CN112174089B - 一种用于密闭环境的有机液体供氢系统 - Google Patents

一种用于密闭环境的有机液体供氢系统 Download PDF

Info

Publication number
CN112174089B
CN112174089B CN202010968959.XA CN202010968959A CN112174089B CN 112174089 B CN112174089 B CN 112174089B CN 202010968959 A CN202010968959 A CN 202010968959A CN 112174089 B CN112174089 B CN 112174089B
Authority
CN
China
Prior art keywords
organic liquid
hydrogen
unit
dehydrogenation
hydrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010968959.XA
Other languages
English (en)
Other versions
CN112174089A (zh
Inventor
李海港
吴飞
花仕洋
张�浩
黄润伍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Hydrogen Energy and Fuel Cell Industry Technology Research Institute Co Ltd
Original Assignee
Wuhan Institute of Marine Electric Propulsion China Shipbuilding Industry Corp No 712 Institute CSIC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Institute of Marine Electric Propulsion China Shipbuilding Industry Corp No 712 Institute CSIC filed Critical Wuhan Institute of Marine Electric Propulsion China Shipbuilding Industry Corp No 712 Institute CSIC
Priority to CN202010968959.XA priority Critical patent/CN112174089B/zh
Publication of CN112174089A publication Critical patent/CN112174089A/zh
Application granted granted Critical
Publication of CN112174089B publication Critical patent/CN112174089B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/065Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents from a hydride
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0015Organic compounds; Solutions thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

本发明公开了一种用于密闭环境的有机液体供氢系统,包括储料单元、水解制氢单元、有机液体脱氢单元和产物处理单元,水解制氢单元以金属氢化合物和水为原料,经水解制备氢气与水蒸气的混合气,氧气与混合气进入有机液体脱氢单元发生安全催化燃烧反应,有机液体在一定温度下发生催化脱氢反应,燃烧尾气水蒸气在产物处理单元经冷却后循环使用;本系统采用氢气与水蒸气的混合气作为燃料,水蒸气作为惰性气体能够降低氢氧反应速率,确保系统安全,具有无需外界供热、储氢密度高、安全可靠、无副产物气体排放等优点,适用于密闭环境,如水下航行器、深海装备等。

Description

一种用于密闭环境的有机液体供氢系统
技术领域
本发明属于储氢技术领域,尤其涉及一种密闭环境中有机液体脱氢与燃料电池供氢系统。
背景技术
密闭环境作为一种较为特殊的环境条件,常见于水下航行器、深海装备等,具有空间有限、环境封闭、氧气稀缺等较为显著的技术特性。相对于常见敞开体系,密闭环境对动力与能源装置的能量密度和尾气排放均提出了更高要求。燃料电池是一种以氢气为燃料,以纯氧为氧化剂,氢气和氧气经电化学反应而产生电能的发电装置,是密闭环境中电源的理想方案之一。其中氧源以液氧罐提供,技术已经非常成熟,而氢源仍存在储氢密度低的技术难题。
目前储氢技术中高压气态储存和低温液态储存是主流方式。但高压气态储存的主要缺点是储氢密度较低,储氢量很难大幅度提高。低温液态储存损耗率每天为1%~2%,不适用于间歇使用的场合。此外合金储氢的主要问题是合金密度大,质量储氢密度极低;水解制氢反应剧烈,放大设计存在极大难度。有机液体储氢是目前适用于密闭环境的理想方案之一,有机液体质量储氢密度一般大于6%,在催化剂的作用下,分解成氢气与有机液体载体,经气液分离后氢气对外输送,有机液体载体作为液体回收。
有机液体储氢的应用也存在尚未完全解决的难题,关键问题之一是脱氢温度较高,一般在160℃以上,燃料电池系统内余热无法满足能量需求,需增加供热装置。电加热脱氢显然不适用密闭环境,最佳加热方式为氢氧催化燃烧。主要原因为氢气热值较高,且燃烧产物为水,方便收集。但氢氧催化燃烧反应存在反应速率高(1/1000秒),热流密度大(108W/㎡)等特点,一旦不能及时移走热量,存在爆炸的安全隐患。
为了提高氢氧反应的安全性,一般在氢氧反应中引入惰性气体稀释氢气与氧气的浓度。水蒸气经冷凝后转变成液态水,方便收集,特别适用于密闭环境。而水蒸气具有热值高的特点,获得一定量的水蒸气需要消耗大量的能量,因此该技术的关键是如何获得水蒸气与氢气的混合气。
发明内容
本发明旨在提供一种有机液体脱氢供氢系统,以解决密闭环境中安全可靠供氢难题。
本发明解决其技术问题所采用的技术方案是:一种用于密闭环境的有机液体供氢系统,包括顺序连接的储料单元、水解制氢单元、有机液体脱氢单元和产物处理单元;所述的储料单元包括分别连接水解制氢单元和产物处理单元的水罐、连接水解制氢单元的金属氢化物储罐、连接有机液体脱氢单元的液氧罐和有机液体罐,以及连接产物处理单元的有机液体载体储罐;所述的水罐中盛放参与水解制氢反应的去离子水,水质要求电阻率≥18MΩ;所述的金属氢化物储罐中装有金属氢化物材料;所述的液氧罐采用立式形式,由内胆、保温层和外壳组成;所述的水解制氢单元由内部有蜂窝结构催化板的水解反应器和泵阀组成,内通过水与金属氢化物储罐中的金属氢化物在催化剂的作用发生水解制氢反应,为有机液体脱氢单元提供含水蒸气的燃料氢气,作为催化燃烧的燃料;所述的有机液体脱氢单元由带脱氢腔和燃烧腔的板翅式脱氢反应器以及板翅式换热器和泵阀组成,内通过含水蒸气的氢气与液氧罐中的纯氧反应,对有机液体罐中的有机液体加热,发生有机液体的催化脱氢反应,热源来自氢气氧气的催化燃烧;所述的产物处理单元由板翅式换热器以及冷凝器和立式丝网气液分离器组成,用于将有机液体脱氢单元氢氧反应排放的燃烧烟气冷凝成水加以循环使用。
所述的一种用于密闭环境的有机液体供氢系统,其有机液体为不饱和芳香烃或杂环化合物,包括N-乙基咔唑、甲苯、二苄基甲苯等,根据硼氢化钠、氢化镁、氢化钙等性质特点,决定是否需要配成溶液。
所述的一种用于密闭环境的有机液体供氢系统,其金属氢化物包括硼氢化钠、氢化镁、氢化钙等。
所述的一种用于密闭环境的有机液体供氢系统,其水解制氢单元通过调节水与金属氢化的摩尔比控制氢气与水蒸气的比例。
所述的一种用于密闭环境的有机液体供氢系统,其有机液体脱氢单元内有机液体催化脱氢反应的空速为0.7~2.0h-1;氢气与氧气的催化燃烧是在氢氧反应化学计量比的条件下进行,空速10000~20000h-1,控制燃烧尾气的温度为280~500℃,水蒸气作为惰性气体降低氢氧反应速率,确保反应安全进行。
所述的一种用于密闭环境的有机液体供氢系统,其脱氢催化剂为Pd/Al2O3贵金属催化剂,其中Pd质量含量为1.0~2.0%,粒径1~2mm。
所述的一种用于密闭环境的有机液体供氢系统,其燃烧催化剂为Pt/Al2O3贵金属催化剂,其中Pt质量含量为0.5~1.0%,粒径2~3mm。
所述的一种用于密闭环境的有机液体供氢系统,其水解反应器以316L不锈钢为外壳,蜂窝孔径控制在1mm以下,孔隙率≥80%,通过调节加入水量调控反应温度,从而得到不同比例的氢气与水蒸气的混合气。
所述的一种用于密闭环境的有机液体供氢系统,其换热器采用热导率高的铝合金或铜合金钎焊焊接制成,用于有机液体预热。
所述的一种用于密闭环境的有机液体供氢系统,其水罐、金属氢化物储罐、液氧罐、有机液体罐和有机液体载体储罐均为316L不锈钢材质。
本发明的有益效果是:本发明通过金属氢化物水解得到含有水蒸气的氢气,通过水与金属氢化的比例调节水蒸气含量,氢气、水蒸气和氧气发生氧化反应,在惰性气体水蒸气的稀释作用下,使得氢氧催化燃烧在低温(≤500℃)的条件下安全稳定的进行,水解热与氢氧燃烧热用于加热有机液体脱氢。
本发明中的供氢系统存在无需外界供热、储氢密度高、安全可靠、无副产物气体排放的优点,十分适用于密闭环境。
本发明提供了用于密闭环境的有机液体供氢系统,具有无需外界供热、储氢密度高、安全可靠、无副产物气体排放的优点,适用于密闭环境,如水下航行器、深海装备等。
附图说明
图1为本发明的结构示意图。
各附图标记为:1—储料单元,11—水罐,12—金属氢化物储罐,13—液氧罐,14—有机液体罐,15—有机液体载体储罐,2—水解制氢单元,3—有机液体脱氢单元,4—产物处理单元。
具体实施方式
下面结合附图和实施例对本发明作详细说明,实施例如下:
实施例1
如图1所示,本发明公开了一种用于密闭环境的有机液体供氢系统,包括顺序连接的储料单元1、水解制氢单元2、有机液体脱氢单元3和产物处理单元4。
所述的储料单元1包括分别连接水解制氢单元2和产物处理单元4的水罐11、连接水解制氢单元2的金属氢化物储罐12、连接有机液体脱氢单元3的液氧罐13和有机液体罐14,以及连接产物处理单元4的有机液体载体储罐15;所述的水罐11中盛放参与水解制氢反应的去离子水,水质要求电阻率≥18MΩ;所述的金属氢化物储罐12中装有金属氢化物材料;所述的液氧罐13采用立式形式,由内胆、保温层和外壳组成。
所述的水解制氢单元2由内部有蜂窝结构催化板的水解反应器和泵阀组成,内通过水与金属氢化物储罐12中的金属氢化物在催化剂的作用发生水解制氢反应,为有机液体脱氢单元3提供含水蒸气的燃料氢气,即氢气与水蒸气的混合气,作为催化燃烧的燃料,水解制氢单元2通过调节水与金属氢化的摩尔比控制氢气与水蒸气的比例;水解反应器以316L不锈钢为外壳,蜂窝孔径控制在1mm以下,孔隙率≥80%。通过调节加入水量调控反应温度,从而得到不同比例的氢气与水蒸气的混合气;其中金属氢化物包括硼氢化钠、氢化镁、氢化钙等。
所述的有机液体脱氢单元3由带脱氢腔和燃烧腔的板翅式脱氢反应器分别装填催化剂以及板翅式换热器和泵阀组成,内通过含水蒸气的氢气与液氧罐13中的纯氧反应,对有机液体罐14中的有机液体加热,发生有机液体的催化脱氢反应,热源来自氢气氧气的催化燃烧;有机液体脱氢单元3内有机液体催化脱氢反应的空速为0.7~2.0h-1;氢气与氧气的催化燃烧是在氢氧反应化学计量比的条件下进行,空速10000~20000h-1,控制燃烧尾气的温度为280~500℃,水蒸气作为惰性气体降低氢氧反应速率,确保反应安全进行。其中有机液体为不饱和芳香烃或杂环化合物,包括N-乙基咔唑、甲苯、二苄基甲苯等,根据硼氢化钠、氢化镁、氢化钙等性质特点,决定是否需要配成溶液。其中脱氢催化剂为Pd/Al2O3贵金属催化剂,其中Pd质量含量为1.0~2.0%,粒径1~2mm,燃烧催化剂为Pt/Al2O3贵金属催化剂,其中Pt质量含量为0.5~1.0%,粒径2~3mm。
所述的产物处理单元4由板翅式换热器以及冷凝器和立式丝网气液分离器实现氢气/有机液体的分离组成,用于将有机液体脱氢单元3氢氧反应排放的燃烧烟气水蒸气冷凝成水加以循环使用,所述的换热器采用热导率高的铝合金或铜合金钎焊焊接制成,用于有机液体预热,板翅式换热器具有热效率高、结构紧凑的优点。
本专利的所述的水罐11、金属氢化物储罐12、液氧罐13、有机液体罐14和有机液体载体储罐15均为316L不锈钢材质。
实施例2
启动:水与金属氢化物硼氢化钠按摩尔比为10:1的比例输送至水解制氢单元2,在催化剂的作用下,释放出氢气,反应温度为120℃,氢气与水蒸气摩尔比接近1:1。将氢气与水蒸气的混合气输送至有机液体脱氢单元3,同时输入1/2氢气量的氧气,发生氢氧催化燃烧反应,加热脱氢反应器,当反应器温度高于200℃时,往脱氢反应器内输入全氢化N-乙基咔唑,启动脱氢反应。
运行:氢气、水蒸气和氧气混合气以15000h-1的空速流经催化燃烧腔,有机液体以0.7h-1空速流经脱氢反应腔,通过匹配混合气流量和全氢化N-乙基咔唑流量,控制两者流量比为2.7:1,脱氢腔温度稳定在200℃,全氢化N-乙基咔唑发生脱氢反应生成氢气与N-乙基咔唑。N-乙基咔唑产物将全氢化N-乙基咔唑原料预热至145℃。N-乙基咔唑与氢气混合物进入气液分离器进行气液分离。氢氧燃烧尾气经冷凝器后凝结成液态水。
整个系统对外供氢量为400SL/min匹配40kW级燃料电池进料为689g/min全氢化N-乙基咔唑,71.4g/min氧气,200.9g/min水,42.2g/min硼氢化钠即可实现自热脱氢供氢,系统内储氢材料平均质量储氢密度为4.9%。
实施例3
启动:水与金属氢化物氢化镁按摩尔比为8:1的比例输送至水解制氢单元2,在催化剂的作用下,释放出氢气,反应温度为110℃,氢气与水蒸气摩尔比接近1:3。将氢气与水蒸气的混合气输送至有机液体脱氢单元3,同时输入1/2氢气量的氧气,发生氢氧催化燃烧反应,加热脱氢反应器,当反应器温度高于300℃时,往脱氢反应器内输入甲基环己烷,启动脱氢反应。
运行:氢气、水蒸气和氧气混合气以10000h-1的空速流经催化燃烧腔,甲基环己烷以0.7h-1空速流经脱氢反应腔,通过匹配混合气流量和甲基环己烷流量,控制两者流量比为3.0:1,脱氢腔温度稳定在300℃,甲基环己烷发生脱氢反应生成氢气与甲苯。甲苯将甲基环己烷预热至165℃。甲苯与氢气混合物进入气液分离器进行气液分离。氢氧燃烧尾气经冷凝器后凝结成液态水
整个系统对外供氢量为400SL/min(匹配40kW级燃料电池),进料为620.5g/min甲基环己烷,64.3g/min氧气,289.3g/min水,52.2g/min氢化镁即可实现自热脱氢供氢,系统内储氢材料平均质量储氢密度为5.3%。
上述实施例仅例示性说明本发明的原理及其功效,以及部分运用的实施例,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。

Claims (10)

1.一种用于密闭环境的有机液体供氢系统,其特征在于:包括顺序连接的储料单元(1)、水解制氢单元(2)、有机液体脱氢单元(3)和产物处理单元(4);
所述的储料单元(1)包括分别连接水解制氢单元(2)和产物处理单元(4)的水罐(11)、连接水解制氢单元(2)的金属氢化物储罐(12)、连接有机液体脱氢单元(3)的液氧罐(13)和有机液体罐(14),以及连接产物处理单元(4)的有机液体载体储罐(15);所述的水罐(11)中盛放去离子水;所述的金属氢化物储罐(12)中装有金属氢化物材料;所述的液氧罐(13)由内胆、保温层和外壳组成;
所述的水解制氢单元(2)由内部有蜂窝结构催化板的水解反应器和泵阀组成,通过水与金属氢化物在催化剂的作用发生水解制氢反应,为有机液体脱氢单元(3)提供含水蒸气的燃料氢气,作为催化燃烧的燃料;
所述的有机液体脱氢单元(3)由带脱氢腔和燃烧腔的板翅式脱氢反应器以及板翅式换热器和泵阀组成,通过含水蒸气的氢气与纯氧反应,对有机液体加热,发生有机液体的催化脱氢反应;
所述的产物处理单元(4)由板翅式换热器以及冷凝器和立式丝网气液分离器组成,用于将有机液体脱氢单元(3)排放的燃烧烟气冷凝成水加以循环使用。
2.根据权利要求1所述的一种用于密闭环境的有机液体供氢系统,其特征在于,所述的有机液体为不饱和芳香烃或杂环化合物。
3.根据权利要求1所述的一种用于密闭环境的有机液体供氢系统,其特征在于,所述的金属氢化物为硼氢化钠、氢化镁或氢化钙。
4.根据权利要求1所述的一种用于密闭环境的有机液体供氢系统,其特征在于,所述的水解制氢单元(2)通过调节水与金属氢化的摩尔比控制氢气与水蒸气的比例。
5.根据权利要求1所述的一种用于密闭环境的有机液体供氢系统,其特征在于,所述有机液体脱氢单元(3)内有机液体催化脱氢反应的空速为0.7~2.0h-1;氢气与氧气的催化燃烧的空速10000~20000h-1,燃烧尾气的温度为280~500℃。
6.根据权利要求5所述的一种用于密闭环境的有机液体供氢系统,其特征在于,所述的脱氢催化剂为Pd/Al2O3贵金属催化剂,其中Pd质量含量为1.0~2.0%,粒径1~2mm。
7.根据权利要求5所述的一种用于密闭环境的有机液体供氢系统,其特征在于,所述的燃烧催化剂为Pt/Al2O3贵金属催化剂,其中Pt质量含量为0.5~1.0%,粒径2~3mm。
8.根据权利要求1所述的一种用于密闭环境的有机液体供氢系统,其特征在于,所述的水解反应器以316L不锈钢为外壳,蜂窝孔径1mm以下,孔隙率≥80%。
9.根据权利要求1所述的一种用于密闭环境的有机液体供氢系统,其特征在于,所述的换热器采用铝合金或铜合金钎焊焊接制成。
10.根据权利要求1所述的一种用于密闭环境的有机液体供氢系统,其特征在于,所述的水罐(11)、金属氢化物储罐(12)、液氧罐(13)、有机液体罐(14)和有机液体载体储罐(15)均为316L不锈钢材质。
CN202010968959.XA 2020-09-15 2020-09-15 一种用于密闭环境的有机液体供氢系统 Active CN112174089B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010968959.XA CN112174089B (zh) 2020-09-15 2020-09-15 一种用于密闭环境的有机液体供氢系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010968959.XA CN112174089B (zh) 2020-09-15 2020-09-15 一种用于密闭环境的有机液体供氢系统

Publications (2)

Publication Number Publication Date
CN112174089A CN112174089A (zh) 2021-01-05
CN112174089B true CN112174089B (zh) 2022-01-28

Family

ID=73921256

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010968959.XA Active CN112174089B (zh) 2020-09-15 2020-09-15 一种用于密闭环境的有机液体供氢系统

Country Status (1)

Country Link
CN (1) CN112174089B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002154803A (ja) * 2000-11-15 2002-05-28 Toyota Motor Corp 水素ガス生成装置
JP2004068896A (ja) * 2002-08-05 2004-03-04 Denso Corp 水素貯蔵供給システム
WO2004033367A2 (en) * 2002-10-09 2004-04-22 Hyradix, Inc. Hydrogen generator having sulfur compound removal and processes for the same
CN101597023A (zh) * 2008-06-03 2009-12-09 中国科学院金属研究所 适用于移动氢源的化学氢化物催化水解制氢装置和方法
CN109850846A (zh) * 2019-01-29 2019-06-07 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) 一种自热式有机液体脱氢供氢系统及其应用
CN110498393A (zh) * 2019-09-27 2019-11-26 郑州佛光发电设备有限公司 一种基于压力控制的氢发生装置及方法、燃料电池系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002154803A (ja) * 2000-11-15 2002-05-28 Toyota Motor Corp 水素ガス生成装置
JP2004068896A (ja) * 2002-08-05 2004-03-04 Denso Corp 水素貯蔵供給システム
WO2004033367A2 (en) * 2002-10-09 2004-04-22 Hyradix, Inc. Hydrogen generator having sulfur compound removal and processes for the same
CN101597023A (zh) * 2008-06-03 2009-12-09 中国科学院金属研究所 适用于移动氢源的化学氢化物催化水解制氢装置和方法
CN109850846A (zh) * 2019-01-29 2019-06-07 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) 一种自热式有机液体脱氢供氢系统及其应用
CN110498393A (zh) * 2019-09-27 2019-11-26 郑州佛光发电设备有限公司 一种基于压力控制的氢发生装置及方法、燃料电池系统

Also Published As

Publication number Publication date
CN112174089A (zh) 2021-01-05

Similar Documents

Publication Publication Date Title
CN105084311B (zh) 一种零碳排放的甲醇水重整制氢系统及其应用和制氢方法
JP6977082B2 (ja) アンモニア分解装置及びシステム並びに水素製造方法
EP2002032B1 (en) Storing and transporting energy
JP6078547B2 (ja) アンモニアから水素を製造する方法
CN205222680U (zh) 一种零碳排放的甲醇水重整制氢系统及其燃料电池汽车
Kim et al. Hydrogen generation system using sodium borohydride for operation of a 400 W-scale polymer electrolyte fuel cell stack
CN105152133A (zh) 一种用于燃料电池的在线高纯氢气制备系统及其控制方法
CN104986731A (zh) 一种甲醇水重整制氢机及其制氢方法
WO2018143790A1 (en) Hydrogen gas generating system and method thereof
CN105293432A (zh) 一种甲醇水重整制氢机及其制氢方法
CN212315530U (zh) 一种千瓦级燃料电池硼氢化钠水解制氢装置
CN204778810U (zh) 一种甲醇水重整制氢机
CN101330145A (zh) 便携式燃料电池系统
CN101357750B (zh) 微波激励熔盐催化重整气化碳基化合物的方法和设备
WO2020141153A1 (en) System and method for adjusting pressure in a reservoir and system for producing at least one energy carrier
CN112174089B (zh) 一种用于密闭环境的有机液体供氢系统
US7122269B1 (en) Hydronium-oxyanion energy cell
CN113594525A (zh) 储能、碳封存及新能源循环
JP2005526678A (ja) 大容量カルシウムリチウム・ベースの水素貯蔵材料およびその製法
EP3906356A1 (en) System and method for adjusting pressure in a reservoir and system for producing at least one energy carrier
JPS58121566A (ja) 水素燃料電池
CN201402833Y (zh) 基于天然气制氢与质子交换膜燃料的电池集成发电装置
JPS6221228B2 (zh)
CN201276417Y (zh) 微波激励熔盐催化重整气化碳基化合物的设备
CN205222681U (zh) 一种甲醇水重整制氢机

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20221123

Address after: 430000 No. 2301, 2304, 2401, 2404, unit 2, building C2, Rongke Zhigu, No. 555, Wenhua Avenue, Hongshan District, Wuhan City, Hubei Province

Patentee after: Wuhan hydrogen energy and Fuel Cell Industry Technology Research Institute Co.,Ltd.

Address before: 430064 Nanhu Automobile School Courtyard, Hongshan District, Wuhan City, Hubei Province

Patentee before: WUHAN INSTITUTE OF MARINE ELECTRIC PROPULSION (CHINA SHIPBUILDING INDUSTRY CORPORATION NO.712 INSTITUTE)

TR01 Transfer of patent right