CN113750230B - 一种钆功能化的硫化铜纳米粒子及其制备方法和应用 - Google Patents
一种钆功能化的硫化铜纳米粒子及其制备方法和应用 Download PDFInfo
- Publication number
- CN113750230B CN113750230B CN202010477053.8A CN202010477053A CN113750230B CN 113750230 B CN113750230 B CN 113750230B CN 202010477053 A CN202010477053 A CN 202010477053A CN 113750230 B CN113750230 B CN 113750230B
- Authority
- CN
- China
- Prior art keywords
- gadolinium
- copper sulfide
- solution
- functionalized
- nano particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K41/00—Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
- A61K41/0052—Thermotherapy; Hyperthermia; Magnetic induction; Induction heating therapy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/06—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
- A61K49/08—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
- A61K49/10—Organic compounds
- A61K49/12—Macromolecular compounds
- A61K49/126—Linear polymers, e.g. dextran, inulin, PEG
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/06—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
- A61K49/08—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
- A61K49/10—Organic compounds
- A61K49/14—Peptides, e.g. proteins
- A61K49/143—Peptides, e.g. proteins the protein being an albumin, e.g. HSA, BSA, ovalbumin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/06—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
- A61K49/18—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
- A61K49/1818—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
- A61K49/1821—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles
- A61K49/1824—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles
- A61K49/1878—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles the nanoparticle having a magnetically inert core and a (super)(para)magnetic coating
- A61K49/1881—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles the nanoparticle having a magnetically inert core and a (super)(para)magnetic coating wherein the coating consists of chelates, i.e. chelating group complexing a (super)(para)magnetic ion, bound to the surface
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/51—Nanocapsules; Nanoparticles
- A61K9/5107—Excipients; Inactive ingredients
- A61K9/513—Organic macromolecular compounds; Dendrimers
- A61K9/5146—Organic macromolecular compounds; Dendrimers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyamines, polyanhydrides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/51—Nanocapsules; Nanoparticles
- A61K9/5107—Excipients; Inactive ingredients
- A61K9/513—Organic macromolecular compounds; Dendrimers
- A61K9/5169—Proteins, e.g. albumin, gelatin
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Nanotechnology (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Medicinal Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Pharmacology & Pharmacy (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Biomedical Technology (AREA)
- Optics & Photonics (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
本发明提出了一种钆功能化的硫化铜纳米粒子及其制备方法和应用,钆功能化的硫化铜纳米粒子,包括纳米硫化铜,纳米硫化铜为核心,包括纳米硫化铜,纳米硫化铜为核心,表面包裹有Gd3+螯合物、牛血清白蛋白和聚乙二醇,硫化铜纳米粒子的弛豫率5.35‑6.69mM‑1S‑1,粒径为10‑30nm,将所述的硫化铜纳米粒子分散于磷酸盐缓冲液中制备分散液,在808nm激光器1.0Wcm‑2功率密度条件下测试光热效应时,当分散液被照射240s时,温度从25℃迅速升高至55℃。本发明该纳米粒子制备条件温和、产量高、具有较高的r1弛豫率和良好的光热性能可同时作为光热治疗的光热敏感剂和磁共振成像T1对比剂。
Description
技术领域
本发明涉及纳米医学技术领域,特别是指一种钆功能化的硫化铜纳米粒子及其制备方法和应用。
背景技术
近年来在抗肿瘤治疗中,可视化治疗作为精准医疗的一种辅助手段受到广泛关注。科学研究人员发现纳米硫化铜具有强的近红外吸收能力,相比于传统的金纳米材料,其近红外吸收峰不会随着尺寸和形貌的改变而发生变化,光热稳定性良好,并且成本低廉、在体毒性低等特点,可用于肿瘤的光热治疗。目前合成纳米硫化铜主要通过水热法、共沉淀法、热分解法等,这些合成方法反应条件苛刻、合成过程繁琐,极大的限制了其大规模生产,从而限制了在生物医学领域的广泛应用。中国专利CN201410617810使用乙醚、1-(2-甲氧基)咪唑氢氯酸盐和碘已基磷酸二乙酯等有机物合成纳米硫化铜,对环境不友好,反应过程不仅需要高温条件且反应时间较长。
磁共振成像(MRI)已广泛应用于疾病诊断和医学研究。临床上广泛应用的磁共振T1对比剂,它能缩短周围水质子的纵向弛豫时间,从而在T1加权图像上能增强图像的亮度,有利于疾病的诊断及鉴别诊断。目前临床主要使用的T1对比剂是基于钆螯合物的小分子,其r1弛豫率较低约在3.5-3.8mM-1s-1之间,对肿瘤组织没有特异性,在体清除率快且具有肾毒性。将小分子驰豫对比剂与纳米材料相结合,利用纳米粒子中的靶向集团可靶向肿瘤组织,利用二者结合后的纳米粒子尺寸及其生物作用机制可提高在体循环时间,利用驰豫对比剂可提高病灶区域的成像对比度,从而形成具备多功能的纳米粒子。将这种钆螯合物整合到具有治疗功能的纳米材料可实现肿瘤的诊疗一体化。
因此,一种简单、环境友好的合成硫化铜纳米粒子的方法,并将其与钆螯合物整合至同一纳米粒子中,具有重要的医学应用价值。
发明内容
本发明提出一种钆功能化的硫化铜纳米粒子及其制备方法和应用,该纳米粒子制备条件温和、产量高、具有较高的r1弛豫率和良好的光热性能可同时作为光热治疗的光热敏感剂和磁共振成像T1对比剂。
本发明的技术方案是这样实现的:一种钆功能化的硫化铜纳米粒子,包括纳米硫化铜,纳米硫化铜为核心,表面包裹有Gd3+螯合物、牛血清白蛋白(BSA)和聚乙二醇。
进一步地,所述硫化铜纳米粒子的弛豫率5.35-6.69mM-1S-1,粒径为10-30nm。
进一步地,将所述的硫化铜纳米粒子分散于磷酸盐缓冲液中制备分散液,分散液浓度为500ug/ml,在808nm激光器1.0Wcm-2功率密度条件下测试光热效应时,当分散液被照射240s时,温度从25℃升高至55℃。
一种钆功能化的硫化铜纳米粒子的制备方法,包括以下步骤:
(1)将乙二胺四乙酸二钠在磁力搅拌下溶于酸性溶液中,得到乙二胺四乙酸二钠水溶液;
(2)在磁力搅拌下将六水氯化钆加入步骤(1)的乙二胺四乙酸二钠水溶液,进行螯合反应,得到Gd3+螯合物溶液;
(3)在磁力搅拌下将牛血清白蛋白、聚乙二醇和二水氯化铜溶于步骤(2)的Gd3+螯合物溶液,得到混合溶液;
(4)在磁力搅拌下将九水硫化钠溶液加入到步骤(3)的混合溶液,进行离子交换反应,得到离子交换反应液后将溶液升温进行生长反应,得到钆功能化的硫化铜纳米粒子(Gd/CuS@BSA)。
进一步地,步骤(1)中,所述的酸性溶液为pH值为5的盐酸溶液,所述的乙二胺四乙酸二钠水溶液的摩尔浓度为11mmol/L。
进一步地,步骤(2)中,六水氯化钆和乙二胺四乙酸二钠的摩尔比是0.18-0.45:1。
进一步地,步骤(3)中,牛血清白蛋白、聚乙二醇和二水氯化铜质量比为1:1:2.39。
进一步地,步骤(4)中,九水硫化钠溶液和混合溶液体积比为1:4,离子交换反应液升温的温度为50-55℃,生长时间6h。
进一步地,所述步骤(4)中,生长反应得到的硫化铜纳米粒子进行透析纯化,所述透析用的透析膜分子量为7000,透析纯化后的硫化铜纳米粒子进行冷冻干燥。
所述的钆功能化的硫化铜纳米粒子作为肿瘤的检测和治疗的MRI对比剂和光热转化剂的应用。
本发明的有益效果:
1、本发明利用钆功能化的硫化铜纳米粒子来获得显著的MRI对比效果,与临床应用的T1对比剂马根维显(Gd-DTPA)相比,具有更加优异的弛豫率,弛豫率可高达5.35-6.69mM-1S-1,高于目前临床所使用的T1对比剂马根维显的r1值(3.2mM-1S-1),可显著提高图像对比度。
2、本发明制备的纳米粒子具有良好的光热性能,作为光热治疗的光热敏感剂。在808nm激光器1.0W·cm-2功率密度条件下,500ug/ml的钆功能化的硫化铜纳米粒子分散液被照射240s时,温度从25℃迅速升高至55℃,可触发癌细胞凋亡和坏死,进而抑制肿瘤的生长,文献(Xia B,Wang B,Shi J,Zhang Y,Zhang Q,Chen Z,Li J.Photothermal andbiodegradable polyaniline/porous silicon hybrid nanocomposites as drugcarriers for combined chemo-photothermal therapy of cancer.ActaBiomater.2017.51:197-208.)指出当温度升至55℃时,有利于杀伤肿瘤细胞。
3、本发明制备方法工艺简单、反应条件易控、成本低廉、反应过程不涉及有机溶剂,适于大规模生产,具有良好的临床医学转化应用前景。
4、本发明制备方法过程中首先将乙二胺四乙酸二钠和六水氯化钆进行螯合反应,形成Gd3+螯合物,随后加入牛血清白蛋白,聚乙二醇此时溶液为透明色,加入二水氯化铜后溶液由透明色变为蓝色,当九水硫化钠加入到反应体系时,S2-将与Cu2+生成CuS,溶液由蓝色迅速变为棕色,表明纳米粒子开始成核逐渐形成,核心为硫化铜具有良好的光热消融性能,Gd3+螯合物作为MR成像对比剂和稳定剂修饰到硫化铜表面,牛血清白蛋白作为稳定剂修饰到硫化铜表面,可提高CuS作为光热转化剂的性能稳定性,提高紫外吸收,测试光效应时在设定时间内加快升温速率以及温度,同时牛血清白蛋白也可提高硫化铜纳米粒子的生物相容性,修饰聚乙二醇提高纳米粒子水溶性。最后通过透析及冷冻干燥的方法得到棉絮状墨绿色的钆功能化的硫化铜纳米粒子。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为实施例3中钆功能化的硫化铜纳米粒子的TEM图;
图2为实施例3中钆功能化的硫化铜纳米粒子的弛豫系数r1与钆离子浓度的关系图;
图3为实施例3中基于不同钆离子浓度的钆功能化的硫化铜纳米粒子分散液的磁共振T1WI图像;
图4为实施例3中钆功能化的硫化铜纳米粒子分散液的紫外可见吸收光谱;
图5为实施例3中钆功能化的硫化铜纳米粒子分散液的升降温曲线;
图6为实施例3中钆功能化的硫化铜纳米粒子升温降温多次曲。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
一种钆功能化的硫化铜纳米粒子的制备方法,包括以下步骤:
(1)将乙二胺四乙酸二钠在55℃磁力搅拌下溶于酸性溶液中,得到乙二胺四乙酸二钠水溶液,所述的酸性溶液为pH值为5的盐酸溶液,所述的乙二胺四乙酸二钠水溶液的摩尔浓度为11mmol/L;
(2)在磁力搅拌下将六水氯化钆加入步骤(1)的乙二胺四乙酸二钠水溶液,进行螯合反应,得到Gd3+螯合物溶液,六水氯化钆和乙二胺四乙酸二钠的摩尔比是0.18-0.45:1,螯合反应的时间优选为30min。
(3)在磁力搅拌下将牛血清白蛋白、聚乙二醇和二水氯化铜溶于步骤(2)的Gd3+螯合物溶液,得到混合溶液,牛血清白蛋白、聚乙二醇和二水氯化铜质量比为1:1:2.39;
(4)在磁力搅拌下将九水硫化钠溶液加入到步骤(3)的混合溶液,进行离子交换反应,得到离子交换反应液后将溶液升温进行生长反应,得到钆功能化的硫化铜纳米粒子,九水硫化钠溶液和混合溶液体积比为1:4,离子交换反应液升温的温度为50-55℃,更优选为55℃,生长时间6h,得到最终产物钆功能化的硫化铜纳米粒子。
生长反应得到的硫化铜纳米粒子进行透析纯化,所述透析用的透析膜分子量为7000,透析纯化后的硫化铜纳米粒子进行冷冻干燥。
加入九水硫化钠后溶液颜色变成深绿色,表明纳米粒子已经开始成核,得到核反应液,随着反应温度升高、反应时间的延长,纳米粒子开始生长反应,所述纳米粒子成核反应过程中,硫离子与铜离子发生反应得到钆功能化的硫化铜纳米粒子,所述的成核反应温度优选为室温,成核反应时间优选为3-5min。
九水硫化钠溶液的浓度没有特殊限定,选用本领域技术人员熟知的浓度即可。本发明中,九水硫化钠优选的摩尔浓度为0.35mol/L。
制备的钆功能化的硫化铜纳米粒子,包括纳米硫化铜,纳米硫化铜为核心,表面包裹有Gd3+螯合物、牛血清白蛋白和聚乙二醇。
下面结合实施例进一步阐明本发明的内容,但本发明的内容不仅仅局限于下面的实施例。
实施例1
(1)称取32.8mg乙二胺四乙酸二钠加入8ml溶剂中,在磁力搅拌器55℃条件下充分搅拌溶解;
(2)称取六水氯化钆5.9mg,在磁力搅拌常温条件下搅拌30min,得到螯合后溶液。
(3)称取10mg牛血清白蛋白、10mg聚乙二醇、23.9mg二水氯化铜在磁力搅拌常温条件下加入上述螯合后容液,搅拌5min,得到淡蓝色混合溶液。
(4)将2ml(168.1mg)硫化钠溶液在磁力搅拌器常温条件下加入到上述混合溶液,九水硫化钠溶液和混合溶液体积比为1:4,搅拌5min,反应溶液颜色逐渐变为墨绿色,得到纳米粒子核反应液。将纳米粒子核反应液在磁力搅拌器50℃条件下继续搅拌5h进行生长反应后,通过透析(透析膜分子量7000)方法纯化,冷冻干燥后得到钆功能化的硫化铜纳米粒子,所述硫化铜纳米粒子的弛豫率6.01mM-1S-1。
实施例2
(1)称取32.8mg乙二胺四乙酸二钠加入8ml溶剂中,在磁力搅拌器55℃条件下充分搅拌溶解。
(2)称取六水氯化钆10.4mg,在磁力搅拌常温条件下搅拌30min,得到螯合后溶液。
(3)称取10mg牛血清白蛋白、10mg聚乙二醇、23.9mg二水氯化铜在磁力搅拌常温条件下加入上述螯合后容液,搅拌5min,得到淡蓝色混合溶液。
(4)将2ml(168.1mg)硫化钠溶液在磁力搅拌器常温条件下加入到上述混合溶液,九水硫化钠溶液和混合溶液体积比为1:4,搅拌5min,反应溶液颜色逐渐变为墨绿色,得到纳米粒子核反应液。将纳米粒子核反应液在磁力搅拌器53℃条件下继续搅拌7h进行生长反应后,通过透析(透析膜分子量7000)方法纯化,冷冻干燥后得到钆功能化的硫化铜纳米粒子,所述硫化铜纳米粒子的弛豫率6.69mM-1S-1。
实施例3
(1)称取32.8mg乙二胺四乙酸二钠加入8ml溶剂中,在磁力搅拌器55℃条件下充分搅拌溶解。
(2)称取六水氯化钆14.9mg,在磁力搅拌常温条件下搅拌30min,得到螯合后溶液。
(3)称取10mg牛血清白蛋白、10mg聚乙二醇、23.9mg二水氯化铜在磁力搅拌常温条件下加入上述螯合后容液,搅拌5min,得到淡蓝色混合溶液。
(4)将2ml(168.1mg)硫化钠溶液在磁力搅拌器常温条件下加入到上述混合溶液,九水硫化钠溶液和混合溶液体积比为1:4,搅拌5min,反应溶液颜色逐渐变为墨绿色,得到纳米粒子核反应液。将纳米粒子核反应液在磁力搅拌器55℃条件下继续搅拌6h进行生长反应后,通过透析(透析膜分子量7000)方法纯化,冷冻干燥后得到钆功能化的硫化铜纳米粒子。
图1为实施例3中钆功能化的硫化铜纳米粒子的TEM图,表明Gd/CuS@BSA形态均一,分散性良好,粒径约为10-30nm之间,主要集中于20nm左右。这种小尺寸使纳米颗粒更容易进入癌细胞。图2为实施例3中钆功能化的硫化铜纳米粒子的弛豫系数r1与钆离子浓度的关系图,线性拟合得到Gd/CuS@BSAr1值为5.35mM-1S-1,高于目前临床所使用的T1对比剂马根维显(Gd-DTPA)的r1值(3.2mM-1S-1),预示着该纳米粒子具有显著的T1WI增强效应。图3为实施例3中基于不同钆离子浓度的钆功能化的硫化铜纳米粒子分散液的磁共振T1WI图像,表明该纳米粒子确实具有显著的T1WI增强效应。图4为实施例3中钆功能化的硫化铜纳米粒子分散液的紫外可见吸收光谱,Gd/CuS@BSA在600-850nm近红外区有较强吸收,表明Gd/CuS@BSA纳米粒子具有良好光学特性。图5为实施例3中钆功能化的硫化铜纳米粒子分散液的升降温曲线,将Gd/CuS@BSA分散于磷酸盐缓冲液中制备分散液,Gd/CuS@BSA作为光热治疗的光热敏感剂,在808nm激光器1.0W·cm-2功率密度条件下,500ug/ml的钆功能化的硫化铜纳米粒子分散液被照射240s时,温度从25℃迅速升高至55℃,可触发癌细胞凋亡和坏死,进而抑制肿瘤的生长证实了所制备的钆功能化的硫化铜纳米粒子具备良好的光热转换效应。图6为实施例3中钆功能化的硫化铜纳米粒子升温降温多次曲线,可以看出,Gd/CuS@BSA纳米粒子具有良好的光热稳定性,由此可知,钆功能化的硫化铜纳米粒子作为肿瘤的检测和治疗的MRI对比剂和光热转化剂的应用。
与实施例3相比,若是不添加BSA,则钆功能化的硫化铜纳米粒子分散液紫外吸收降低,测试光效应时加快升温速率以及升高的温度均会降低;若是不添加聚乙二醇,则Gd/CuS@BSA对紫外吸收量较小,测试光效应时加快升温速率以及升高的温度均较低,在240s时,温度从室温升高了5℃左右;若是不乙二胺四乙酸二钠,钆功能化的硫化铜纳米粒子分散液对紫外吸收量以及升温速率和升高的温度均下降了50%左右。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (9)
1.一种钆功能化的硫化铜纳米粒子,其特征在于:包括纳米硫化铜,纳米硫化铜为核心,表面包裹有Gd3+螯合物、牛血清白蛋白和聚乙二醇;
所述一种钆功能化的硫化铜纳米粒子的制备方法,其特征在于,包括以下步骤:
(1)将乙二胺四乙酸二钠在磁力搅拌下溶于酸性溶液中,得到乙二胺四乙酸二钠水溶液;
(2)在磁力搅拌下将六水氯化钆加入步骤(1)的乙二胺四乙酸二钠水溶液,进行螯合反应,得到Gd3+螯合物溶液;
(3)在磁力搅拌下将牛血清白蛋白、聚乙二醇和二水氯化铜溶于步骤(2)的Gd3+螯合物溶液,得到混合溶液;
(4)在磁力搅拌下将九水硫化钠溶液加入到步骤(3)的混合溶液,进行离子交换反应,得到离子交换反应液后将溶液升温进行生长反应,得到钆功能化的硫化铜纳米粒子。
2.根据权利要求1所述的一种钆功能化的硫化铜纳米粒子,其特征在于:所述硫化铜纳米粒子的弛豫率5.35-6.69mM-1S-1,粒径为10-30nm。
3.根据权利要求1或2所述的一种钆功能化的硫化铜纳米粒子,其特征在于:将所述的硫化铜纳米粒子分散于磷酸盐缓冲液中制备分散液,分散液浓度为500ug/ml,在808nm激光器1.0Wcm-2功率密度条件下测试光热效应时,当分散液被照射240s时,温度从25℃升高至55℃。
4.根据权利要求1所述的一种钆功能化的硫化铜纳米粒子,其特征在于,步骤(1)中,所述的酸性溶液为pH值为5的盐酸溶液,所述的乙二胺四乙酸二钠水溶液的摩尔浓度为11mmol/L。
5.根据权利要求1所述的一种钆功能化的硫化铜纳米粒子,其特征在于,步骤(2)中,六水氯化钆和乙二胺四乙酸二钠的摩尔比是0.18-0.45:1。
6.根据权利要求1所述的一种钆功能化的硫化铜纳米粒子,其特征在于,步骤(3)中,牛血清白蛋白、聚乙二醇和二水氯化铜质量比为1:1:2.39。
7.根据权利要求1所述的一种钆功能化的硫化铜纳米粒子,其特征在于,步骤(4)中,九水硫化钠溶液和混合溶液体积比为1:4,离子交换反应液升温的温度为50-55℃,生长时间6h。
8.根据权利要求1所述的一种钆功能化的硫化铜纳米粒子,其特征在于,所述步骤(4)中,生长反应得到的硫化铜纳米粒子进行透析纯化,所述透析用的透析膜分子量为7000,透析纯化后的硫化铜纳米粒子进行冷冻干燥。
9.权利要求1-8之一所述的钆功能化的硫化铜纳米粒子在制备肿瘤的检测和治疗的MRI对比剂和光热转化剂的应用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010477053.8A CN113750230B (zh) | 2020-05-29 | 2020-05-29 | 一种钆功能化的硫化铜纳米粒子及其制备方法和应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010477053.8A CN113750230B (zh) | 2020-05-29 | 2020-05-29 | 一种钆功能化的硫化铜纳米粒子及其制备方法和应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113750230A CN113750230A (zh) | 2021-12-07 |
CN113750230B true CN113750230B (zh) | 2023-05-23 |
Family
ID=78782358
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010477053.8A Active CN113750230B (zh) | 2020-05-29 | 2020-05-29 | 一种钆功能化的硫化铜纳米粒子及其制备方法和应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113750230B (zh) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105999309A (zh) * | 2016-05-24 | 2016-10-12 | 天津大学 | 基于蛋白生物模板的钆掺杂硫化铜纳米颗粒及其制备方法 |
-
2020
- 2020-05-29 CN CN202010477053.8A patent/CN113750230B/zh active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105999309A (zh) * | 2016-05-24 | 2016-10-12 | 天津大学 | 基于蛋白生物模板的钆掺杂硫化铜纳米颗粒及其制备方法 |
Non-Patent Citations (1)
Title |
---|
集核磁共振成像与光热治疗于一体的硫化铜纳米粒子的研究;张书海;《中国优秀硕士学位论文全文数据库 医药卫生科技辑》;20140315(第3期);第E080-30页,尤其是第19-20页2.3.1.1部分,第25页倒数第7-9行 * |
Also Published As
Publication number | Publication date |
---|---|
CN113750230A (zh) | 2021-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
He et al. | Tumor pH-responsive metastable-phase manganese sulfide nanotheranostics for traceable hydrogen sulfide gas therapy primed chemodynamic therapy | |
Wang et al. | Oxygen-supplementing mesoporous polydopamine nanosponges with WS2 QDs-embedded for CT/MSOT/MR imaging and thermoradiotherapy of hypoxic cancer | |
Ge et al. | Lanthanide (Gd3+ and Yb3+) functionalized gold nanoparticles for in vivo imaging and therapy | |
CN109771442B (zh) | 一种增敏肿瘤放疗的复合纳米颗粒及其制备方法和应用 | |
Jin et al. | An ultrasmall and metabolizable PEGylated NaGdF 4: Dy nanoprobe for high-performance T 1/T 2-weighted MR and CT multimodal imaging | |
CN107551279B (zh) | 具有近红外光热效应和多模态成像功能的超小蛋白复合纳米粒及其制备方法和应用 | |
Tan et al. | Renal-clearable quaternary chalcogenide nanocrystal for photoacoustic/magnetic resonance imaging guided tumor photothermal therapy | |
Liu et al. | Fluorescence-enhanced covalent organic framework nanosystem for tumor imaging and photothermal therapy | |
Yin et al. | Biocompatible folate-modified Gd 3+/Yb 3+-doped ZnO nanoparticles for dualmodal MRI/CT imaging | |
CN112156192B (zh) | 一种具有靶向荧光/磁共振双模态成像和光热治疗功能的复合纳米探针及其制备和应用 | |
Wang et al. | Multiple imaging and excellent anticancer efficiency of an upconverting nanocarrier mediated by single near infrared light | |
Jiang et al. | Indocyanine green derived carbon dots with significantly enhanced properties for efficient photothermal therapy | |
Zhao et al. | Double-mesoporous core–shell nanosystems based on platinum nanoparticles functionalized with lanthanide complexes for in vivo magnetic resonance imaging and photothermal therapy | |
CN107469079B (zh) | 一种t1-mri成像引导下的光动治疗剂制备方法 | |
Xu et al. | Bioresponsive upconversion nanostructure for combinatorial bioimaging and chemo-photothermal synergistic therapy | |
Molaei | Gadolinium-doped fluorescent carbon quantum dots as MRI contrast agents and fluorescent probes | |
CN106902350B (zh) | 一种金属掺杂的光热碳纳米材料及其制备方法和应用 | |
KR101507645B1 (ko) | 암 진단 및 치료용 유-무기 나노복합체 | |
Wei et al. | Rapidly liver-clearable rare-earth core–shell nanoprobe for dual-modal breast cancer imaging in the second near-infrared window | |
Molaei | Turmeric-derived gadolinium-doped carbon quantum dots for multifunctional fluorescence imaging and MRI contrast agent | |
Teng et al. | Synthesis of strong electron donating-accepting type organic fluorophore and its polypeptide nanoparticles for NIR-II phototheranostics | |
Meng et al. | Bismuth-and gadolinium-codoped carbon quantum dots with red/green dual emission for fluorescence/CT/T1-MRI mode imaging | |
CN106963951B (zh) | 氧化石墨烯/钨酸锰/聚乙二醇纳米杂化材料及其制备 | |
Gowtham et al. | Hydrogels of Alginate Derivative‐Encased Nanodots Featuring Carbon‐Coated Manganese Ferrite Cores with Gold Shells to Offer Antiangiogenesis with Multimodal Imaging‐Based Theranostics | |
Sun et al. | Fluorescence-magnetism functional EuS nanocrystals with controllable morphologies for dual bioimaging |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |