CN112204757A - 基于本征等离子体激元-激子极化子的光电器件 - Google Patents

基于本征等离子体激元-激子极化子的光电器件 Download PDF

Info

Publication number
CN112204757A
CN112204757A CN201980035755.6A CN201980035755A CN112204757A CN 112204757 A CN112204757 A CN 112204757A CN 201980035755 A CN201980035755 A CN 201980035755A CN 112204757 A CN112204757 A CN 112204757A
Authority
CN
China
Prior art keywords
strip
ipep
contact
excitons
plasmons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201980035755.6A
Other languages
English (en)
Inventor
A·法尔克
D·B·法尔梅尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Publication of CN112204757A publication Critical patent/CN112204757A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/30Devices controlled by radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electromagnetism (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)
  • Led Devices (AREA)

Abstract

半导体器件包括具有厚度和宽度的条带。所述条带的材料被构造成承载激子以及等离子体激元,并且所述宽度是波导值的反函数,在所述波导值处,所述材料中的等离子体激元的能级基本上等于所述材料中的激子的能级。条带中的等离子体激元和激子的基本相等的能量引起条带中的本征等离子体激元‑激子极化子(IPEP)的激发。第一接触体电耦合到条带上的第一位置,并且第二接触体电耦合到条带上的第二位置。

Description

基于本征等离子体激元-激子极化子的光电器件
技术领域
本发明总体上涉及基于本征等离子体激元-激子极化子的光电器件。
背景技术
光电器件是表现出器件的光学特性与器件的电特性之间的关系的器件。例如,一些光电器件接收可见光、红外光、紫外光、X射线或其他波长的电磁波,并在一组端子上产生电势差或电压。光电二极管是这种类型的光电检测器光电器件的示例。一些光电器件类似地接受其他波长的光或电磁波,并且从传导切换到不传导,反之亦然,以用于被配置为穿过该器件的电流。
一些其他光电器件接收电流作为输入并输出可见光、红外光、紫外光、X射线或其他波长的电磁波。这种类型的光电器件被称为发光二极管或光发射器。使用半导体材料和制造技术以半导体器件规模制造的光电检测器或光发射器光电器件是半导体光电器件。
表面等离子体激元(在本文中也简称为“等离子体激元”)和激子都是重要的光电现象。表面等离子体激元是耦合到光场的电荷振荡。等离子体激元可以将光场集中到纳米级体积中并且提高光电检测器的效率。这种光场的集中还可以用于提高来自附近的光学或电驱动发射器的发光速率。
激子包含与半导体中的电子空穴结合的电子。激子在光发射和光检测中都是重要的过程,特别是在有机分子和纳米材料中,电子和空穴之间的库仑结合强度特别强。
当表面等离子体激元与激子紧密靠近时,表面等离子体激元可以与激子杂交。当表面等离子体激元与激子足够牢固地耦合时,所得的准粒子称为等离子体激元-激子极化子(PEP)。在实践中为了获得一种PEP,因为金属表面是表面等离子体激元的最常见的宿主,所以经常将光吸收分子(在本文中简称为“分子”),如染料分子,放置在金属表面或金属天线附近。这种类型的等离子体激元-激子极化子被称为混合极化子,因为形成极化子的等离子体激元和激子由由不同的材料承载。
发明内容
说明性实施例提供了一种方法、系统和计算机程序产品。实施例包括形成具有厚度和宽度的条带的制造方法,其中,所述条带的材料被构造成承载激子以及等离子体激元,并且其中,所述宽度是所述材料中的等离子体激元的能级基本上等于所述材料中的激子的能级时的波矢值的反函数,该条带中的等离子体激元和激子的基本上相等的能量引起该条带中的本征等离子体激元-激子极化子(IPEP)的激发。该实施例形成电耦合到条带上的第一位置的第一接触体。该实施例形成电耦合到条带上的第二位置的第二接触体
实施例包括半导体制造系统。该实施例包括处理器、计算机可读存储器和计算机可读存储设备,以及存储在存储设备上的用于由处理器经由存储器执行的程序指令,所存储的程序指令使得制造系统执行制造方法的操作。
实施例包括半导体器件。该半导体器件包括根据制造方法形成的结构。
附图说明
在所附权利要求中阐述了被认为是本发明特征的新颖特征。然而,当结合附图阅读时,通过参考说明性实施例的以下详细说明,将最好地理解本发明本身以及使用的优选模式、其进一步的目的和优点,在附图中:
图1示出了碳纳米管中激子和等离子体激元的耦合的示意图,碳纳米管是根据示范性实施例的用于基于IPEP的光电器件的示例性材料;
图2示出了根据说明性实施例的被蚀刻成纳米条带以用作等离子体激元共振器的结晶的碳纳米管膜的图示;
图3示出了根据说明性实施例的用于确定L的方法的图形表示;
图4示出了根据说明性实施例的制造基于IPEP的光电器件的一个示例性方式的框图;
图5示出了根据说明性实施例的基于IPEP的光电器件的另一视图的框图;
图6示出了根据说明性实施例的制造基于IPEP的光电器件的另一示例性方式的框图;
图7示出了根据说明性实施例的制造基于IPEP的光电器件的另一示例性方式的框图;
图8示出了示出根据说明性实施例的基于IPEP的光电检测器类型的光电器件的示例操作的一系列框图;
图9示出了根据说明性实施例的示出基于光电发射器类型IPEP的光电器件的示例性操作的一系列框图;
图10示出了根据说明性实施例的示出另一种基于光电发射器类型IPEP的光电器件的示范性操作;
图11示出了根据说明性实施例的制造基于IPEP的光电器件的示例性过程的流程图;
图12示出了根据说明性实施例的制造和操作基于IPEP的光电器件的另一示例性过程的流程图;和
图13示出了根据说明性实施例的制造和操作基于IPEP的光电器件的另一过程的流程图。
具体实施方式
说明性实施例提供了使用本征PEP(IPEP)的光电器件。本征PEP是一种极化子,在该极化子中,彼此紧密接近而杂交形成该极化子的等离子体激元和激子形成、维持或存在于单一材料中。回想一下,在现有技术中形成的PEP是混合PEP,其中,等离子体激元和激子存在于彼此紧邻的不同材料中。
使用在此描述的实施例的实验已经显示,可以在碳纳米管中产生本征PEP。实验还表明,形成本征PEP的原理也可以容易地扩展到其他纳米材料,包括GaAs纳米线、GaP纳米线、InP纳米线、金属氧化物纳米颗粒和二维过渡金属二卤化物(TMD)的纳米条带。对于能够承载PEP的材料的一般标准是1),它必须同时承载表面等离子体激元共振和激子两者,2)用于承载等离子体激元共振的材料所必需的自由电荷密度不能太高以至于激子被淬灭,并且3)这种材料中的等离子体激元和激子必须足够致密并且具有足够强的光学活性,这样使得等离子体与激子之间的迁跃强度比任何外部辐射或非辐射迁跃更强。
说明性实施例认识到,等离子体激元-激子极化子,特别是IPEP,可以结合激子和等离子体激元二者的若干有利特性。例如,
1.与激子一样,它们可以发光。极化子的等离子体特性可以提高光发射率,并且所得的发射器可以更亮。
2.当将等离子体激元限制在共振器中时,极化子可以充当纳米级激光器,其中激子充当增益介质。
3.与混合激子-等离子体激元极化子不同,本征激子-等离子体激元极化子在等离子体激元和激子的光学模式之间具有几乎理想的重叠,从而在两个激发之间产生更强的耦合并且增强极化效应。
4.激子-等离子体激元共振器还可以充当光电检测器,其中等离子体共振的存在有效地增强材料的吸收率。
5.当等离子体介质是半导体时,其自由电荷密度可以用电栅极调谐,该电栅极调谐等离子体激元共振的频率。激子-等离子体激元极化子的发射和吸收频率可由此被电调节。
用于描述本发明的说明性实施例一般提供用于创建IPEP的方法。示范性实施例还提供了用于制造基于本征等离子体激元-激子极化子的光电器件的制造方法。
实施例包括本文中所描述的半导体器件。另一实施例包括用于所构想的半导体器件的制造工艺,并且可被实现为软件应用。实施实施例的软件应用程序可以被配置为对现有半导体制造系统(如光刻系统)的修改、被配置为结合现有半导体制造系统操作的单独应用程序、独立应用程序、或其某种组合。例如,本申请使半导体制造系统进行本文所述的步骤,以如本文所述的那样基于本征等离子体激元-激子极化子来制造光电器件。
为了描述的清楚,并且不暗示对其的任何限制,使用其中形成IPEP的特定类型的材料(即,碳纳米管)来描述说明性实施例。在说明性实施例的范围内,实施例可用多种具有类似用途的材料实施,其中此类材料提供形成和维持IPEP的类似能力,且可按本文中所描述的方式制造。
此外,在附图和说明性实施例中使用示例结构、元件和设备的简化图。在所提议的装置的实际制造中,在不脱离说明性实施例的范围的情况下,可存在本文未示出或描述的额外结构或不同于本文示出和描述的结构。类似地,在说明性实施例的范围内,可以不同地制造实例装置中的所展示或描述的结构以产生如本文中所描述的类似操作或结果。
示范性结构、层和形成的二维图中的不同阴影部分旨在表示示范性制造中的不同结构、层和形成,如本文所述。类似的材料可以被不同地加阴影,并且为了描述的清楚起见,不同的材料可以被类似地加阴影,并且可以如在其相应的描述中所描述的那样被使用。不同的结构、层和形成可以使用本领域的普通技术人员已知的属于在此描述的相同类别的材料的适合的材料来制造。
本文中所描绘的形状的特定形状、地方、位置或尺寸不旨在限制说明性实施例,除非这种特性被明确地描述为实施例的特征。形状、地方、位置、尺寸或它们的一些组合仅出于附图和描述的清晰性而被选择,并且可能被夸大、最小化或以其他方式从实际光刻中可能用于实现根据说明性实施例的目标的实际形状、地方、位置或尺寸改变。
此外,仅作为实例,相对于特定的实际或假设半导体器件来描述说明性实施例。由不同说明性实施例描述的步骤可以被适配用于以类似的方式制造不同光电器件,这样的适配被认为在说明性实施例的范围内。特定接触体位置也仅用作非限制性示例,以描述说明性实施例可能的某些选项。本领域的普通技术人员将能够使用实施例来以类似方式类似地提供到层或结构的电接入,并且这种使用也被认为在说明性实施例的范围内。
当在应用中实施时,实施例使得制造过程执行如本文所述的某些步骤。制造过程的步骤在几个图中示出。在具体的制造过程中,并非所有步骤都是必需的。在不脱离说明性实施例的范围的情况下,一些制造过程可以不同次序实施步骤、组合某些步骤、移除或替换某些步骤,或执行步骤的这些和其他操纵的某种组合。
在此描述的实施例的器件包括PEP光电器件的实质性进步。在目前可用的方法中,尚没有一种配置和图案化所选择的单一材料以引起如本文所述的IPEP形成的方式。因此,通过执行实施例的方法,这种器件或数据处理系统的显著进步在于改进的光电器件和用于制造产生并利用IPEP的改进的光电器件的制造工艺。
仅作为实例,关于某些类型的设备、电特性、结构、构造、层、定向、方向、步骤、操作、平面、材料、尺寸、数量、数据处理系统、环境、组件和应用来描述说明性实施例。这些和其他类似产物的任何特定表现不旨在限制本发明。可以在说明性实施例的范围内选择这些和其他类似产物的任何合适的表现。
使用特定代码、设计、架构、协议、布局、示意图和工具仅作为实例来描述说明性实施例,且说明性实施例不限于说明性实施例。此外,为了描述的清楚起见,在一些实例中仅使用特定软件、工具和数据处理环境作为实例来描述说明性实施例。说明性实施例可以结合其他可比较的或类似用途的结构、系统、应用或架构来使用。
本公开中的示例仅用于描述的清楚性,并且不限于说明性实施例。从本公开中可以想到另外的结构、操作、动作、任务、活动和操纵,并且这些结构、操作、动作、任务、活动和操纵被构想在说明性实施例的范围内。
在此列出的任何优点仅是实例并且不旨在限制这些说明性实施例。另外的或不同的优点可以通过特定的说明性实施例来实现。此外,特定说明性实施例可具有上文列出的优点中的一些、全部或没有优点。
可以使用任何合适的衬底材料形成在例示性实施例的范围内设想的衬底,例如,单晶硅(Si)、硅锗(SiGe)、硅碳(SiC)、通过将来自周期表的III族元素(例如,Al、Ga、In)与来自周期表的V族元素(例如,N、P、As、Sb)组合而获得的化合物半导体(III-V化合物半导体),通过将来自元素周期表的第2族或第12族的金属与来自第16族的非金属(硫属元素,以前称为第VI族)结合获得的化合物(II-VI化合物半导体),或绝缘体上半导体(SOI)。在本发明的一些实施例中,衬底包括掩埋氧化物层(未示出)。
如本文所述的接触体是导电金属接触体。可使用但不限于钨(W)、铝(Al)或铜(Cu)、钴(Co)来形成或填充金属接触,该金属接触可进一步包括阻挡层。阻挡层可以是但不限于氮化钛(TiN)、氮化钽(TaN)、氮化铪(HfN)、氮化铌(NbN)、氮化钨(WN)或其组合,其中阻挡层可以防止金属接触填充材料与顶部源极漏极材料和/或阳极/阴极材料的扩散和/或合金。在不同实施例中,可以通过ALD、CVD、MOCVD、PECVD或其组合在一个或多个沟槽中共形地沉积阻挡层(barrier layer)。在不同实施例中,可以通过ALD、CVD和/或PVD来形成金属填充物以形成电接触。
掩模可用于图案化、蚀刻、凹陷和许多其他目的。本文考虑的掩模可以是光刻胶掩模或牺牲硬掩模。
参见图1,该图示出了碳纳米管中激子和等离子体激元的耦合的示意图,碳纳米管是根据示范性实施例的用于基于IPEP的光电器件的示例性材料。在碳纳米管100中,等离子体激元102是耦合到光学场的电荷振荡。激子104是在碳纳米管100中包含电子和电子空穴的结合态。碳纳米管100当在宽度为L的条带中蚀刻时,提供强耦合环境,其中等离子体激元102和激子104杂交以形成本文所述的IPEP 106。IPEP 106具有非耦合激发(即,等离子体激元102和激子104)的特性。
为了在碳纳米管100中形成和保持IPEP 106,长度L(其是密集堆积的多个碳纳米管100的条带的宽度)是一个关键因素。在宽度为L的条带中大于碳纳米管100的阈值密度是在碳纳米管100中形成和保持IPEP 106的另一个重要因素。优选地,具有大于1*10^5个纳米管/微米^2的密度的膜对于IPEP现象是足够的,尽管更大的密度确实可以提高性能。一个实施例的实验使用4*10^5个纳米管/微米^2的二维纳米管密度。通常,为了使激子不被自由电荷淬灭,在PEP器件中的自由电荷密度不得太高。这种低电荷密度使得等离子体激元共振具有低能量。然而,增加碳纳米管的堆积密度有效地增加了膜的电荷密度,并且因此使等离子体激元共振具有更高的能量而不淬灭激子。出于说明性实施例的目的,期望高等离子体激元共振,使得等离子体激元共振能级基本上等于激子能级。此外,在所有其他因素相同的情况下,等离激元与激子之间的耦合强度将按纳米管堆积密度的平方根成比例。因此,当碳纳米管更密集地堆积在条带中时,等离子体激元与激子之间的耦合强度将更强。
在使用碳纳米管100中的IPEP 106形成的光电检测器型光电器件中,IPEP 106通过跨一对接触体(未示出)形成电势差来检测合适的电磁波长或波长范围,例如包括但不限于可见光。在使用碳纳米管100中的IPEP 106形成的光电子发射器型光电器件中,当跨一对接触体(未示出)施加电势差时,IPEP 106发射合适的电磁波长或波长范围,例如包括但不限于可见光。
参见图2,该图示出了根据说明性实施例的结晶化碳纳米管膜的图示,该结晶化碳纳米管膜被蚀刻成纳米条带以用作等离子体激元共振器。如视图A所示,条带202包括多个如图1所示的密集堆积的碳纳米管100。条带202具有如图1中所描述的厚度“t”和宽度L。
例如,可以将结晶碳纳米管的膜沉积在衬底上,例如在视图B中可见的衬底204上,该视图B是被蚀刻到碳纳米管膜中的纳米条带的扫描电子显微照片。碳纳米管膜具有所需的碳纳米管密度,并且厚度为t=200nm。合适的蚀刻工艺将碳纳米管膜蚀刻成具有计算出的宽度L的条带202,在该示例中,该宽度被计算为约1微米(μm)。当形成条带202时,碳纳米管膜被蚀刻掉的区域可能会暴露衬底204,如视图B所示。
参见图3,该图示出了根据说明性实施例的用于确定L的方法的图形表示。使用该图中所示的方法确定的L值可用于蚀刻图2中的条带202。
图300绘制了描绘根据一个实施例的结晶纳米管膜的纳米条带中的吸收峰的位置的实验数据。x轴上的波矢(q)是L的反函数(f)并且被定义为f(L)。在一个实施例中,考虑基本等离子体激元共振,并且f(L)是π/L。
白色标记(描绘为白色圆圈的图点)代表在高载流子浓度状态下膜的吸收,其中只有等离子体激元共振,并且激子被淬灭。等离子体激元能量是ωp并被绘制为图形302。黑色标记(描绘为黑色圆圈的图点)处于低载流子浓度状态,其中激子和等离子体激元杂交,使激子-等离子体激元极化子(其频率是ω+和ω-)。这两个极化子分支被拉比频率(Ω)分开。裸激子能量为ω0并被绘制为图形304。
点306是给定的单一材料(这里是碳纳米管)的图形302和304的交叉点。在点306,等离子体激元共振的能量水平和激子的能量水平基本上相等以形成稳定的IPEP。在点306处的x轴上的波矢的值是f(L),可以根据逆函数f由该值计算出点306的L。
参见图4,该图示出了根据说明性实施例的基于IPEP的光电器件的框图。视图400是基于IPEP的光电二极管(器件)的简化表示的正视图。
在视图400中的器件包括使用合适的金属或其他材料形成的接触体402和404。接触体402和404电耦合到条带202,条带202具有厚度“t”和宽度L(在该视图中不可见),并且使用多个碳纳米管100形成,如本文所述。视图400中的器件可以用接触体402和404连接到外部电路。
参见图5,该图示出了根据说明性实施例的基于IPEP的光电器件的另一视图的框图。视图500是相对于图4描绘和描述的基于IPEP的示例光电二极管的平面图。在此示例实现中,视图500示出宽度为L的条带202夹在接触体402和404之间。可以这种方式制造任何数量的条带202。实施例导致接触体402和404中的一者或两者的制造,使得接触体402-404部分地或完全地覆盖条带202的表面区域,这取决于用于接触体402-404的材料。
例如,如果接触体402和404的材料对于光或特定于实现的电磁波长是透明的或部分透明的,则可以形成来自接触体402-404(例如,接触体402)的面向光的接触体以覆盖条带202的面向接触体402的一侧上的整个表面区域。接触体404可以使用与接触体402相同或不同的材料形成。
另一方面,如果用于面向光的接触体402的材料对于光或特定于实现的电磁波长是不够透明或完全不透明的,则可以形成接触体402以仅最低限度地覆盖条带202的暴露于光的一侧上的表面区域。
参考图6,该图示出了根据另一说明性实施例的基于IPEP的光电器件的框图。视图600是使用接触体602、接触体604和任何数量的条带202形成的基于IPEP的示例光电二极管的平面图。接触体602和604在功能上类似于接触体402和404,但是可以使用不同的材料形成,并且与接触体402-404不同地定位,如图6所示。
在此实施例中,不同于图4-5中的实施例,接触体602-604电耦合到纳米管等离子体激元-激子共振器的条带202,并且被横向放置(即,沿着条带202的宽度),而不是在条带202的顶部和底部上放置。横向放置可任选地部分地在条带202的表面上延伸,以改善与条带202的电接触的可靠性。
该实现允许制造在条带202的光入射表面上基本上不放置可以部分地反射和吸收入射在结构上的光的接触材料。除非采取适当的预防措施,否则此实施例可允许来自所吸收光的热流入衬底606中并且被消耗,而不是流入接触体602-604中,在所述接触体602-604处,所述热量可作为光热电流来测量。
参考图7,该图示出了根据说明性实施例的另一基于IPEP的光电器件的框图。视图700是使用接触体702、接触体704和任何数量的条带202形成的另一示例的基于IPEP的光电二极管的平面图。接触体702和704在功能上类似于接触体402和404或者接触体602和604,但是可以使用不同的材料形成,并且与接触体402-404或者602-604不同地定位,如图7所示。
在此实施例中,不同于图4-5-6中的实施例,接触体702-704电耦合到纳米管等离子体激元-激子共振器的条带202,并且被横向放置而相互交叉,即,接触体702和704两者均形成在条带202的光入射表面上,但彼此相距足够绝缘的距离。可以这种方式形成每个接触体702或704的任何数量的手指状突起,并且接触体702和704的突起的数量不需要相等。此外,这些突起不需要一一交替。例如,接触体704的一个突起可以跟随接触体702的零个、一个、两个或更多个突起,反之亦然。
此实施例允许制造放置接触体的更高空间频率以更有效地从光电二极管收集信号。在一个实施例中,用于接触702和704的材料是相同的,而在另一实施例中彼此不同。在一个实施例中,用于接触702和704的材料至少部分透明,以允许期望波长的电磁辐射到达条带202。在一个实施例中,可以在衬底706和条带202之间形成合适的热绝缘体,以减轻从条带202到衬底706的热损失。
参见图8,该图示出了示出根据说明性实施例的基于IPEP的光电检测器类型的光电器件的示例操作的一系列框图。在四个主要步骤A、B、C和D中描述了操作800,并使用以本文所述方式制造的基于IPEP的光电器件来执行。在操作800中使用的设备包括一个或多个条带202、分别对应于接触体402、602或702中的任一个的接触体1以及分别对应于接触体404、604或704中的任一个的接触体2。
在步骤A中,使可见光或具有合适波长的另一种电磁辐射入射在该器件上。在步骤B中,入射辐射激发条带202中的等离子体激元-激子极化子。在步骤C中,等离子体激元-激子极化子衰减为热804。在步骤D中,由于光热电效应,热量804可以被观测为接触体1和接触体2处的电势差806(V)。
参见图9,该图示出了根据说明性实施例示出基于光电发射器类型IPEP的光电器件的示例操作的一系列框图。在三个主要步骤A、B和C中描述了操作900,并使用以本文所述方式制造的基于IPEP的光电器件来执行操作。在操作900中使用的器件包括一个或多个条带202、接触体1(分别对应于接触体402、602或702中的任一个)、接触体2(分别对应于接触体404、604或704中的任一个)、以及耦合至接触体1和接触体2以形成微加热器的加热元件。
在步骤A中,电流902通过使用接触体1和接触体2形成的微加热器。微加热器从电流902的通过中产生热量,并将热量施加或传递到条带202。在步骤B中,热量激励条带202中的IPE。在步骤C中,条带202中的IPEP由于光热电效应而衰减为光子,以输出可见光或具有合适波长的另一电磁辐射904。
参见图10,该图示出了示出根据说明性实施例的另一基于光电发射器类型IPEP的光电器件的示例操作的框图序列。在三个主要步骤A、B和C中描述了操作1000,并使用以本文所述方式制造的基于IPEP的光电器件来执行操作。在操作1000中使用的设备包括一个或多个条带202、分别对应于接触体402、602或702中的任何一个的接触体1以及分别对应于接触体404、604或704中的任何一个的接触体2。
在步骤A中,电流1002直接通过条带202。在步骤B中,电流1002通过条带202激发条带202中的IPE。在步骤C中,条带202中的IPEP由于光热电效应而衰减为光子,以输出可见光或具有合适波长的另一电磁辐射1004。
参见图11,该图示出了根据说明性实施例的用于制造基于IPEP的光电器件的示例过程的流程图。过程1100可以在软件应用或制造系统中实现,以操作该制造系统来执行本文所描述的步骤。
实施过程1100的实施例选择可以承载IPEP的合适材料,例如但不限于包括密集堆积的碳纳米管的厚度“t”的膜(框1102)。实施例计算材料中的等离子体激元的能级基本上等于激子的能级时的材料的长度L(框1104)。实施例将材料沉积在衬底上,诸如但不限于硅上(框1106)。实施例将材料膜蚀刻成条带,使得条带具有宽度L(框1108)。实施例此后结束过程1100。
参见图12,该图示出了根据说明性实施例用于制造和操作基于IPEP的光电器件的另一示例过程的流程图。过程1200可以在软件应用或制造系统中实现,以操作该制造系统来执行本文所描述的步骤。
实现过程1200的实施例使制造系统制造与过程1100中形成的条带电耦合的一对接触体(框1202)。该实施例确保光或合适的电磁辐射可透过接触体或围绕接触体渗透以到达条带(框1204)。
该实施例将包含条带和接触的器件暴露于光或合适的辐射,以激发条带中的IPEP(框1206)。实施例使受激IPEP衰减并在接触体两端产生电势差(框1208)。实施例此后结束过程1200。
参考图13,该图示出了根据说明性实施例的制造和操作基于IPEP的光电器件的另一过程的流程图。过程1300可以在软件应用或制造系统中实现以操作该制造系统来执行本文中所描述的步骤。
实施过程1300的实施例使得制造系统制造热耦合到在过程1100中形成的条带的加热元件(框1302)。实施例通过使电流通过加热元件来向该条带施加热(框1304)。实施例由于施加的热能而激发条带中的IPEP(框1306)。实施例使IPEP衰减为光子,从而使器件发射光或其他波长的电磁辐射(框1308)。实施例此后结束过程1300。
虽然用某些结构描述了某些步骤和过程,但是应当理解,这些步骤和/或过程可以适于在说明性实施例的范围内制造本文所描述的任何结构变型。虽然在多个层或结构中使用某些材料,但是应当理解,在说明性实施例的范围内,替代材料或不同但功能上等效的材料可以用于代替在此描述的任何层处的所描述的材料。虽然已经在某些步骤使用了某些制造方法,但是应当理解,可以在所描述的步骤处省略、添加或修改制造方法,以实现说明性实施例的范围内的半导体结构的功能相似的结果。虽然某些操作被描述为“步骤”,但是若干操作可以组合在一起以形成在此描述的过程中的单个制造步骤。虽然已经参照所提出的设备的示例竖直取向将某些取向称为“顶部”和“底部”,应当理解,该设备可被横向地重新定向,使得顶部和底部变为左/右或右/左,或底部和顶部,或前/后或后/前,视重新定向情况而定。
由此,在基于本征等离子体激元-激子极化子和其他相关特征、功能或操作的光电器件的说明性实施例中提供半导体器件、其制造方法以及使用该方法的软件实现的其制造系统或设备。在针对一种类型的半导体器件描述实施例或其一部分的情况下,制造方法、系统或设备、软件实现方式或其一部分可适配或可配置用于与该类型的器件的不同表现一起使用。
本发明可以是任何可能的集成技术细节水平的半导体器件、系统、方法和/或计算机程序产品。所述计算机程序产品可包含上面具有计算机可读程序指令的计算机可读存储介质(或介质),所述计算机可读程序指令用于致使处理器执行本发明的各方面。一种计算机可读存储,包括但不限于如本文所使用的计算机可读存储设备,不能理解为瞬态信号本身,如无线电波或其他自由传播的电磁波,传播通过波导或其他传输介质的电磁波(例如,通过光纤电缆的光脉冲),或通过导线传输的电信号。
本文所述的计算机可读程序指令可从计算机可读存储介质下载到相应的计算/处理设备,或经由网络(例如,互联网、局域网、广域网和/或无线网络)下载到外部计算机或外部存储设备。

Claims (20)

1.一种半导体器件,包括:
具有厚度和宽度的条带,其中,所述条带的材料被配置为承载激子以及等离子体激元,并且其中,所述宽度是所述材料中的等离子体激元的能级基本上等于所述材料中的激子的能级时的波矢值的反函数,该条带中的等离子体激元与激子的基本上相等的能量引起该条带中的本征等离子体激元-激子极化子(IPEP)的激发;
第一接触体,其电耦合到该条带上的第一位置;和
第二接触体,其电耦合到该条带上的第二位置。
2.根据权利要求1所述的半导体器件,其中,所述宽度的条带是从沉积在衬底上的所述材料的膜中蚀刻的。
3.根据权利要求1所述的半导体器件,
其中,所述器件是光电检测器类型的基于IPEP的光电器件,
其中,该条带接收一定频率的电磁辐射,
其中,所述电磁辐射引起该条带中IPEP的激发,和
其中,所述IPEP衰减以在所述第一接触体和所述第二接触体之间产生电势差。
4.根据权利要求3所述的半导体器件,
其中,所述频率的电磁辐射包括电磁频谱的可见光范围内的频率的光。
5.根据权利要求1所述的半导体器件,
其中,所述器件是光电发射器类型的基于IPEP的光电器件,
其中,电流从所述第一接触体流到所述第二接触体,
其中,所述电流引起该条带中的IPEP的激发,和
其中,所述IPEP衰减以产生一定频率的电磁辐射。
6.根据权利要求5所述的半导体器件,
其中,所述电流直接通过所述条带以引起所述条带中的IPEP的激发。
7.根据权利要求5所述的半导体器件,进一步包括:
加热元件,其中,所述加热元件电耦合到所述第一接触体和所述第二接触体,其中,所述加热元件热耦合到所述条带,和
其中,所述电流通过所述加热元件以将热量传递到所述条带,所述热量引起所述条带中的IPEP的激发。
8.根据权利要求1所述的半导体器件,其中,所述第一位置和所述第二位置在宽度方向上位于所述条带的相对端部上。
9.根据权利要求1所述的半导体器件,其中,所述第一位置包括所述条带的纵向区域。
10.根据权利要求1所述的半导体器件,其中,所述第一位置和所述第二位置在纵向上位于所述条带的接收一定频率的电磁辐射的一侧上。
11.根据权利要求1所述的半导体器件,其中,所述条带上的所述第一位置避免阻碍一定频率的电磁辐射到达所述条带。
12.根据权利要求1所述的半导体器件,其中,所述第一接触体是使用第一材料形成的,所述第一材料对于一定频率的电磁辐射是至少部分透明的。
13.根据任一前述权利要求所述的半导体器件,其中,所述条带的材料包括多个碳纳米管,使得所述多个碳纳米管在所述条带中实现指定密度。
14.根据权利要求1所述的半导体器件,其中,所述条带的材料包括二维材料(2D材料)。
15.一种半导体制造系统,包括处理器、计算机可读存储器和计算机可读存储设备,以及存储在所述存储设备上的用于由所述处理器经由所述存储器执行的程序指令,所述存储的程序指令使所述制造系统执行操作,所述操作包括:
形成具有厚度和宽度的条带,其中,所述条带的材料被配置为承载激子以及等离子体激元,并且其中,所述宽度是所述材料中的等离子体激元的能级基本上等于所述材料中的激子的能级时的波矢值的反函数,该条带中的等离子体激元与激子的基本上相等的能量引起该条带中的本征等离子体激元-激子极化子(IPEP)的激发;
形成电耦合到该条带上的第一位置的第一接触体;和
形成电耦合到该条带上的第二位置的第二接触体。
16.根据权利要求15所述的半导体制造系统,其中,
所述宽度的条带是从沉积在衬底上的所述材料的膜中蚀刻的。
17.根据权利要求15所述的半导体制造系统,
其中,所述器件是光电检测器类型的基于IPEP的光电器件,
其中,该条带接收一定频率的电磁辐射,
其中,所述电磁辐射引起该条带中IPEP的激发,和
其中,所述IPEP衰减以在所述第一接触体和所述第二接触体之间产生电势差。
18.根据权利要求17所述的半导体制造系统,
其中,所述频率的电磁辐射包括电磁频谱的可见光范围内的频率的光。
19.根据权利要求15所述的半导体制造系统,
其中,所述器件是光电发射器类型的基于IPEP的光电器件,
其中,电流从所述第一接触体流到所述第二接触体,
其中,所述电流引起该条带中的IPEP的激发,并且
其中,所述IPEP衰减以产生所述条带接收一定频率的电磁辐射。
20.一种方法,包括:
形成具有厚度和宽度的条带,其中,所述条带的材料被配置为承载激子以及等离子体激元,并且其中,所述宽度是所述材料中的等离子体激元的能级基本上等于所述材料中的激子的能级时的波矢值的反函数,该条带中的等离子体激元与激子的基本上相等的能量引起该条带中的本征等离子体激元-激子极化子(IPEP)的激发;
形成电耦合到该条带上的第一位置上的第一接触体;和
形成电耦合到该条带上的第二位置上的第二接触体。
CN201980035755.6A 2018-06-29 2019-06-14 基于本征等离子体激元-激子极化子的光电器件 Pending CN112204757A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US16/022,969 US10727431B2 (en) 2018-06-29 2018-06-29 Optoelectronic devices based on intrinsic plasmon-exciton polaritons
US16/022,969 2018-06-29
PCT/IB2019/054989 WO2020003045A1 (en) 2018-06-29 2019-06-14 Optoelectronic devices based on intrinsic plasmon-exciton polaritons

Publications (1)

Publication Number Publication Date
CN112204757A true CN112204757A (zh) 2021-01-08

Family

ID=68984716

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980035755.6A Pending CN112204757A (zh) 2018-06-29 2019-06-14 基于本征等离子体激元-激子极化子的光电器件

Country Status (6)

Country Link
US (1) US10727431B2 (zh)
JP (1) JP7335273B2 (zh)
CN (1) CN112204757A (zh)
DE (1) DE112019003277B4 (zh)
GB (1) GB2590251B (zh)
WO (1) WO2020003045A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210070800A (ko) * 2019-12-05 2021-06-15 삼성전자주식회사 이미지 센서
US11519068B2 (en) 2020-04-16 2022-12-06 Honda Motor Co., Ltd. Moisture governed growth method of atomic layer ribbons and nanoribbons of transition metal dichalcogenides
US11639546B2 (en) 2020-04-16 2023-05-02 Honda Motor Co., Ltd. Moisture governed growth method of atomic layer ribbons and nanoribbons of transition metal dichalcogenides
CN113937618B (zh) * 2021-11-18 2024-04-09 西北工业大学 基于少层二维半导体材料形成布拉格激子极化激元的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101295767A (zh) * 2007-04-27 2008-10-29 北京大学 一种提高有机电致发光器件出光效率的方法及相应的器件
US20090267049A1 (en) * 2008-04-24 2009-10-29 Hans Cho Plasmon Enhanced Nanowire Light Emitting Diode
US8611067B1 (en) * 2010-03-08 2013-12-17 Daniel A. Pearson Energy storage device
US20160218434A1 (en) * 2013-04-17 2016-07-28 Georgia Tech Research Corporation Graphene-based Plasmonic Nano-antenna for Terahertz Band Communication

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7115916B2 (en) 2002-09-26 2006-10-03 International Business Machines Corporation System and method for molecular optical emission
WO2006121461A2 (en) 2004-09-16 2006-11-16 Nantero, Inc. Light emitters using nanotubes and methods of making same
US8951561B2 (en) 2007-08-06 2015-02-10 Duke University Methods and systems for treating cell proliferation disorders using plasmonics enhanced photospectral therapy (PEPST) and exciton-plasmon enhanced phototherapy (EPEP)
US8368050B2 (en) 2008-01-30 2013-02-05 Hewlett-Packard Development Company, L.P. Plasmon enhanced light-emitting diodes
CN101599268B (zh) 2008-06-04 2013-06-05 北京富纳特创新科技有限公司 发声装置及发声元件
US8802965B2 (en) 2008-09-19 2014-08-12 Regents Of The University Of Minnesota Plasmonic nanocavity devices and methods for enhanced efficiency in organic photovoltaic cells
US9065253B2 (en) 2009-05-13 2015-06-23 University Of Washington Through Its Center For Commercialization Strain modulated nanostructures for optoelectronic devices and associated systems and methods
US20120161104A1 (en) 2009-08-31 2012-06-28 Ushio Denki Kabushiki Kaisha Ultraviolet irradiation device
WO2011135978A1 (ja) 2010-04-28 2011-11-03 学校法人 慶應義塾 カーボンナノチューブ発光素子、光源及びフォトカプラ
CN102201483B (zh) 2011-05-13 2012-10-03 中国科学院半导体研究所 硅纳米线光栅谐振增强型光电探测器及其制作方法
US8717659B2 (en) * 2011-06-24 2014-05-06 University Of Southampton Tunable metamaterials and related devices
US20140353577A1 (en) 2011-11-22 2014-12-04 Ritesh Agarwal Emission in nanoscale structures via nanocavity plasmons
US9423345B2 (en) * 2014-06-24 2016-08-23 International Business Machines Corporation Chemical sensors based on plasmon resonance in graphene
JP2016058558A (ja) * 2014-09-10 2016-04-21 本田技研工業株式会社 熱電変換材料、熱電変換材料の製造方法および熱電変換モジュール
EP3251155B1 (en) 2015-01-29 2018-12-21 Fondazione Istituto Italiano di Tecnologia All-electrical plasmon detector
AU2015200886A1 (en) * 2015-02-20 2016-09-08 Monash University Carbon-based surface plasmon source and applications thereof
US10340459B2 (en) 2016-03-22 2019-07-02 International Business Machines Corporation Terahertz detection and spectroscopy with films of homogeneous carbon nanotubes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101295767A (zh) * 2007-04-27 2008-10-29 北京大学 一种提高有机电致发光器件出光效率的方法及相应的器件
US20090267049A1 (en) * 2008-04-24 2009-10-29 Hans Cho Plasmon Enhanced Nanowire Light Emitting Diode
US8611067B1 (en) * 2010-03-08 2013-12-17 Daniel A. Pearson Energy storage device
US20160218434A1 (en) * 2013-04-17 2016-07-28 Georgia Tech Research Corporation Graphene-based Plasmonic Nano-antenna for Terahertz Band Communication

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
I.V.BONDAREV: "Strongly Coupled Surface Plasmon-Exciton Excitations in Small-Diameter Carbon Nanotubes", 2008 CONFERENCE ON LASERS AND ELECTRO-OPTICS AND 2008 CONFERENCE ON QUANTUM ELECTRONICS AND LASER SCIENCE, 22 July 2008 (2008-07-22), pages 2 *

Also Published As

Publication number Publication date
GB2590251B (en) 2022-02-09
US20200006690A1 (en) 2020-01-02
GB2590251A (en) 2021-06-23
JP2021530858A (ja) 2021-11-11
WO2020003045A1 (en) 2020-01-02
GB202100790D0 (en) 2021-03-10
DE112019003277B4 (de) 2023-12-28
JP7335273B2 (ja) 2023-08-29
US10727431B2 (en) 2020-07-28
DE112019003277T5 (de) 2021-04-01

Similar Documents

Publication Publication Date Title
CN112204757A (zh) 基于本征等离子体激元-激子极化子的光电器件
Dolores-Calzadilla et al. Waveguide-coupled nanopillar metal-cavity light-emitting diodes on silicon
Davanco et al. A circular dielectric grating for vertical extraction of single quantum dot emission
US8436333B2 (en) Silicon light emitting diode, silicon optical transistor, silicon laser and its manufacturing method
Ba Hoang et al. Enhanced spontaneous emission from quantum dots in short photonic crystal waveguides
US8030668B2 (en) Semiconductor LED, opto-electronic integrated circuits (OEIC), and method of fabricating OEIC
Huang et al. Antenna electrodes for controlling electroluminescence
JPH03265827A (ja) 量子井戸光学デバイス
US20190035967A1 (en) Ultrafast light emitting diodes for optical wireless communications
Abell et al. Mid-infrared interband cascade light emitting devices with milliwatt output powers at room temperature
Stepikhova et al. Light emission from Ge (Si)/SOI self-assembled nanoislands embedded in photonic crystal slabs of various periods with and without cavities
JP2000332351A (ja) 半導体発光デバイスおよび半導体発光デバイスの製造方法
JP5355599B2 (ja) 半導体発光装置およびその製造方法
Lai et al. Highly-directional emission patterns based on near single guided mode extraction from GaN-based ultrathin microcavity light-emitting diodes with photonic crystals
JP2009528679A (ja) 向上した電子遷移を有する材料を使用した光電子デバイス
Zhang et al. Enhanced light extraction in tunnel junction-enabled top emitting UV LEDs
JP6272818B2 (ja) 光デバイスおよび光デバイス製造方法
US9748736B1 (en) Waveguide embedded plasmon laser with multiplexing and electrical modulation
CN108054634A (zh) 一种窄线宽半导体激光器
US10965101B2 (en) Plasmonic quantum well laser
JP6926541B2 (ja) 半導体レーザ
US9711944B2 (en) Quantum cascade laser
JP6792217B2 (ja) カーボンナノチューブ単一光子源
Chen et al. Lasing characteristics at different band edges in GaN photonic crystal surface emitting lasers
Gao et al. A 30 Mbps in-plane full-duplex light communication using a monolithic GaN photonic circuit

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination