 r/min,控制离心时间为8-15 min;沉淀,得到棕色固体;
e、将步骤d的棕色固体用纯水溶解,进行透析处理,所述透析处理是使用透析袋,控制透析袋截留分子量为3-4 kDa;透析处理过程中,控制每隔3-5h更换一次纯水,透析结束后,得透析水溶液,经冷冻干燥,得到目标产物金属富勒烯为Gd@C82-TEGs。
实施例1
本发明制备方法在具体实施中,准确量取20 mL钆基富勒烯甲苯溶液,超声振荡使其完全溶解,再先后加入20 ml三缩四乙二醇和20 mg氢氧化锂,氢氧化锂加入后随着不断搅拌溶液颜色由浅黑色变为棕黑色,室温下搅拌反应20 h;加入250 ml乙酸乙酯来终止反应,静置半小时,瓶底有絮状物沉淀。然后以12000 r/min的转速进行离心,得到的棕色固体就是钆基富勒烯纳米粒子即Gd@C82-TEGs,由于三缩四乙二醇携带羟基嫁接于钆基富勒烯表面,故而Gd@C82-TEGs表现出很好的水溶性。用大约15 ml的超纯水将其溶解,进行透析处理,透析过程中除掉游离的少量小分子三缩四乙二醇和氢氧化锂等,透析处理24 h,透析袋截留分子量为3.5 kDa,透析期间每隔四小时换一次超纯水,然后冷冻干燥即得到固体钆基富勒烯纳米粒子Gd@C82-TEGs。
实施例2
本发明制备方法在具体实施中,量取钆基富勒烯甲苯溶液40 ml超声震荡溶解,溶液为浅黑色,随后加入三缩四乙二醇40 mL,然后称量催化剂氢氧化锂20 mg加入至反应体系之中,于常温下过夜搅拌反应24 h。待反应结束之后边搅拌边加入乙酸乙酯300 mL终止反应,沉析纳米粒子。静置溶液,离心分离,将所得沉淀物用超纯水溶解后装入透析袋(截留分子量为3.5 kDa)中透析72 h,每4小时更换一次超纯水,溶液澄清透明,之后将透析袋中的水溶液转移至小烧杯中,将小烧杯放入冰箱中冻干,之后通过冷冻干燥仪将水去除,得到干燥的Gd@C82-TEGs纳米粒子。
实施例3
本发明制备方法在具体实施中,量取30 mL钆基富勒烯甲苯溶液,超声震荡使其完全溶解,再先后加入30 ml三缩四乙二醇和20 mg氢氧化锂,氢氧化锂加入后随着不断搅拌溶液颜色由浅黑色变为棕黑色,室温下过夜搅拌反应20 h以上。待反应结束之后边搅拌边加入250 ml乙酸乙酯来终止反应,静置半小时,沉析纳米粒子,瓶底有棕色絮状物沉淀,然后以12000 r/min的转速进行离心10 min,得到的棕色固体就是钆基富勒烯纳米粒子即Gd@C82-TEGs。用大约15ml的超纯水将其溶解,进行透析处理,透析袋截留分子量为3.5 kDa,透析过程中除掉游离的少量小分子三缩四乙二醇和氢氧化锂等,透析处理48 h,透析期间每隔四小时换一次超纯水,待溶液澄清透明,之后将透析袋中的水溶液转移至小烧杯中,将小烧杯放入冰箱装置中冻干,之后通过冷冻干燥仪将水去除,得到干燥的Gd@C82-TEGs纳米粒子。所述超纯水是含杂质较少的纯净水,或者是去离子水均可。
本发明制备的水溶性钆基富勒烯纳米粒子与人乳腺癌细胞共同培养,研究了Gd@C82-TEGs的细胞毒性,并利用低磁场磁共振成像仪研究其弛豫性能及磁共振成像能力(MRI实验),相关试验资料如下:
称取干燥的钆基富勒烯纳米粒子10 mg用超纯水稀释为12.5 mg/L、25 mg/L、50 mg/L、100 mg/L四组,以生理盐水为对照组。将每个浓度组的纳米粒子水溶液及对照组用于对人乳腺癌细胞的培养,每个浓度设置6个复孔,培养时间为48 h,采用SRB法测定细胞生存率。首先收集对数期人乳腺癌细胞,接种于96孔板,接种密度为6×105个/孔,将细胞置于5%CO2,37 ℃孵育24 h,至细胞单层铺满孔底(96孔平底板),加入4组浓度梯度的水溶性钆基富勒烯纳米粒子,及对照组生理盐水,设置复孔为 6个。再将其置于CO2培养箱中孵育48 h,每孔加入20 µL的5 mg/mL的MTT溶液培养4 h后,吸出培养液,每孔加入150 µL DMSO,充分溶解结晶固体,用酶标仪测定吸光度(OD)值,检测波长为490 nm,得到吸光度值并计算肿瘤细胞存活率。肿瘤细胞存活率=实验组的吸光度值/对照组的吸光度值×100%。结果在浓度为12.5~100 mg/L的范围内,乳腺癌细胞的存活率一直保持在92%以上,表明所得Gd@C82-TEGs纳米粒子具有很低的毒性和较高的生物相容性。
MRI实验在MesoMR21-60H-I分析仪上完成,共振频率21.768 MHz,磁体强度为0.50T,线圈直径为60 mm,磁体温度为32 ℃,测试纵向驰豫时间(T1)和成像效果,结果如图4所示,体外MRI测试结果表明,Gd@C82-TEGs的弛豫时间T1的加权弛豫率约为36.7 mM-1 s-1,为临床造影剂Gd-DTPA的6倍,选用的造影剂为不同浓度的Gd@C82-TEGs(0.05,0.1,0.2 mg/mL)、Gd-DTPA,水为对比参照物。MR信号越强,灰度图中越亮,T1加权像,突出长弛豫信号,浓度越小,弛豫时间越长,灰度图中就越暗。结果显示Gd@C82-TEGs造影效果明显优于临床造影剂Gd-DTPA。
以上显示和描述了本发明的基本原理、主要特征和具体实施步骤。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等同物界定。

Claims (8)

1.一种基于金属富勒烯的磁共振成像造影剂,其表达式为Gd@C82-TEGs。
2.一种基于金属富勒烯的磁共振成像造影剂的制备方法,以金属富勒烯为原料,其特征是包括如下工艺步骤:
将金属富勒烯和有机溶剂充分振荡使其完全溶解为金属富勒烯溶液;
b、于室温下,向步骤a的金属富勒烯溶液中加入催化剂,在醇溶液中进行充分催化混合反应,得到混合溶液;
于室温下,将步骤b得到的混和物溶液搅拌反应,随着不断搅拌溶液颜色由浅黑色变为棕黑色,加入酯溶液来终止反应,静置0.5-1小时,得酯混合物溶液;
室温下,将步骤c得到的酯混合物溶液,进行高速离心处理,沉淀,得到棕色固体;
将步骤d的棕色固体用纯水溶解,进行透析处理,透析处理过程中,控制每隔3-5h更换一次纯水,透析结束后,得透析水溶液,经冷冻干燥,得到目标产物金属富勒烯为Gd@C82-TEGs。
3.根据权利要求2所述的一种基于金属富勒烯的磁共振成像造影剂的制备方法,其特征是步骤a所述有机溶剂为甲苯或二甲苯,所述振荡是采用超声振荡。
4.根据权利要求2所述的一种基于金属富勒烯的磁共振成像造影剂的制备方法,其特征是步骤b所述醇溶液为三缩四乙二醇溶液,所述催化剂为氢氧化锂或含锂离子的碱溶液;控制三缩四乙二醇溶液和金属富勒烯溶液的体积比为1:1,控制催化剂加入的量与金属富勒烯溶液的质量相当。
5.根据权利要求2所述的一种基于金属富勒烯的磁共振成像造影剂的制备方法,其特征是步骤C所述酯溶液为乙酸乙酯溶液,控制乙酸乙酯溶液加入的量以体积计为金属富勒烯溶液的10-15倍。
6.根据权利要求2所述的一种基于金属富勒烯的磁共振成像造影剂的制备方法,其特征是步骤C控制搅拌反应时间为15-25小时。
7.根据权利要求2所述的一种基于金属富勒烯的磁共振成像造影剂的制备方法,其特征是步骤d所述高速离心处理是控制高速离心转速为 11000- 13000 r/min,控制离心时间为8-15 min。
8.根据权利要求2所述的一种基于金属富勒烯的磁共振成像造影剂的制备方法,其特征是步骤e中所述透析处理是使用透析袋,控制透析袋截留分子量为3-4 kDa。
CN202011302768.6A 2020-11-19 2020-11-19 基于金属富勒烯的磁共振成像造影剂及其制备方法 Pending CN112220938A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011302768.6A CN112220938A (zh) 2020-11-19 2020-11-19 基于金属富勒烯的磁共振成像造影剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011302768.6A CN112220938A (zh) 2020-11-19 2020-11-19 基于金属富勒烯的磁共振成像造影剂及其制备方法

Publications (1)

Publication Number Publication Date
CN112220938A true CN112220938A (zh) 2021-01-15

Family

ID=74123878

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011302768.6A Pending CN112220938A (zh) 2020-11-19 2020-11-19 基于金属富勒烯的磁共振成像造影剂及其制备方法

Country Status (1)

Country Link
CN (1) CN112220938A (zh)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
熊大艳: "水溶性富勒烯药物载体的制备及其药物缓释与生物成像性能研究", 《中国优秀硕士学位论文全文数据库 工程科技I辑》 *

Similar Documents

Publication Publication Date Title
Sulek et al. Peptide functionalized superparamagnetic iron oxide nanoparticles as MRI contrast agents
CN104826139B (zh) 一种rgd多肽靶向的超小四氧化三铁mri阳性纳米探针的制备方法
CN103143043B (zh) 一种Fe3O4/Au复合纳米颗粒的制备方法
CN103623436B (zh) 生物相容性磁性稀土纳米颗粒、其制备及磁共振成像应用
CN104436220B (zh) 一种壳聚糖磁性纳米微球的制备方法及其用途
Sun et al. Synthesis of surface modified Fe3O4 super paramagnetic nanoparticles for ultra sound examination and magnetic resonance imaging for cancer treatment
CN109078196B (zh) 一种骨髓间充质干细胞介导的纳米水凝胶及其制备和应用
CN106421823A (zh) 一种两性离子修饰的超小氧化铁颗粒的制备方法
CN104258423A (zh) 一种用于脑胶质瘤的钆掺杂碳酸锰双模式成像探针
CN107693803B (zh) 一种负载氧化锰的杂化海藻酸钠纳米凝胶的制备方法
CN104815341A (zh) 靶向聚合物胶束磁性纳米粒及制备和应用
Li et al. Potential detection of cancer with fluorinated silicon nanoparticles in 19 F MR and fluorescence imaging
CN107320738A (zh) 一种四氧化三锰‑乳白蛋白纳米球及其制备与应用
CN112220938A (zh) 基于金属富勒烯的磁共振成像造影剂及其制备方法
CN111420072B (zh) 一种mri-sers双模式造影剂的制备方法
CN110680931A (zh) 一种超小尺寸氧化铁纳米颗粒的制备方法、应用
CN112870387B (zh) 一种磁性纳米药物载体及其制备方法和应用
CN109395102B (zh) 一种胰腺癌双靶向聚合物磁性纳米粒及其制备方法和应用
CN113679854B (zh) 一种磁共振造影剂及其制备和应用
CN106421812A (zh) 一种自组装四氧化三铁纳米颗粒的制法和用途
CN114146166B (zh) 一种多功能诊疗一体化纳米复合探针及其制备方法和应用
CN118079034B (zh) 一种可t1和t2信号切换的响应型磁共振成像造影剂及其制备方法和应用
CN112516334B (zh) 一种edtmp修饰的四氧化三铁纳米颗粒及其制备方法和应用
CN113750230B (zh) 一种钆功能化的硫化铜纳米粒子及其制备方法和应用
CN114949264B (zh) 一种具有靶向功能的双模态磁共振造影剂及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210115

RJ01 Rejection of invention patent application after publication