CN1121918C - 用于镁合金的压力铸造的系统和方法 - Google Patents

用于镁合金的压力铸造的系统和方法 Download PDF

Info

Publication number
CN1121918C
CN1121918C CN98811618A CN98811618A CN1121918C CN 1121918 C CN1121918 C CN 1121918C CN 98811618 A CN98811618 A CN 98811618A CN 98811618 A CN98811618 A CN 98811618A CN 1121918 C CN1121918 C CN 1121918C
Authority
CN
China
Prior art keywords
running channel
alloy
cast gate
die cavity
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN98811618A
Other languages
English (en)
Other versions
CN1280526A (zh
Inventor
莫里斯·泰勒·穆雷
马修·阿兰·科普
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commonwealth Scientific and Industrial Research Organization CSIRO
Original Assignee
Commonwealth Scientific and Industrial Research Organization CSIRO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commonwealth Scientific and Industrial Research Organization CSIRO filed Critical Commonwealth Scientific and Industrial Research Organization CSIRO
Publication of CN1280526A publication Critical patent/CN1280526A/zh
Application granted granted Critical
Publication of CN1121918C publication Critical patent/CN1121918C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/02Casting exceedingly oxidisable non-ferrous metals, e.g. in inert atmosphere
    • B22D21/04Casting aluminium or magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/007Semi-solid pressure die casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/08Cold chamber machines, i.e. with unheated press chamber into which molten metal is ladled
    • B22D17/12Cold chamber machines, i.e. with unheated press chamber into which molten metal is ladled with vertical press motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/30Accessories for supplying molten metal, e.g. in rations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/002Castings of light metals
    • B22D21/007Castings of light metals with low melting point, e.g. Al 659 degrees C, Mg 650 degrees C
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S164/00Metal founding
    • Y10S164/90Rheo-casting

Abstract

提供或采用一种用具有一个限定了型腔的铸型或压铸模的压铸机对熔融或摇熔状态的镁合金进行压力铸造的金属流动系统,该系统包括一个限定了至少一个熔融的镁合金能够从其注入型腔中的系统浇道的模具或铸型工具装置。此金属流动系统具有用于控制流动系统内的金属流动速度的形式,从而使流经整个型腔的基本上所有的金属都处于粘性或半固态的状态。可以通过金属的半固态前端从一浇口或其它注射位置移开而逐步实现型腔的填充。镁合金从浇道开始的流动可至少经过一个金属流动系统的受控制的膨胀区域,在该区域中,金属流动能够相对于其注射方向横向扩展,结果相对于其在浇道中的速度降低了其流动速度。

Description

用于镁合金的压力铸造的系统和方法
技术领域
本发明涉及一种改进的金属流动系统,该系统可用于制造由熔融或摇熔状态的镁合金制成的压铸件,并且适于与包括热室和冷室压铸机的各种形式的现有设备联用。
背景技术
在整个国际压力铸造工业中已经形成了一种共识,即,由于与锌和铝合金相比镁合金的热容量较低,因此必须采用大的浇道和浇口来防止熔融的镁合金金属的过早凝固。这在工业生产中被认为是实际上最好的作法,尽管对此的解释说明有很大的不同。
在工业生产中,有许多被认为能够由镁合金提供令人满意的铸件的不同的设计方法。然而,与锌或铝的压铸件相比,用这些方法制造的镁合金压铸件通常显示出较大程度的表面缺陷,尽管铸件可能具有适于使用的质量。
我们已经发现,利用本发明来制造高质量的镁合金压铸件是可行的。如此制造的铸件能够具有可与铝或锌合金铸件所能达到的质量相比的质量。另外,我们已经发现,通过使用具有比现有的最好作法小的浇道和浇口的金属流动系统,能够提高铸造质量。本发明的金属流动系统能够显著地提高浇铸成品率,也即铸件重量与总压射重量的百分比。因此,能够显著地降低需要回收和再处理的金属的重量,结果降低了生产成本。
发明内容
本发明实现了一种适合于制造拥有改进质量的镁合金铸件的金属流动系统,其中在供给系统中的金属明显较少,因此与现有的作法相比降低了成本。
本发明提供了一种用于半固态或摇熔状态的镁合金的压力铸造的金属流动系统,采用了一种压铸机,该压铸机具有一个熔融状态合金的供给源和一个限定了一型腔的铸型或压铸模,其特征在于,所述系统包括一个限定了至少一个系统浇道的模具或造型工具装置,熔融的镁合金能够进入该浇道中,以便将合金注入型腔中,并且金属流动系统具有用于控制流动系统内的合金流动速度的形式,从而使流经整个型腔的基本上所有的合金都处于半固态的状态,所述系统包括至少一个受控制的膨胀区域,在所述区域中,合金流能够相对于其注射方向而横向扩展,结果相对于其在浇道中的速度而降低了其流动速度,从而使合金状态从所述熔融状态变为所述半固态。
本发明还提供了一种用于制造镁合金铸件的方法,其以半固态或摇熔的状态铸造镁合金,其中采用一种压铸机,该压铸机具有熔融状态合金供给源和一限定了一型腔的铸型或压铸模,并采用一种如下所述的金属流动系统,其中所述金属流动系统包括一个限定了至少一个系统浇道的模具或铸型工具装置,熔融的镁合金从该供给源进入所述浇道,合金由此被注入型腔,并且,控制所述系统中的合金流速,从而使流经整个型腔的基本上所有的合金都处于半固态的状态,其中,所述控制包括:使来自浇道的合金流经一个受控制的膨胀区域,由此使合金流动在所述区域中相对于其注射方向而横向扩展,结果相对于其在浇道中的速度而降低其流动速度,从而使合金状态从所述熔融状态改变成所述半固态。
我们的研究结果表明,在达到半固态状态的情况下,型腔的充注能够通过金属的半固态前端从一浇口或其它注射位置处移开而逐渐进行。镁合金的这种充注形式明显不同于非常复杂的随后要进行回填的液体周边浇注,这种周边浇注在铝或锌合金的压力铸造中会碰到,并由Frommer于1932年首次披露(参看由McGraw-Hill出版公司于1991年出版的H.H.Doehler的参考文章“压力铸造”)。
在本发明中,镁合金的从浇道开始的流动经过了金属流动系统的至少一个受控制的膨胀区域,在该区域中,金属流动能够相对于其注射方向横向地扩展,结果相对于其在浇道中的速度而降低了其流动速度。在一种优选的结构中,流动系统的受控制的膨胀区域包括一个浇口,金属经过该浇口从浇道流入型腔。在该优选结构中,浇口和浇道要使得经过浇口的液流的有效横截面面积大于经过浇道的液流的有效横截面面积,从而使合金通过流经浇道的液流的有效横截面面积的速度大于其通过流经浇口的液流的有效横截面面积的速度。这与目前推荐的作法相反。
应当理解,在受控制的膨胀区域中的金属流的横向扩展(这会使该区域中的流速相对于浇道中的流速而减小)表明,在受控制的膨胀区域中的合金流动的横截面积相对于浇道中的合金流动横截面积而增加。因此,在本文中,可以理解,“浇口”指的是一个开口,它与以前所采用的压铸设备中所用的浇口不同。应当理解,以前所用的设备中的浇口指的是一个从浇道到型腔的开口,其横截面面积小于浇道的横截面面积,因此,使合金流经过它时收缩,从而使合金经过浇口的流速相对于其在浇道中的流速而增大。相反,本发明的金属流动系统的浇口不相对于流经浇道的合金流而收缩。
后面将讲到,本发明的一种形式中,受控制的膨胀区域可有一个出口端,其直接开口于型腔,在这种情况下,该出口端在此处作为一个浇口(虽然与以前所用的设备中的浇口有上述区别)。然而,后面也会讲到,在本发明的另一种形式中,受控制的膨胀区域可以至少部分地由型腔限定并在型腔内。在这种形式中,浇口可以是在受控制的膨胀区域的端部之间,或者甚至在该区域的入口端,这样,该浇口也不会相对于流经浇道的合金流而收缩。在第一种形式的一种变型中,受控制的膨胀区域的出口端可通过一辅助浇道而与型腔连通,该辅助浇道可通过一浇口而开口于型腔,该浇口不使合金流收缩。无论如何,受控制的膨胀区域使合金从熔融状态变成半固态,在第一种形式的变形中,状态的这种变化不会通过收缩浇口而逆转。
在根据本发明的第一种形式的优选结构中,经过浇口的液流的横截面面积最好比经过浇道的液流的有效流动横截面面积大到这样一种程度,即使其面积比在大约2∶1到4∶1的范围内。
经过浇道的液流的有效横截面面积可以经常遍及浇道的整个纵向范围。然而,有效面积也可以仅仅占浇道纵向范围的一部分。因此,在后一种情况下,从浇道的包括液流的有效横截面面积的纵向范围的一部分向下经过浇道的液流的横截面面积可能更大。
在根据本发明的第一种形式的一种替换结构中,借助于邻近金属进入型腔的位置确定型腔的表面,在型腔内并且由型腔至少部分地确定了受控制的膨胀区域。在此替换结构中,在金属从浇道经过该处流向型腔的位置可以设有一个浇口。假使那样的话,由于浇口具有比浇道大的有效横截面,因此浇口不必限定出一个受控制的膨胀区域,并且浇口可以简单地包括在型腔处的浇道的出口端。然而,浇口可以限定受控制的膨胀区域的一部分,其另外一部分位于型腔内并由型腔确定。
其中的金属流动系统具有一个位于型腔内并至少由型腔限定的受控制的膨胀区域的替换结构并不适用于所有的型腔形状。当金属相对型腔的邻近表面而进入型腔时,得到这种区域还取决于流动方向。一般来说,所述表面有必要在控制它的同时允许膨胀,以便以与提供被控制膨胀的浇口类似的方式在型腔中起作用。因此,由型腔确定的受控制的膨胀区域可被认为是一个伪浇口,并且,概括地说,下面对浇口的说明应被理解为涉及实际的浇口和这种伪浇口。然而,确定了金属经过其朝着进入型腔的方向流动的伪浇口的型腔表面通常不包含在所有侧面上的流动,尽管包含相当多的诸如在三个表面上的流动是比较好的。
可以通过从浇道的有效横截面开始的一个急剧地阶式增大的横截面而得到一个受控制的膨胀区域。然而,受控制的膨胀区域的横截面最好沿着金属流经的方向而逐渐增大。因此,在膨胀区域由一实际浇口确定的情况下,浇口的横截面最好在浇口与型腔连通的地方增大到最大横截面。
本发明既可用于热室压力铸造,也可用于冷室压力铸造。在所有情况下,如本文随后将说明的那样,由于本发明能使浇铸成品率显著提高,所以本发明能够极其显著地节约镁铸件的生产成本。因而,显著地减少了需要回收和再处理的浇道/浇口金属的重量,这一点特别是在镁的铸造生产中十分有利,因为在再处理时需要十分留心。
由本发明所提供并且用于根据本发明的铸造方法中的金属流动系统通常基本上由一个确定了一部分型腔的压铸模或铸型件或工具提供。然而,如同传统的压力型腔铸型和压铸模一样,其可以由协同操作的部件或工具确定。
本发明的系统可适用于利用一给定设备进行压力铸造的生产中。至少在本发明的系统和方法中情况是这样的场合,经过浇道的熔融金属的速度最好约为150m/s。这一速度可以在诸如大约140至160m/s的范围内变化。然而,不必在浇道的整个长度上保持该速度,尽管至少在本发明的一些形式中这是优选的。相反地,如果在浇道的有效横截面小于其它长度部分上的有效横截面的部分长度上达到该速度就已足够。
经过受控制的膨胀区域的合金的流动速度可以比经过浇道的流动速度小大约25%至50%。在许多情况下,发现经过膨胀区域的金属速度非常接近于浇道中金属速度的三分之二。因此,在浇道速度大约为150m/s的情况下,膨胀区域的速度最好约为100m/s。
在上文中提到经过膨胀区域和经过浇道的液流的有效横截面面积与膨胀区域和浇道的实际横截面面积不同。这种区别是重要的,在由本文后面概述的第一组实验的初始实验中反映出了这一点。这些初始实验是根据用于铸造镁合金的现有技术的最好作法并与铸造铝和锌合金的作法类似地采用较大的浇道和浇口而进行的。在初始实验中,浇道内的实际流动路径通过一个横截面面积比浇道的预定的实际横截面面积小得多的圆柱形区域。所述流动区域的小得多的面积包括一个略微聚中的芯部,熔融金属在该芯部中流经浇道,并且该芯部位于壁厚很大的至少部分凝固了的金属套的内部。对于一给定的浇道横截面面积,当铸模变热时,所述流动区域的横截面面积更大。
经过浇道的有效横截面面积与实际的或设计好的横截面面积之间的区别关系在本发明的金属流动系统的浇道中没有在现有技术的最好作法中那么显著。实际上,在根据本发明的一种限制条件下,基本上可以消除这一区别。也就是说,在这种限制条件下,浇道可具有一较小的设计横截面面积,其基本上确定了经过浇道的液流的有效横截面面积。为了便于达到这种条件,热室系统的浇道长度的上游部分可由一个用适当的陶瓷材料制成的元件确定,该元件能够维持温度循环以阻止金属在限定浇道的元件表面上凝固。或者,热室或冷室系统的浇道长度的这一上游部分可由一个适于热交换流体的循环的元件确定,或者通过使用一个电热装置而确定,以便能够维持这种温度循环。
目前的作法需要大的浇道系统,一般来说,这种系统具有横截面比其浇口的横截面大的浇道,也就是说,本发明实现了相对于浇道和受控制的膨胀区域的横截面的这一转换。结果,对于给定的铸件,它们导致浇道/浇口金属的数量较大,并因此造成了回收和再处理浇道/浇口金属的成本较高。目前的作法通常导致浇道/浇口金属超出铸件重量的50%,并且在有些情况下超过100%。也就是说,浇道/浇口金属的量可能会大于铸件的量。
与现有技术的作法相比较,本发明能够使浇道/浇口金属的量显著减少,例如对于冷室压铸机而言,可减少到小于铸件重量的30%。在许多情况下,特别是对于热室压铸机而言,本发明能够使浇道/浇口金属的量大大低于这一水平,例如为大约5%左右或者甚至低到大约2%左右。由于相应地降低了再处理回收金属的成本,这当然产生了明显的实际益处。
作为减小浇道的设计横截面的直接结果,本发明能够使浇道/浇口金属的量大大减少,并且可通过减小浇道长度而进一步地减小。可减小设计横截面,从而使其基本上与经过浇道的液流的有效横截面相对应。然而,液流的有效横截面有必要只分布在浇道长度的一部分上,例如沿着长度的一较小部分分布。在铸造过程中凝固的浇道的该部分长度还能够被显著地缩短,以实现浇道/浇口金属量的进一步减少。
本发明能够获得除降低再处理成本的益处之外的其它重要益处。这些益处包括显著地改善了铸件气孔率和表面光洁度的相关参数。与铝或锌合金的压铸件相比,用现有技术的作法制造的镁铸件通常具有较差的表面光洁度,这常常可归因于在铸件表面或附近的砂眼。然而,本发明能够使铸件的气孔率显著降低,并且还能够获得高质量的均匀的表面光洁度。
降低浇道/浇口金属量、降低气孔率和提高表面光洁度的一个共同的因素被认为是达到通过本发明实现的熔融金属流动速度。在这种速度下,在不考虑邻近受控制的膨胀区域的型腔的区域的情况下,认为型腔中的金属流动是由于最初熔融的金属处于粘性状态而造成的。因此,铸模中的流动就是半固态的前部充注,其中流动金属中的固体含量在填充型腔的过程中保持相对恒定。也就是说,型腔的填充看起来通过使半固态前端从受控制的膨胀区域移开而进行,这与在铝或锌合金的铸造中所遇到的相当复杂的周边充注和回填相反。
在本文中详述的本发明以一系列实验为基础。第一组实验旨在使人更好地理解镁合金流动和凝固的机理。具体地说,该实验试图确定通过改变和/或控制特定铸件的实际参数是否能实现表面光洁度和气孔率水平的改善。
该第一组实验中的一些初始实验采用“快速压射”技术来理解流动模式。这些实验导致型腔内的两种流动状况相同,这总是在其间产生一个光洁度较差的区域。这种流动模式不象在锌或铝的压力铸造中所见到的那样。微观结构的检验表明:
·浇道中的流动经过一个其横截面比设计的实际浇道横截面小得多的圆柱形区域。这在流动为单向的铸造环节中也可以注意到。
·镁合金铸件中的固体含量(用带有大的枝晶臂间隙的枝晶进行说明)约为50%。
·浇口附近镁合金铸件的微观结构与距浇口50mm至300mm处所观察到的微观结构不同。
这些初始实验的结果似乎暗示金属已在浇道中部分地凝固,然后在型腔内表现为带有附带的粘性特性的半固态。沿浇道行进的第一金属(前端)看来是以液体状态进入型腔的,因此这能够说明所得到的不同的微观结构和在这些不同的流动状况之间转变的整个铸件上基本上共有的位置。
在第一组实验中的后续实验中,对浇道形式和利用传统的开浇口原理而开设浇口的型式的改变导致生产出了在一定程度上改进了的铸件,而大的改变能够根据该原理而预料到。然而,表面光洁度较差的区域和位置基本上保持不变。当考虑铸造质量时,对单个锥形切线浇道的一种根本改变产生了极好的效果,但是产品量与浇道/浇口金属量的比值并不令人满意。在这一阶段,对流动特性的理解的一般程度是极其有限的。然而显然,镁合金表现得明显不同于锌和铝合金。
第二组实验是采用多个不同的铸模和铸造设备而进行的,以试图确定表现的不同是否是由于摇熔而引起的。该实验涉及从15克到15千克变化的各种铸件尺寸,并且在热室压铸机和冷室压铸机上进行。在一个对包括一组端部敞开的箱体的非常长(约2m)的铸件进行的实验中,使铸件沿长边送入一冷室压铸机中。从直浇口开始的两个大的浇道形成半锥形的长浇道。我们的论点在于,如果金属在型腔中处于摇熔状态,则由于粘性发热,应当可以从一端充注铸件,这是。为了证实这一点,将一段预先铸造的浇道置于铸模中,从而有效地阻挡金属进入型腔的那一半。因此,与被阻塞浇道相邻的型腔中的金属必须从未阻塞的一侧进入,产生了大于1米的流动距离。型腔中的流动路径极其复杂并且在方向上有很多改变。然而,在设备设置没有改变的情况下,一侧进给系统产生了其质量相对于用完整浇道产生的铸件而言极其优异的铸件。所提到的显著改变是金属速度的增加。
第三组的辅助实验是采用在一个小型热室压铸机中制造的并设有一个细长浇道和深度为0.15mm的极细浇口的280×25×1mm铸件来进行的。这些实验表明,浇口沿着其大部分长度被严重堵塞,从而导致生产出质量较差的铸件。通过将一个10mm长的塞头焊到浇道中而使沿一方向长220mm的浇道被缩短到有效长度为100mm。由此生产的铸件是完全被填满的,而且金属从型腔经0.15mm的浇口流进浇道的未堵塞部分。这表明合金在整个型腔填充过程中处于一种粘度极小的状态。锌或铝合金的类似铸件则不会显示出这种特性。应当指出的是,压铸机施加在金属上的压力仅为14MPa。
对通过使用细长浇口的最好作法而生产的镁铸件的检验均表明,大部分浇口实际上都未起作用。
在铸件尺寸的一定范围内还进行了第四组的实验,但是全都表明,当浇口和浇道的尺寸减小且金属速度增大时质量会提高。从一些在热室和冷室压铸机上生产的铸件中,对在1×1mm到50×50mm范围内变化的浇道横截面进行检验,在所有情况下都显示出一个中心的环形区域。这种特征不象是受到原始的横截面轮廓的影响。对于这种状况的推测是,它构成了在型腔填充过程中出现金属流动的区域,并被假定为有效的流动横截面。由于该区域的横截面面积小于最初在铸模上形成的浇道槽的横截面面积,因此金属流动达到相当高的速度。利用测得的金属流动速度所进行的计算得出,浇道速度值集中在150m/sec左右,并且浇口速度约为浇道速度的三分之二。在有单向流动的铸件中可发现类似的区域。
第五组实验涉及通过逐渐变小的浇口区段来生产一种长而厚的铸件。原始的浇口长度从120mm减小到8mm,且铸件保持令人满意的质量。铸件的微观检验表明,填充与一种半固态前部填充相一致,并且在充注过程中固体百分比在整个部件上保持恒定。气孔率被降低到最小程度。
附图说明
为了更易于理解本发明,现在参看附图进行说明,其中:
图1是表示根据本发明的用于制造镁合金门把手的压力铸造系统的一部分的剖视图;
图2是从图1的右侧看时该系统的视图;
图3与图1相对应,但是表示了一种现有技术的结构;
图4是带有附着的浇道/浇口金属的铸造门把手的示意图;
图5是一种实验性的金属流动系统的示意图;
图6和图7示出了适用于本发明的其它结构;
图8A示意性地示出了如传统上所理解的那样在锌或铝合金的铸造过程中型腔的灌注;
图8B示意性地示出了在利用本发明铸造镁合金的过程中型腔的灌注;
图9A至9C示出了典型浇道的横截面形状,对于每种形状示意性地示出了其有效流动通道的横截面;
图10是根据本发明的用镁合金铸造的盘形物的平面图;
图11是沿图10中的线XI-XI截取的图10所示盘形物以及一模具的剖视图;
图12至14示出了相应的实验性金属流动系统;
图15是供在本发明中使用的适于热室压铸机的压铸模的剖视图;以及
图16与图15类似,但是示出了能够采用冷室压铸机利用图15所示铸模制成的一种改进的、更大的铸件。
具体实施方式
在图1和图2所示的系统10中,示出了一个限定了多个沿径向分布的型腔14(仅示出了其中一个)的铸模12,在每一个型腔中能够铸造出一个略具图4所示形式的相应的门把手。铸模12具有一固定部件16和一活动部件17并以其闭合状态示出,但其部件16、17能够沿分型面P分离。一个插入压模部件17中的塞头20具有一个可滑动地安装在其中的顶杆18;顶杆18和至少一个另外的顶杆(未示出)可以延伸,以便在每个工作周期的最后将铸件推出。
压模部件16包括一个与塞头20相对的套筒22,套筒22的孔22a与一衬套24相配合。当套筒22象塞头20一样是由诸如用于铸模12的部件16、17的适当钢材制成的时候,衬套24最好由导热性比较低的材料制成,例如部分稳定的氧化锆或其它合适的陶瓷材料。
塞头20和套筒22的相邻端部具有呈互补的截头圆锥体的形状。它们的端部是这样的,即,在铸模12闭合的情况下,塞头20和套筒22实现了在接合的相对端面之间的密封。然而,塞头20的端面为每个型腔14限定了一个相应的沟槽21,而且沟槽21与套筒22的端部相配合,从而为该型腔14确定一个浇道26。浇道26经由一浇口28与型腔14连通。
衬套24在套筒22的孔22a内同轴地限定了一个横截面明显更小的孔24a。套筒22的外端还限定了孔22a的一个向外扩张的扩大部分,以便能使其与一喷嘴30接合。可以理解,喷嘴30形成热室压铸系统的一个鹅颈管/冲头结构(未示出)的延长部分,借助于该结构,能够使熔融的镁通过孔24a经由浇道26和浇口28注入型腔14中。
在用图1和图2所示的结构完成一个铸造周期时,注入的镁向后凝固到衬套24的孔24a的内端。因此,在所述周期中释放铸造压力时,熔融金属从孔24a中经过喷嘴30而排出。
对于图1和图2所示的结构,每个浇道26的长度能够是最短的。每个浇道还可以具有一个与经过每个浇道26的有效金属液流的横截面一样小的设计横截面。每个浇道26的内端部分由铸模12的部件16、17确定。在该部分的整个长度范围内,浇道26的深度逐渐减小,而宽度逐渐增加,从而使浇口28具有细长的形状并且其横截面大于在塞头20与套筒22之间限定的浇道26的那部分长度的横截面。
在使用图1和图2所示的结构时,由于浇道/浇口金属的凝固而排出的热能经由塞头20和套筒22被传给铸模12的部件16、17。浇道26的较短的长度和较小的横截面使得为了实现凝固而进行的冷却剂的循环可以是不必要的。然而,尽管浇道26的长度较短并且因此衬套24接近型腔14,但通过制成衬套24的陶瓷材料的绝热作用也能够防止孔24a中的金属凝固。图1和图2的整体结构使得在铸造重量约为30克的镁合金把手时,每个浇道26的长度和横截面应使得浇道/浇口金属的量(用于两个同时铸造的把手)能够被减少到大约3克。
图3大体上与图1相似,但是示出了根据现有技术作法的一种结构的细部。在图3中,与图1和图2中的部件对应的部件的参考标号为相同的参考标号加上100。
在图3所示的结构中,塞头120具有一个截头圆锥形的浇口模棒120a,在铸模120的部件116、117关闭的情况下,该浇口模棒120a伸入套筒122的锥形孔122a中。塞头120具有在其内形成的沟槽121,该沟槽121与套筒122一起确定了浇道126。塞头120还具有一个在其内形成的用于诸如水的冷却剂的循环的通路40,而套筒具有一个在其周围形成的周向沟槽42,并且用衬套44覆盖住沟槽42以确定出另一个用于冷却剂循环的通路46。
可以理解,使用一个与图1中的喷嘴30类似的喷嘴(未示出)能够使熔融的镁合金沿着浇道126经过孔122a而注入,并经由浇口128而使合金流入型腔114中。在完成灌注时,使冷却剂通过通路40、46循环,以使浇道/浇口金属凝固,直到位于接纳模棒120a的锥形部分与用于接纳压力铸造系统的喷嘴的扩口外端之间的孔124a的最小横截面处。
对于图3所示的现有技术结构,浇道126不仅更长,而且横截面更大。正如所指出的那样,这是为了避免热容量低的镁合金有过早凝固的可察觉到的危险。在用该结构铸造形状和重量与图1和图2中所涉及到的把手相同的门把手的情况下,浇道/浇口金属的重量约为30克。也就是说,采用图3所示结构时需要回收的金属量是采用图1和图2所示结构时的10倍。
图4示意性地示出了一种从其型腔脱出的并且在其上仍附着有其浇道/浇口金属62的镁合金门把手铸件60。浇道/浇口金属62为两个铸件60所共有,但是只示出了两个铸件中的一个,而没有示出用于另一个铸件的浇道金属的整个长度。
最初形成的金属流动系统的浇道具有一个面积为50mm2并且外形轮廓与图9C中所示及在下文中将进行说明的形状相对应的设计横截面。从图9C中可明显地看出,浇道的设计横截面是普通的梯形,这种横截面存在于浇道的整个长度上。
第六个实验旨在说明当进行铸造时在镁合金将要通过的距离上的粘性流的作用。为此,设置一个如图5所示的金属流动系统S,其包括一个流道C,该流道C提供了一个端部是一标准的拉杆模槽B的金属流动通道。流道C具有4×4mm的公称横截面和1230mm的长度。
用图5所示的系统S在一个250吨的冷室压铸机上进行铸造实验。实验是在压铸机的正常工作状况下进行的,这时的模具温度仅为120℃左右。从图5中可以理解,流道C的路径具有曲折的特性,从而产生了较高的流动阻力。尽管如此,也完成了沿着流道C的整个1230mm长度的流动,使拉杆槽模B的充注能够开始进行。1230mm的流动长度并不是一个限制。然而,它与根据传统作法设计的并且导致浇道横截面远远大于4×4mm的已知的约700mm的最大流动长度大不相同。
用图4所示的门把手铸件60进行第七组实验,以确定能够制造出合格铸件的浇道和浇口的最小尺寸。实验装置包括:
·80吨Frech热室压铸机,其中一熔化炉经由一虹吸管与保温炉连接。这可产生稳定的金属温度。
·使冲头具有位移、速度和压力的DieMac压射控制系统。
·位于铸模的固定半模中的两个热电偶,这两个热电偶都距模槽表面7mm,并且分别从浇口伸入型腔10mm和80mm。
·用于显示温度随时间的变化的曲线记录器。
·用于温度的表面测量的接触热电偶。
·红外数字温度传感器。
·用于改动铸模和制备型芯的全部装备好的工具间。
下列第七组实验都是在浇口速度约为100m/s的情况下进行的:
1)在铸件60的端部中设置一2×1mm的浇口可生产出质量比较好但并不适于销售的最终铸件。浇口和浇道段具有与铸件大致相同的重量(成品率为50%)。
2)在铸件的端部中设置一7×2mm的浇口可得到高质量的并且适于销售的铸件。在一区域内可以观察到粘模,这可以通过在该区域内增加一个具有降低铸模温度的效果的冷却中心注管而克服。剖开浇道可看到一个圆柱形的流动型式(在此参看图9C进行说明),其具有约为150m/s的实际浇道速度。如果接着将浇道的有效直径减小到大约3mm(这是圆柱形剖面的可观察到的直径),那么插入一个直径为3mm的实际浇料口应该不会影响铸件的质量。因此,截取浇道的一部分以形成一个切块64,并钻出一个贯穿该切块的直径为3mm的孔64a,以便产生一个3mm直径的流动通道。将切块64邻近浇口地插入浇道中,从而使其孔64a形成浇道的一段,浇道沿着该部分具有减小的横截面,其中金属的有效流道具有不超过7.1mm2的横截面面积。在本实验中还通过减少进入型腔中的金属量而产生了若干快速压射。由于金属不足而进行的这种快速压射看起来构成一个可能由于金属冲击而产生的表皮部分。由于浇口速度高达100m/s,这可能是由液态或半固态的流动而引起的。
3)所使用的常规浇道具有一带有一直径为3mm的孔64a并且被插入浇道中以便装入一个7×2mm的浇口的部分64。通过作截面而得出,该铸件的气孔率较低,质量相对较高。在距浇口最远的区域内的一些表面标记表明,流动受到的干扰可能已达到相对较小的程度。这是用常规生产在每一个铸件之间进行6次压射而进行的以维持铸模的温度。可以断定,直径为3mm的孔的尖锐的出口和进口是造成这种缺陷的原因。将金属推压过浇道和浇口所需的压力比常规生产中所需的压力高约20%。
4)在进一步的实验中,将一个长度为A并具有一个切入一侧中的3×3mm流道的较长的浇道件插进一个7×2mm的浇口中。浇道件具有以标号66示出的横截面,流道用标号66a指出。浇道件的入口段和出口段被减压,以便产生较小的流动阻力。铸件质量极好并且具有适于销售的质量。将金属推过浇道并推入型腔所需的压力比通常情况增加了30%左右。将采用浇道插件生产的铸件的一个浇道剖开,其显示出金属沿着其流道的侧壁以最小的凝固率流经该部分。流经浇道的速度经计算为150m/s,而浇口内的速度为100m/s。
5)在另一个实验中,将一个长度为B且带有一个3×3mm流道的完整浇道和直浇口用于给一7×2mm的浇口供料,其流动的总长度为120mm,横截面为3×3mm。由于减少了在直浇口区域内的金属体积,所以就省掉了用于冷却直浇口模棒的水。铸件具有优异的质量。这种铸件的质量被认为优于任何其它先前制造的铸件。在本组的实验3中所提到的表面缺陷在这种情况下不存在。填充型腔所需的压力比通常高30%。供料系统是铸件重量的6%(成品率为94%)。
显然,进入浇道的熔融金属在浇道表面上迅速凝固,从而形成一流道。如果在该中心区域中的金属是半固态的,则将在固体百分比大于约50%时粘度迅速增大。如果保持高的速度,则会出现粘性发热,抵消了热量向模壁的进一步损失。因此,金属能长距离地流动。在这个操作的整个过程中所观察到的每一个浇道中,在不改变设备设置的情况下,剩下的等同浇道使金属速度约为150m/s。通过将一段浇道插入铸模中,将浇道内的速度从起点设定在150m/s。铸件应当具有至少与在“常规”条件下生产的铸件相等的质量。所观察到的提高了的质量可能是由于迅速达到150m/s的浇道速度和100m/s的浇口速度的平衡状态而造成的。可以利用在到达型腔之前的这种速度的降低,从而在从浇道经过浇口并进入型腔的过程中降低速度。
以前最好的浇道结构是这样的,即,沿着流动路径具有连续增大的速度,从而在碎裂的金属前端不会发生空气的夹带。在大部分浇道中,浇道速度不超过浇口速度的50%。然而,在此详述的操作表明,可以采用高的浇道速度而相应地提高铸件质量。
由图1和图2的原理大体上可以理解图6和图7中的每一个所表示的另外的相应结构,与图1和图2中的部件相对应的部件的参考标号在图6中是相同的参考标号加上200,在图7中是相同的参考标号加上300。
图5所示的结构与图1和图2所示结构的不同之处在于陶瓷衬套224的孔224a的直径不同,以便于使排出的熔融金属与凝固的浇道/浇口金属完全分离出。因此,孔224a从其外端开始在其大部分长度上具有一大的直径,相应的大体积的熔融金属在其内能够保持液态。孔224a然后在一段较短的长度上减小到一最小直径,然后其增大到一中间直径,直到其内端。在由于浇道/浇口金属的凝固而排出的热能使一些凝固金属进入孔224a内的情况下,图6所示的结构有效地限制了这种进入的程度。也就是说,由于在孔224a的大的外端部分中的金属体积的热能含量,在超出短的直径最小的部分之外的范围外,至少在铸造周期中的短时间内,凝固不能继续进行。
图7所示的结构实现了与图6所示结构类似的益处,而且凝固的和仍然是熔融状态的金属的分离出现在陶瓷衬套324的孔324a的最小直径处。然而,由于整体简化的形式,这是优选的。如所示出的那样,塞头320、套筒322和衬套324具有在铸模312关闭的情况下靠在分型面P上的平行的端面。与图3相比较,能够相当大地节省高达约95%的再熔金属。
图8A和8B中的每一个都示意性地示出了型腔灌注的模式,在图8A的情况下使用的是锌或铝合金,在图8B的情况下使用的是镁合金并采用本发明。这些示出的系统描述了分别具有部件72a、74a和72b、74b的相应铸模70a和70b,这些部件确定了一个型腔76a和76b并且可沿分型面P分离。在所有情况下,能够使熔融合金经过一个包括一浇道78a、78b和一内浇口80a、80b的金属流动系统而注入相应的型腔76a和76b中。
在图8A所示的情况下,浇道78a相对于型腔76a的体积具有较大的横截面面积,熔融合金从浇道78a经过一横截面较小的浇口80a注入。用阴影区表示的合金的流动是按照铸造锌和铝合金铸件时被认可的传统充注模式。也就是说,合金的液流82经过型腔76a被注入到远离浇口80a的型腔区域,然后合金的周边流动84回填型腔。尽管有这种复杂的周边充填和回填,也能用锌和铝合金生产出优质的铸件。然而,如上面所指出的那样,这种复杂的充填产生了低于最佳质量的镁合金铸件。
在图8B所示的情况下,浇道78b相对于型腔76b的体积具有较小的横截面面积。熔融的镁合金从浇道78b经过一个横截面较大的浇口80b被注入。浇口80b的横截面除了大于浇道78b的横截面外,对于一给定的型腔体积而言,其还可以大于图8A中的浇道口80a的横截面。也用阴影区表示的镁合金的流动是处于高粘性的或半固态状态下的流动。在这种状态下,该流动形成了一个向离开浇口80b的方向体积增大的合金体86,以形成一个离开浇口80b并移向型腔76b的偏远区域的半固态前端88。
在于本文中详述的本发明的实验中,涉及到一系列的铸件形式和尺寸。如所指出的那样,实验既采用热室压铸机也采用冷室压铸机。在所有情况下,型腔的充填都表现出基本上如参看图8B所述的那样进行。然而,至少在一些铸件中,最初的少量镁合金可认为是以更多的表现为液态而不是以半固态进入型腔的。所述的最初的量在邻近微观结构略不同于铸件的其余部分(但具有高的质量)的浇口的表皮部分很明显。
参看图8B描述的流动是在下列情况下实现的,即,浇道中的合金流动速度大约为140至165m/s,最好大约为150m/s,并且经过浇口的合金流动速度比浇道流动速度小25%至50%,如为其三分之二左右。如所指出的那样,这是在例如如图9A至9C中所示的贯穿浇道的圆柱形芯部区域中实现的。这些图中的每一个都示出了相应浇道90a、90b和90c的横截面。在完成铸造操作并切开浇道以提供这种横截面时,浇道中合金的凝固显示出了相应的这种圆柱形芯部区域92a、92b和92c。这些区域为每个浇道提供一个有效的流动通道,在铸造操作中,基本上在整个型腔填充的过程中,合金流被限制到这些通道中。这种限制在短期的初始流动后产生,在此期间,用阴影所表示的至少部分凝固的合金94a、94b和94c在限定了浇道的横截面轮廓的表面上积聚。
流动区域92a、92b和92c的圆柱形形状被加工成轮廓分明的圆形横截面,而与在其内形成流道的浇道的轮廓无关。图9A至9C示出了在其内已获得具有圆形横截面的区域92a、92b和92c的典型浇道轮廓。由这些轮廓可明显地看出,浇道的设计轮廓的横截面面积可以在对区域92a、92b和92c的横截面面积没有明显影响但减少了最终的浇道/浇口金属量的情况下减小。通过减小浇道的设计长度,可以如在此详述的那样有益地进一步减少金属量。以下的详细描述说明了这种减少可实现的程度。
在一冷室压铸机上制造呈450mm高、400mm宽的开口框架结构形式的、壁厚从2到20mm变化并具有非常深的截面的1.6千克重镁合金铸件。采用传统形式的浇道/芯饼(biscuit),浇道/浇口金属的量是1.1千克,从而使铸件具有以在铸造操作中所消耗的金属的百分比来表示的60%的成品率。也就是说,所消耗的金属的40%左右需要回收。采用根据本发明的浇道/芯饼(biscuit),浇道/浇口金属的量是0.36千克,得到82%的成品率,并且需要回收的合金量减少了约67%。
图4所示形式的门把手的铸造是在热室压铸机中通过两次压印铸造而制成的。每个门把手重28克,使每个铸造周期中的产品重量为56克。当用传统的金属流动系统进行生产时,每个周期产生30克的浇道/浇口金属,成品率为65%。采用例如如图7所示的本发明的金属流动系统时,浇道/浇口金属的量被减少到1.5克,得到97%的成品率,并且相对于传统的结构而言,回收的合金减少了95%。
进行第八组实验,以确定是否可以象在常规作法中那样将金属流引入型腔中,并确定若干其它的金属流动系统的效果。在这组实验中,使用了一种“肥皂盒”形状的型腔。型腔的形式从如图10所示的铸造盘形物D的平面图和如图11所示的沿图10中的线XI-XI截取的穿过盘形物D和一个阳模具T的剖视图中可明显看出。盘形物D的长度约为140mm,宽度约为100mm,深度约为26mm,壁厚约为2mm。它具有水平的周边凸缘,其侧壁以大约45°角向凸缘和一扁平底部倾斜。
用于制造盘形物D的传统方法是使用一包括一个与锥形的切向浇道连通的主浇道的金属流动系统,其中切向浇道按相反的方向沿着型腔的一个公共侧边延伸,并且沿着其长度经过一细长的浇口进入型腔。在第一个实验中,由图12中所示的流动系统410示出了目前是最好的作法的一种改进形式。如图所示,系统410具有一个与两个反向地延伸的切向浇道414连通的主浇道412,其中的切向浇道414沿着用于制造图10所示盘形物D的型腔的一条侧边416设置。每个浇道414与两个横穿过型腔的楔形或扇形浇口418连通。每个浇口418的横截面从在其浇道处的大约6×1mm变化到在型腔边缘416处的大约10×0.5mm。在代表目前最好的作法时,每个浇道414具有一个沿着金属流动方向从约10×10mm逐渐减小到约8×10mm的常见横截面。采用这种浇道414和浇口418,极难制造质量合格的盘形物D。然而,如上面所指出的那样,将系统410进行了改造。
所谓改造就是将浇道414的公称横截面减小到3×3mm。这种改造就浇道的横截面而论部分地与本发明一致。然而,由于浇道横截面大于每个浇口418的横截面,所以其不与本发明一致。尽管有改进,图12所示的系统410仍不会制造出令人满意的铸件。
在第八组的第二种结构中,使用了如图13所示的系统420。图13所示的系统420与图12所示系统410的不同之处在于只设置了一个单入口式錾形浇口428。如图所示,将浇口428设置成相对于其浇道424成大约45°角并邻近浇道424的最末端和型腔边缘426,但是向着型腔的邻近端边缘。浇口428具有1.5×4mm的公称横截面,因此它也小于其浇道428(以及其它的盲浇道428)的为3×3mm的公称横截面。
如果系统410的浇口424象在常规作法中那样是用以提供镁合金的定向流动的,则系统410将是非常不能令人满意的。也就是说,从浇口428开始的金属流动将沿着型腔的邻近端到远侧、沿着所述远侧到另一端、沿着所述另一端到具有边缘426的近侧、并沿着所述近侧朝向浇口428地进行。然而,在型腔的中心区域将会出现不良的填充,结果形成不令人满意的铸件。但是我们发现,系统420制造出了比图12所示系统410更好的盘形物D的铸件,尽管该铸件并不具有合格的质量。
在第八组的第三种结构中,使用了在图14中所示的系统420a。系统420a与图13所示的系统420的不同之处仅仅在于錾形浇口428a与其浇道424a成90°,因而与型腔的邻近端边缘平行。如在系统420中一样,浇口428a具有1.5×4mm的公称横截面,因此它小于其浇道428a(以及另一个盲浇道428a)的为3×3mm的公称横截面。图14中的系统420a生产出了显然具有合格质量的优良铸件。
在第八组实验的每一个中获得的流动型式的事实表明,型腔中的镁合金流动不是定向的。也就是说,型腔填充的型式与参看图8A所描述的非常不同,但如果可能的话,该流动与参看图8B所描述的流动一样。在图12所示的实验的情况下,由于没有一个适当的受控制的膨胀区域,因此不能获得令人满意的流动。在图13所示的实验的情况下,甚至对图14所示的实验来说更清楚地是,存在这种区域。然而,在所有情况下,该区域被限定在型腔中,而不是由图13的浇口428或图14的浇口428a限定,而且该区域的三面由型腔的顶部和底部表面以及型腔的邻近端边缘表面限界。同时,在图13的情况下,型腔中膨胀区域的效应可被认为已经降低,从而降低了铸件质量,这是由朝向型腔邻近端的流动所引起的紊流带来的结果。
在图13和14的系统中,浇口428和浇口428a实际上都不是本发明所需的浇口,因为它没有提供一个受控制的膨胀区域。事实上,它分别相对于流道428或流道424a限制了流动,并且所获得的这种区域位于浇口428和浇口428a中的每一个之外。因此,根据本发明,将浇口428和428a分别当作浇道424和浇道424a的一个终端部分,直接连通一个受控制的膨胀区域并且实际上不存在浇口,这样更为合适。
再参看图11,其中示出了第九个实验的基础,该实验与第八个实验一样,目的是为了用镁合金制造盘形物D。图11示出了根据本发明的金属流动系统430。在系统430中,示出了镁合金流动通道的最终部分,这部分包括一个直径为3mm且横截面为圆形的浇道434,该浇道通过工具T经由一个浇口部分438而与型腔连通。浇438的直径从浇道434起沿流动方向增大,并且在型腔处的其出口端具有5mm的直径。
如同第八组实验一样,具有图11所示结构的盘形物D是在冷室压铸机中铸造的。系统430与现有的金属压铸技术根本不同,并且不能用于目前最好的作法。尽管这样,系统430依然在连续的铸造实验周期中制造出了高质量的镁合金盘形物D,显示出其在以工业规模高速重复铸造方面的巨大潜力。
如同第九个实验一样,第十个实验旨在由通过一细小浇口的直接供料来制造镁合金铸件。在这种情况下,如图15所示,在一台80吨的Frech热室压铸机上制造一个具有宽阔平面区域440a和一个带有横向肋440c以及一个凸台440d的复杂箱形区域440b的大铸件440。铸件440的凸出面积是390cm2,比用于该设备的由Frech推荐的面积大。
图15中的铸件440被设计成用来测试在复杂形状中的流动距离和流动特性的效果。用来限定用于制造铸件440的型腔的模具442是一个三箱铸模,它能够通过单个细浇口448进行直接铸造。然而,模具442也能在一个250吨的Toshiba冷室压铸机上利用三个细浇口448、448a和448b获得铸件440或如图16所示的具有较大形状的铸件450。
如图15中所示的令人满意的铸件被生产出来。然而,不能在压力铸造中如通常可料想的那样控制方向性。与先前的实验一致并且与在注塑中发现的情况相似,实际的流动显出了一些独立的连续前部填充模式。存在有延长的流动长度,这与在实验6中的结果非常一致。直接与压铸相比较,经过凸台440d的复杂形状的流动也表现出了与注塑的相似性。
在第十个实验中,不存在铸模的披缝,尽管所制造的铸件的形状较大且较复杂。该实验结果和其它分析结果指出了被铸造的镁合金没有表现为典型液体的事实。第十个实验的另一个结果是,显然型腔中的压力明显小于对处于其熔融状态即液态下的镁合金的预期压力。甚至在最大的设备注射压力下,尽管名义爆破力(假设为液体)大于该Frech压铸机的所谓锁紧力,该铸件在390cm2的凸出区域处也不会披缝。
特别地,第十个实验使采用本发明获得的又一个实际优点更加突出。不存在披缝表明名义爆破力(即对于一种液体所预计的力)比根据本发明的铸造镁合金的实际力大得多。结果,可以在一给定设备上生产出比预期的铸件大的铸件。
采用本发明获得的铸件的流动距离和质量可以认为相对独立于铸模温度。然而,在热室压铸中可能存在一些在加热和冷却时都必须谨慎对待的铸模区域。在第九和第十实验的直接供料和第八实验的边缘供料浇道中,熔融金属必须在使该部分能被从铸模中移走并且也允许熔融金属流回到鹅颈管中的位置上凝固。与通常的高压压铸一样,必须将冷却介质和加热介质施加到铸模的入口上以获得该效果。所使用的方法将依赖于设备的制造和尺寸以及铸模的复杂性和尺寸。
最后,应当理解,在不脱离本发明的精神或构思的条件下,可以将各种替换、改变和/或增加引入到上述部件的结构和布置中。

Claims (30)

1.一种用于半固态或摇熔状态的镁合金的压力铸造的金属流动系统,采用了一种压铸机,该压铸机具有一个熔融状态合金的供给源和一个限定了一型腔的铸型或压铸模,其特征在于,所述系统包括一个限定了至少一个系统浇道的模具或造型工具装置,熔融的镁合金能够进入该浇道中,以便将合金注入型腔中,并且金属流动系统具有用于控制流动系统内的合金流动速度的形式,从而使流经整个型腔的基本上所有的合金都处于半固态的状态,所述系统包括至少一个受控制的膨胀区域,在所述区域中,合金流能够相对于其注射方向而横向扩展,结果相对于其在浇道中的速度而降低了其流动速度,从而使合金状态从所述熔融状态变为所述半固态。
2.根据权利要求1所述的系统,其特征在于,所述受控制的膨胀区域限定了一个浇口,合金能够经过该浇口直接流入型腔。
3.根据权利要求2所述的系统,其特征在于,浇口和浇道是这样的,即,经过浇口的液流的有效横截面面积大于经过浇道的液流的有效横截面面积,从而使合金通过流经浇道的液流的有效横截面面积的速度大于其经过浇口的速度。
4.根据权利要求3所述的系统,其特征在于,经过浇口的液流的横截面面积比经过浇道的液流的有效横截面面积大到其面积比在约2∶1到4∶1范围内的程度。
5.根据权利要求1所述的系统,其特征在于,借助于靠近合金进入型腔的位置的限定型腔的表面,在型腔内并且由型腔至少部分地确定所述受控制的膨胀区域。
6.根据权利要求5所述的系统,其特征在于,在所述位置处有一个浇口,并且所述浇口在没有限定部分受控制的膨胀区域的情况下提供了浇道的一个出口端。
7.根据权利要求5所述的系统,其特征在于,在所述位置处有一个浇口,并且所述浇口限定了部分受控制的膨胀区域。
8.根据权利要求1至7中的任何一项所述的系统,其特征在于,受控制的膨胀区域的设置可以通过从浇道的有效横截面阶式地增大横截面而实现。
9.根据权利要求1至7中的任何一项所述的系统,其特征在于,受控制的膨胀区域的横截面沿着合金流动的方向逐渐增大。
10.根据权利要求1至7中的任何一项所述的系统,其特征在于,所述系统适用于采用一给定设备进行的压力铸造,采用这种设备,可以使经过浇道的合金的速度在140m/s至165m/s的范围内。
11.根据权利要求10所述的系统,其特征在于,在所述范围内的速度为150m/s。
12.根据权利要求1至7中的任何一项所述的系统,其特征在于,受控制的膨胀区域的横截面沿着合金流动的方向逐渐增大,采用所述系统可以使经过受控制的膨胀区域的合金的流动速度比经过浇道的流动速度小25%至50%。
13.根据权利要求12所述的系统,其特征在于,经过受控制的膨胀区域的速度约为经过浇道的速度的三分之二。
14.根据权利要求1至7中的任何一项所述的系统,其特征在于,浇道具有基本上确定了经过浇道的液流的有效横截面面积的设计横截面面积。
15.根据权利要求1至7中的任何一项所述的系统,其特征在于,所述系统可以通过移动合金的半固态前端而实现型腔的填充。
16.一种用于制造镁合金铸件的方法,其以半固态或摇熔的状态铸造镁合金,其中采用一种压铸机,该压铸机具有熔融状态合金供给源和一限定了一型腔的铸型或压铸模,并采用一种如下所述的金属流动系统,其中所述金属流动系统包括一个限定了至少一个系统浇道的模具或铸型工具装置,熔融的镁合金从该供给源进入所述浇道,合金由此被注入型腔,并且,控制所述系统中的合金流速,从而使流经整个型腔的基本上所有的合金都处于半固态的状态,其中,所述控制包括:使来自浇道的合金流经一个受控制的膨胀区域,由此使合金流动在所述区域中相对于其注射方向而横向扩展,结果相对于其在浇道中的速度而降低其流动速度,从而使合金状态从所述熔融状态改变成所述半固态。
17.根据权利要求16所述的方法,其特征在于,受控制的膨胀区域至少设有一个浇口,金属能够经过该浇口从浇道流入型腔。
18.根据权利要求17所述的方法,其特征在于,将浇口和浇道制成使得经过浇口的液流的有效横截面面积大于经过浇道的液流的有效横截面面积,因此使熔融金属通过流经浇道的液流的有效横截面面积的速度大于其经过浇口的速度。
19.根据权利要求18所述的方法,其特征在于,经过浇口的液流的横截面面积比经过浇道的液流的有效横截面面积大到其面积比约在2∶1到4∶1范围内的程度。
20.根据权利要求16所述的方法,其特征在于,借助于靠近金属进入型腔的位置的限定型腔的表面,在型腔内并且由型腔至少部分地限定了受控制的膨胀区域。
21.根据权利要求20所述的方法,其特征在于,在所述位置处设有一个浇口,并且所述浇口在没有限定部分受控制的膨胀区域的情况下提供了浇道的一个出口端。
22.根据权利要求20所述的方法,其特征在于,在所述位置处设有一个浇口,并且所述浇口限定了部分受控制的膨胀区域。
23.根据权利要求16至22中的任何一项所述的方法,其特征在于,受控制的膨胀区域的设置可以通过从浇道的有效横截面阶式地增大横截面而实现,由此使金属在所述区域中的流动速度阶式地减小。
24.根据权利要求16至22中的任何一项所述的方法,其特征在于,受控制的膨胀区域的横截面沿着合金流动的方向逐渐增大,由此使金属在所述区域中的流动速度逐渐减小。
25.根据权利要求16至22中的任何一项所述的方法,其特征在于,操作所述系统能够使经过浇道的合金的速度在140m/s至165m/s的范围内。
26.根据权利要求25所述的方法,其特征在于,在所述范围内的速度约为150m/s。
27.根据从属于权利要求16至22中的任何一项所述的方法,其特征在于,操作所述系统能够使经过浇道的合金的速度在140m/s至165m/s的范围内,可操作所述系统以使经过受控制的膨胀区域的合金的流动速度比经过浇道的流动速度小25%至50%。
28.根据权利要求27所述的方法,其特征在于,经过所述受控制的膨胀区域的速度约为经过浇道的速度的三分之二。
29.根据权利要求16至22中的任何一项所述的方法,其特征在于,浇道具有基本上限定了经过浇道的流动的有效横截面面积的设计横截面面积。
30.根据权利要求16至22中的任何一项所述的方法,其特征在于,通过移动金属的半固态前端而实现型腔的浇注。
CN98811618A 1997-11-28 1998-11-30 用于镁合金的压力铸造的系统和方法 Expired - Fee Related CN1121918C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AUPP0604A AUPP060497A0 (en) 1997-11-28 1997-11-28 Magnesium pressure die casting
AUPP0604 1997-11-28

Publications (2)

Publication Number Publication Date
CN1280526A CN1280526A (zh) 2001-01-17
CN1121918C true CN1121918C (zh) 2003-09-24

Family

ID=3804888

Family Applications (1)

Application Number Title Priority Date Filing Date
CN98811618A Expired - Fee Related CN1121918C (zh) 1997-11-28 1998-11-30 用于镁合金的压力铸造的系统和方法

Country Status (18)

Country Link
US (2) US6634412B1 (zh)
EP (1) EP1137503B1 (zh)
JP (1) JP2003524525A (zh)
KR (1) KR100685233B1 (zh)
CN (1) CN1121918C (zh)
AR (1) AR017775A1 (zh)
AT (1) ATE310597T1 (zh)
AU (1) AUPP060497A0 (zh)
BR (1) BR9814706A (zh)
CA (1) CA2310408C (zh)
DE (1) DE69832538T2 (zh)
ES (1) ES2253836T3 (zh)
HK (1) HK1034218A1 (zh)
NO (1) NO20002706L (zh)
NZ (1) NZ504608A (zh)
RU (1) RU2212980C2 (zh)
WO (1) WO1999028065A1 (zh)
ZA (1) ZA9810933B (zh)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPQ780400A0 (en) * 2000-05-29 2000-06-22 Commonwealth Scientific And Industrial Research Organisation Die casting sprue system
AU2001281596C1 (en) * 2000-08-25 2006-10-05 Commonwealth Scientific And Industrial Research Organisation Aluminium pressure casting
AUPQ967800A0 (en) 2000-08-25 2000-09-21 Commonwealth Scientific And Industrial Research Organisation Aluminium pressure casting
AUPR721501A0 (en) * 2001-08-23 2001-09-13 Commonwealth Scientific And Industrial Research Organisation Process and apparatus for producing shaped metal parts
CN1309510C (zh) * 2002-02-15 2007-04-11 联邦科学和工业研究组织 压铸流动系统及其方法
JP3991868B2 (ja) * 2003-01-09 2007-10-17 株式会社デンソー 金型成形方法
AU2003904394A0 (en) * 2003-08-15 2003-08-28 Commonwealth Scientific And Industrial Research Organisation Flow system for pressure casting
US20070131375A1 (en) 2005-12-09 2007-06-14 Husky Injection Molding Systems Ltd. Thixo-molding shot located downstream of blockage
US20080041552A1 (en) * 2006-08-18 2008-02-21 Dubay Richard L Single-piece cooling blocks for casting and molding
US7828042B2 (en) * 2006-11-16 2010-11-09 Ford Global Technologies, Llc Hot runner magnesium casting system and apparatus
US20080142184A1 (en) * 2006-12-13 2008-06-19 Ford Global Technologies, Llc Dual plunger gooseneck for magnesium die casting
US7810549B2 (en) * 2007-01-05 2010-10-12 Ford Global Technologies, Llc Adaptive and universal hot runner manifold for die casting
US7631851B2 (en) * 2007-03-02 2009-12-15 Dubay Richard L High volume vacuum/vent block for molding and casting systems
WO2009076753A1 (en) * 2007-12-14 2009-06-25 G-Mag International Inc. Method and system for joining metal components by overmolding
DE102008052062A1 (de) * 2008-10-17 2010-04-22 Dr.Ing.H.C.F.Porsche Aktiengesellschaft Verfahren zur Herstellung eines rahmenartigen Strukturbauteils
US8424207B2 (en) 2008-10-27 2013-04-23 Honda Motor Co., Ltd. Method of making a composite component and apparatus
DE102008063539B4 (de) * 2008-12-18 2010-11-25 Robotec Engineering Gmbh Gießwerkzeug und Gießverfahren
CN101758202A (zh) * 2009-09-03 2010-06-30 贾军锋 一种金属模具用热喷嘴
US8814557B2 (en) * 2010-03-24 2014-08-26 United Technologies Corporation Die inserts for die casting
DE102010053125A1 (de) * 2010-12-01 2012-06-06 Volkswagen Ag Verfahren zum Herstellen einer Serie von Gussbauteilen und Vorrichtung zum Herstellen eines Gussbauteils
DE102012107363A1 (de) * 2011-09-16 2013-03-21 Ksm Castings Group Gmbh Dreiplattendruckgusswerkzeug mit Angusssystem sowie Angusssystem
US8424587B1 (en) 2012-06-05 2013-04-23 Richard L. Dubay Vacuum/vent block having non-uniform purge passage
CN103341612B (zh) * 2013-07-16 2015-01-07 北京科技大学 一种摇摆搅拌装置制备半固态浆料和流变成形设备
CN106270446B (zh) * 2015-05-25 2018-04-10 天津世创机械制造有限公司 一种可调节模料流速的压铸模具
WO2020047156A1 (en) * 2018-08-29 2020-03-05 Magnesium Products of America Inc. Joining method for fastening tolerance adjusters to magnesium-based castings
JP7234975B2 (ja) * 2020-02-27 2023-03-08 トヨタ自動車株式会社 ダイカスト鋳造方法及びダイカスト鋳造装置
CN112222374B (zh) * 2020-10-25 2022-02-22 沈阳工业大学 一种半固态流变压铸卡车后处理支架的浇注系统
CN117564248B (zh) * 2024-01-16 2024-04-05 成都卫达机械制造有限公司 一种多通球管一体压铸成型流道的充型方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS602951B2 (ja) * 1982-01-21 1985-01-24 宇部興産株式会社 ダイカストマシンの射出方法
US4473103A (en) 1982-01-29 1984-09-25 International Telephone And Telegraph Corporation Continuous production of metal alloy composites
US4565241A (en) 1982-06-01 1986-01-21 International Telephone And Telegraph Corporation Process for preparing a slurry structured metal composition
JPS5997749A (ja) * 1982-11-24 1984-06-05 Toyota Central Res & Dev Lab Inc ダイカスト鋳物の鋳造方法
JPS60238075A (ja) * 1984-05-11 1985-11-26 Toyota Central Res & Dev Lab Inc ダイキヤスト用金型
JPS61255753A (ja) * 1985-05-10 1986-11-13 Ube Ind Ltd ダイカスト用金型
US4687042A (en) 1986-07-23 1987-08-18 Alumax, Inc. Method of producing shaped metal parts
US4986338A (en) * 1988-05-16 1991-01-22 Ryobi Ltd. Gas venting arrangement in high speed injection molding apparatus and method for venting gas in the high speed injection molding apparatus
JPH02104467A (ja) * 1988-10-14 1990-04-17 Hitachi Ltd 成形品不要部の切断方法、及び、同切断部構造
US5040589A (en) * 1989-02-10 1991-08-20 The Dow Chemical Company Method and apparatus for the injection molding of metal alloys
US5076344A (en) * 1989-03-07 1991-12-31 Aluminum Company Of America Die-casting process and equipment
US5263531A (en) * 1991-09-23 1993-11-23 Gibbs Die Casting Aluminum Corporation Casting process using low melting point core material
US5211216A (en) * 1991-09-23 1993-05-18 Gibbs Die Casting Aluminum Corporation Casting process
CA2105968C (en) * 1992-01-13 2001-10-23 Honda Giken Kogyo Kabushiki Kaisha (Also Trading As Honda Motor Co., Ltd .) Aluminum-based alloy cast product and process for producing the same
JP2676293B2 (ja) * 1992-03-13 1997-11-12 リョービ株式会社 層流射出成形機及び層流射出成形方法
DE4312175A1 (de) * 1993-04-14 1994-10-20 Hotset Heizpatronen Zubehoer Vorrichtung zur Führung des Materialstroms bei Druckgießmaschinen
JP3013226B2 (ja) * 1994-04-28 2000-02-28 株式会社日本製鋼所 金属成形品の製造方法
US5697422A (en) * 1994-05-05 1997-12-16 Aluminum Company Of America Apparatus and method for cold chamber die-casting of metal parts with reduced porosity
NO950843L (no) * 1994-09-09 1996-03-11 Ube Industries Fremgangsmåte for behandling av metall i halvfast tilstand og fremgangsmåte for stöping av metallbarrer til bruk i denne fremgangsmåte
AUPN483395A0 (en) * 1995-08-16 1995-09-07 Commonwealth Scientific And Industrial Research Organisation Die casting devices
DE19606806C2 (de) * 1996-02-23 1998-01-22 Kurt Dipl Ing Detering Vorrichtung zum Thixoforming
JPH09253821A (ja) * 1996-03-22 1997-09-30 Honda Motor Co Ltd ダイカスト鋳造方法
JP3415987B2 (ja) * 1996-04-04 2003-06-09 マツダ株式会社 耐熱マグネシウム合金成形部材の成形方法
US5787959A (en) * 1996-12-02 1998-08-04 General Motors Corporation Gas-assisted molding of thixotropic semi-solid metal alloy
JP3370278B2 (ja) 1998-07-03 2003-01-27 マツダ株式会社 金属の半溶融射出成形方法及びその装置

Also Published As

Publication number Publication date
CA2310408C (en) 2007-09-11
US7121319B2 (en) 2006-10-17
ZA9810933B (en) 1999-05-31
CN1280526A (zh) 2001-01-17
AR017775A1 (es) 2001-10-24
EP1137503A1 (en) 2001-10-04
BR9814706A (pt) 2000-10-03
EP1137503B1 (en) 2005-11-23
ES2253836T3 (es) 2006-06-01
WO1999028065A1 (en) 1999-06-10
JP2003524525A (ja) 2003-08-19
CA2310408A1 (en) 1999-06-10
EP1137503A4 (en) 2004-05-06
AUPP060497A0 (en) 1998-01-08
NZ504608A (en) 2003-01-31
ATE310597T1 (de) 2005-12-15
KR100685233B1 (ko) 2007-02-22
NO20002706L (no) 2000-07-14
DE69832538D1 (de) 2005-12-29
US20050072548A1 (en) 2005-04-07
NO20002706D0 (no) 2000-05-26
RU2212980C2 (ru) 2003-09-27
HK1034218A1 (en) 2001-10-19
KR20010032525A (ko) 2001-04-25
DE69832538T2 (de) 2006-08-10
US6634412B1 (en) 2003-10-21

Similar Documents

Publication Publication Date Title
CN1121918C (zh) 用于镁合金的压力铸造的系统和方法
KR100944130B1 (ko) 반고체 몰딩 방법
CN105945255B (zh) 薄壁件压铸模具及压铸成型设备
CN110465642B (zh) 一种用于汽车发动机的铸铁气缸套的铸造方法
EP1320434B1 (en) Aluminium pressure casting
CN108543914A (zh) 一种高压轮毂铸造模具及其铸造方法
US6298901B1 (en) Method and apparatus for semi-molten metal injection molding
CN108296468A (zh) 一种调压增压铸造机用低压充型高压凝固的铸造装置与铸造方法
EP0904875B1 (en) Method of injection molding a light alloy
KR20040100916A (ko) 3개의 챔버들을 이용한 수직 주입 기계
CN102784898B (zh) 局部加压机构及利用该机构制造汽车发动机悬置隔垫的方法
CN211331214U (zh) 一种成型质量高的圆弧形薄壁镁合金铸件
CN208437631U (zh) 一种锌合金龙头的重力浇铸装置
CN102896291B (zh) 汽车空调压缩机fs170c前盖及其铸造方法
CN206613994U (zh) 一种趋形加热冷却模具
CN103286265A (zh) 耐低温硬密封止回阀铸件的铸造方法
JP3756021B2 (ja) マグネシウム合金成形装置
CN216966206U (zh) 一种汽车离合器调整环的浇注补缩系统
AU754591C (en) Magnesium pressure casting
CN209393947U (zh) 用于生产汽车涡轮泵壳的浇铸模具
JP2007531630A (ja) 鋳造品の製造方法
JP2001287012A (ja) 射出成形材の成形方法及びその成形装置
AU2001281596C1 (en) Aluminium pressure casting
KR101127324B1 (ko) 중앙 주입구를 구비한 핀 포인트 게이트 다이캐스팅 장치 및 이를 이용한 다이캐스팅 방법
JP2000042713A (ja) 金属成形方法および金属成形品

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20030924

Termination date: 20091230