CN112169841A - 一种钯或铂与杂多酸共负载纳米多孔碳复合材料的制备方法 - Google Patents

一种钯或铂与杂多酸共负载纳米多孔碳复合材料的制备方法 Download PDF

Info

Publication number
CN112169841A
CN112169841A CN202011143079.5A CN202011143079A CN112169841A CN 112169841 A CN112169841 A CN 112169841A CN 202011143079 A CN202011143079 A CN 202011143079A CN 112169841 A CN112169841 A CN 112169841A
Authority
CN
China
Prior art keywords
palladium
npc
composite material
platinum
heteropoly acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011143079.5A
Other languages
English (en)
Inventor
王元瑞
尹威
张雨欣
贾晴晴
赵邦垚
宋欣洛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun University of Technology
Original Assignee
Changchun University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun University of Technology filed Critical Changchun University of Technology
Priority to CN202011143079.5A priority Critical patent/CN112169841A/zh
Publication of CN112169841A publication Critical patent/CN112169841A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/165Polymer immobilised coordination complexes, e.g. organometallic complexes
    • B01J31/1658Polymer immobilised coordination complexes, e.g. organometallic complexes immobilised by covalent linkages, i.e. pendant complexes with optional linking groups, e.g. on Wang or Merrifield resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/22Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by isomerisation
    • C07C5/27Rearrangement of carbon atoms in the hydrocarbon skeleton
    • C07C5/2767Changing the number of side-chains
    • C07C5/277Catalytic processes
    • C07C5/2778Catalytic processes with inorganic acids; with salts or anhydrides of acids
    • C07C5/2783Acids of phosphorus; Salts thereof; Phosphorus oxides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/22Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by isomerisation
    • C07C5/27Rearrangement of carbon atoms in the hydrocarbon skeleton
    • C07C5/2767Changing the number of side-chains
    • C07C5/277Catalytic processes
    • C07C5/2794Catalytic processes with hydrides or organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • C07C2531/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • C07C2531/22Organic complexes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Catalysts (AREA)

Abstract

本申请涉及一种铂或钯和杂多酸共负载纳米多孔碳复合材料的双功能催化剂的制备方法。其步骤在于:(1)将具有高比表面积的MOF材料ZIF‑8做为前驱体,通过高温煅烧得到纳米碳材料(NPC);(2)将杂多酸溶解,加入(1)制备好的NPC,室温放置4h,然后120℃放置12h后,洗涤,离心,干燥后得到纳米多孔碳负载杂多酸的复合材料;(3)将六氯铂酸(H2PtCl6·6H2O)或二氯化钯(PdCl2)溶解等体积浸渍到(2)制备好的复合材料中,然后加热进行还原反应,洗涤,离心,干燥,获得钯或铂与杂多酸共负载的纳米多孔碳复合材料Pt/Pb‑H3PW12O40@NPC或Pt/Pb‑H3PMo12O40@NPC。本申请涉及一种铂或钯和杂多酸共负载纳米多孔碳复合材料的双功能催化剂的制备方法。钯纳米粒子或铂纳米粒子分散性好、尺寸可控,制备工艺简单,杂多酸为杂多化合物是一类环境友好的新型多功能绿色催化剂,因其催化活性高、选择性好、反应条件温和以及不腐蚀设备,纳米多孔碳材料适存空间大。

Description

一种钯或铂与杂多酸共负载纳米多孔碳复合材料的制备方法
技术领域
本发明涉及复合材料合成制备领域,尤其涉及一种钯或铂与杂多酸共负载纳米多孔碳复合材料的制备方法。
背景技术
过去几十年里, 多孔材料发展成为化学、物理以 及材料科学等学科领域的研究热点之一。这些材料已被广泛应用于气体储存、吸附催化和电化学等方面。然而,由于传统多孔材料自身的不足和缺点,所以越来越难满足当前工业迅速发展的需要。例如,应用最广泛的多孔材料——碳材料,虽然具有较高的比表面积和吸附能力,但不具备有序的结构;沸石分子筛作为研究最多的无机多孔材料,拥有有序的孔道结构,但其一般是由Al,Si和氧族元素组成,致使孔道尺寸和种类多样性受限。金属有机骨架(metal-organic frameworks,MOFs)材料是一种越来越受到研究者的关注,发展迅猛的新型多孔材料。这种有机-无机杂化多孔材料,是由含氧、氮的多齿有机配体与金属原子或金属原子簇以配位共价键相连接,自组装形成的具有周期性网络结构的类沸石材料。MOF材料的结构可看成是由中心金属通过有机配体连接组装而成。与传统的多孔材料相比,MOF具有较明显的优势,例如: 种类多、功能性强、高的比表面积和孔隙率以及结构可调等特点。目前,MOF已被广泛应用于气体吸附、分离多相催化反应和光电磁性,药物缓释和传感器等方面。
然而, 由于MOF是通过配位键与无机金属中心杂化形成的立体网络结构晶体,虽然与沸石的孔结构相近,但骨架具有柔韧性。因此与其他多孔材料相比,MOF材料的稳定性普遍较差,故该材料的实际应用一直受到限制。而以MOF为牺牲模板可以制备稳定性更高的纳米材料。
酸催化在精细化工占有重要地位,每年仅酯化反应的产品就上千万吨,因此,需要一种对酸稳定的酸催化剂。酸催化有两种方案:均相催化与异相催化。均相催化是目前工业上普遍使用的方法,一类是无机酸,硫酸,盐酸等,缺点众所周知,腐蚀设备,污染环境;另一类是杂多酸,例如H3PW12O40,缺点由于其价格昂贵,必须回收,工艺复杂、要求高。固体酸,由于需要用强酸,优良的多孔材料沸石与分子筛不适合,因此可以尝试在SiO2,ZrO2,TiO2等金属氧化物和纳米多孔碳材料中选择载体。
同沸石和分子筛材料一样,将金属纳米粒子引入到以MOF材料为前驱体的纳米碳中所构成的复合材料不仅具有MOF材料的择形性同时也具有金属纳米粒子的催化活性。
鉴于此,可以开发一种金属纳米粒子尺寸可控、金属纳米粒子利用率高、复合材料择形性好、复合材料结构稳定、制备工艺简单可控的制备工艺。
发明内容
本发明的目的在于提供一种钯或铂与杂多酸共负载纳米多孔碳复合材料的制备方法,利用高比表面积、结构稳定的MOF材料中的ZIF-8为前驱体制备的纳米多孔碳材料(NPC),将其通过等体积浸渍-有机溶剂原位还原的方法将钯纳米粒子或铂纳米粒子分散到复合碳结构内,将杂多酸负载在纳米多孔碳材料上;利用笼结构控制钯纳米粒子或铂纳米粒子的尺寸且抑制钯纳米粒子或铂纳米粒子的团聚,从而获得钯或铂与杂多酸共负载纳米多孔碳复合材料。
为了达到上述目的,本发明提供了一种钯或铂与杂多酸负载纳米多孔碳复合材料的制备方法,其包括步骤:
(1)在900~1000℃范围内将ZIF-8煅烧获得纳米多孔碳材料(NPC);
(2)取0.5~1.5g磷钨酸或磷钼酸溶解于水后浸渍到NPC中,然后室温放置4h,然后在100~140℃放置12h,洗涤、离心、干燥得到H3PW12O40@NPC或H3PMo12O40@NPC;
(3)将六氯铂酸(H2PtCl6·6H2O)或二氯化钯(PdCl2)的有机溶液等体积浸渍到步骤(2)的H3PW12O40@NPC或H3PMo12O40@NPC,然后加热到100~150℃进行还原反应,将得到的固体生成物洗涤,干燥,获得钯或铂与杂多酸共负载的纳米多孔碳复合材料Pt/Pb-H3PW12O40@NPC或Pt/Pb-H3PMo12O40@NPC。
优选地,所述有机溶剂N,N-二甲基甲酰胺(DMF)、N,N’-二乙基甲酰胺(DEF)中的一种或两种。
优选地,在加入的原料中,H3PW12O40@NPC或H3PMo12O40@NPC、有机溶剂、PdCl2或H2PtCl6·6H2O比可为1g:1ml:(8.35~33.4mg)或者(13.28~53.13mg)。
优选地,步骤(1)中高温煅烧的温度为950℃。
优选地,步骤(2)中干燥温度120℃。
优选地,步骤(3)中中加热进行还原反应的时间为2h~8h,温度为100~150℃。
相对于现有技术,本发明的有益效果至少为:
在本发明的钯或铂与杂多酸共负载纳米多孔碳复合材料的制备的方法改变了常用的以ZIF-8为载体的负载方法,使材料稳定性能更高,不会随PH值的变化而影响材料的效果;等体积浸渍提高钯或铂的利用率,不用还原剂或者氢气还原避免钯纳米粒子的团聚和还原过程对复合材料结构的破坏,利用有机溶剂原位还原钯纳米粒子或铂纳米粒子,克服了钯或铂向表面迁移以及在表面团聚所引起的选择性下降的问题,钯纳米粒子或铂纳米粒子分散性好、尺寸可控,制备工艺简单,钯或铂与杂多酸共负载纳米多孔碳复合材料的催化选择性高。
附图说明
图1是实施例1得到的Pt-H3PW12O40@NPC复合材料的FTIR图。
图2是Pt-H3PW12O40@NPC复合材料的77K等温物理吸附的BET比表面积图
图3是实施例1得到的Pt-H3PW12O40@NPC复合材料的高分辨透射电子显微镜(TEM)图。
具体实施方式
下面详细说明根据本发明的钯或铂与杂多酸共负载在纳米多孔碳复合材料的制备方法与应用。
首先说明根据本发明的钯或铂与杂多酸共负载纳米多孔碳复合材料的制备方法,其步骤包括:
(1)在900~1000℃范围内将ZIF-8煅烧获得纳米多孔碳材料(NPC);
(2)取0.5~1.5g磷钨酸或磷钼酸溶解于水后浸渍到NPC中,然后室温放置4h,然后在100~140℃放置12h,洗涤、离心、干燥得到H3PW12O40@NPC或H3PMo12O40@NPC;
(3)将六氯铂酸(H2PtCl6·6H2O)或二氯化钯(PdCl2)的有机溶液等体积浸渍到步骤(2)的H3PW12O40@NPC或H3PMo12O40@NPC,然后加热到100~150℃进行还原反应,将得到的固体生成物洗涤,干燥,获得钯或铂与杂多酸共负载的纳米多孔碳复合材料Pt/Pb-H3PW12O40@NPC或Pt/Pb-H3PMo12O40@NPC。
优选地,所述有机溶剂N,N-二甲基甲酰胺(DMF)、N,N’-二乙基甲酰胺(DEF)中的一种或两种。
优选地,在加入的原料中,H3PW12O40@NPC或H3PMo12O40@NPC、有机溶剂、PdCl2或H2PtCl6·6H2O比可为1g:1ml:(8.35~33.4mg)或者(13.28~53.13mg)。
优选地,步骤(1)中高温煅烧的温度为950℃。
优选地,步骤(2)中干燥温度120℃。
优选地,步骤(3)中中加热进行还原反应的时间为2h~8h,温度为100~150℃。
根据一些优选的实施方式,步骤(1)中高温煅烧温度为950℃,煅烧温度太低影响纳米多孔材料的纯度,煅烧温度太高影响纳米多孔材料的收率。
根据一些优选的实施方式,步骤(3)中加热进行还原反应的温度为100℃~150℃(例如110℃,120℃,130℃,140℃)。反应温度低,钯粒子的生成速度较慢,影响产量。
根据一些优选的实施方式,步骤(4)中加热进行还原反应的时间为2h~8h(例如3h,4h,5h,6h,7h)。反应时间过长,影响产量;反应时间过短,产品品质不好。
根据一些优选的实施方式,步骤(3)中所述干燥为真空干燥。
在根据本发明所述的钯或铂与杂多酸负载配位聚合物碳复合材料的制备方法中,通过以H2PtCl6·6H2O溶液等体积浸渍到微孔配位聚合物中,简化了钯粒子的回收工艺,提高钯的利用率;以有机溶剂原位的进行还原,克服了钯粒子的迁移和团聚,从而有效控制钯粒子的尺寸和分散性;以前驱体ZIF-8制备的纳米多孔碳为载体,稳定性高。
下面结合实施例,进一步阐述本申请。应理解,这些实施例仅用于说明本申请而不用于限制本申请的范围。
实施例1
首先将前驱体ZIF-8在950℃无氧环境下高温煅烧制备纳米孔道碳(NPC);然后取0.15g磷钨酸(H3PW12O40)溶解于1mL蒸馏水中后加入1g的NPC,然后室温放置4h,然后在120℃放置12h,洗涤、离心、干燥得到H3PW12O40@NPC;再将25.56mg六氯铂酸(H2PtCl6·6H2O)溶解到1mlDMF溶液中,然后加入到1g的H3PW12O40@NPC中,在120℃反应4小时,反应结束后经洗涤、真空干燥得到Pt-H3PW12O40@NPC,其中,Pt的含量为Pt-H3PW12O40@NPC总重量的1wt%。
产品Pt-H3PW12O40@NPC复合材料傅里叶变换红外光谱分析(图1),红外特征振动峰与NPC一致,另外还有客体分子的红外特征振动峰,对于P-O红外振动峰(1080cm-1),W=Ot红外振动峰(984cm-1),W-Ob-W红外振动峰(889cm-1),W-Oe-W红外振动峰(806cm-1)说明该复合材料既包括主体NPC材料又包括客体H3PW12O40·xH2O分子。图2是Pt-H3PW12O40@NPC复合材料的77K等温物理吸附的BET比表面积图。图3是复合材料的透射电子显微镜(TEM)图,可以看到Pt-H3PW12O40@NPC的形貌基本稳定。
实施例2
首先将前驱体ZIF-8在950℃无氧环境下高温煅烧制备纳米孔道碳(NPC);然后取0.05g磷钨酸(H3PW12O40)溶解于1mL蒸馏水中后加入1g的NPC,然后室温放置4h,然后在120℃放置12h,洗涤、离心、干燥得到H3PW12O40@NPC;再将25.56mg六氯铂酸(H2PtCl6·6H2O)溶解到1mlDMF溶液中,然后加入到1g的H3PW12O40@NPC中,在120℃反应4小时,反应结束后经洗涤、真空干燥得到Pt-H3PW12O40@NPC,其中,Pt的含量为Pt-H3PW12O40@NPC总重量的1wt%。
实施例3
首先将前驱体ZIF-8在900℃无氧环境下高温煅烧制备纳米孔道碳(NPC);然后取0.1g磷钨酸(H3PW12O40)溶解于1mL蒸馏水中后加入1g的NPC,然后室温放置4h,然后在100℃放置12h,洗涤、离心、干燥得到H3PW12O40@NPC;再将13.28mg六氯铂酸(H2PtCl6·6H2O)溶解到1mlDMF溶液中,然后加入到1g的H3PW12O40@NPC中,在100℃反应8小时,反应结束后经洗涤、真空干燥得到Pt-H3PW12O40@NPC,Pt的含量为Pt-H3PW12O40@NPC总重量的0.5wt%。
实施例4
首先将前驱体ZIF-8在1000℃无氧环境下高温煅烧制备纳米孔道碳(NPC);然后取0.15g磷钼酸(H3PMo12O40)溶解于1mL蒸馏水中后加入1g的NPC,然后室温放置4h,然后在140℃放置12h,洗涤、离心、干燥得到H3PMo12O40@NPC;再将16.7mg二氯化钯(PdCl2)溶解到1mlDMF溶液中,然后加入到1gH3PMo12O40@NPC中,在150℃反应2小时,反应结束后经洗涤、真空干燥得到Pb-H3PMo12O40@NPC,Pb的含量为Pb-H3PMo12O40@NPC总重量的1wt%。
对比例1
首先将前驱体ZIF-8在950℃无氧环境下高温煅烧制备纳米孔道碳(NPC);然后取0.15g杂多酸(H3PW12O40)溶解于1mL蒸馏水中后加入1g的NPC,然后室温放置4h,然后在120℃放置12h,洗涤、离心、干燥得到H3PW12O40@NPC。
对比例2
再将25.56mg六氯铂酸(H2PtCl6·6H2O)溶解到1mlDMF溶液中得到混合溶液;将上述混合溶液等体积浸渍到1g的NPC中,在120℃反应4小时,反应结束后经洗涤、真空干燥得到Pt@NPC,Pt的含量为Pt@NPC总重量的1wt%。
接下来说明对上述复合材料的测试过程和测试结果
实验对象:催化剂1为实施例1制备得到的1wt%Pt-H3PW12O40@NPC的复合材料;催化剂2为对比例1制备得到的H3PW12O40@NPC的复合材料;催化剂3为对比例2制备得到的1wt%Pt@NPC的复合材料;催化剂4为购买的市售产品1wt%Pt-SO4 2-/ZrO2
实验方式:
将上述催化剂1-4用于丁烷异构化的催化反应中:催化反应在固定床石英反应器进行,反应器内径10mm,长度20cm;催化剂填40~60目,充量为1g;预热之后通入氢气0.4MPa,反应温度200℃,反应气C4,H2,N2,空速0.05h-1
实验结果如下表所示:
催化剂1-4在丁烷异构化中的催化性能
催化剂 正丁烷转化率 异丁烷选择性
1wt%Pt-H<sub>3</sub>PW<sub>12</sub>O<sub>40</sub>@NPC 92% 95%
H<sub>3</sub>PW<sub>12</sub>O<sub>40</sub>@NPC 13% 26%
1wt%Pt@NPC 0 0
1wt%Pt-SO<sub>4</sub><sup>2-</sup>/ZrO<sub>2</sub> 53% 90%
由上表的实验结果可以看到,杂多酸负载在纳米多孔碳复合材料用于正丁烷的异构化催化反应中,正丁烷转化率和异丁烷选择率均较低;钯或铂直接负载在纳米多孔碳材料用于正丁烷的异构化催化反应中,无催化作用;而本发明的钯或铂和杂多酸共负载在纳米多孔碳复合材料用于正丁烷的异构化催化反应中,不但具有较高的正丁烷转化率和异丁烷选择率,且催化效果均高于市售产品的催化剂1wt%Pt-SO4 2-/ZrO2
以上所述,仅是本申请的几个实施例,并非对本申请做任何形式的限制,虽然本申请以较佳实施例揭示如上,然而并非用以限制本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案的范围内,利用上述揭示的技术内容做出些许的变动或修饰均等同于等效实施案例,均属于技术方案范围内。

Claims (5)

1.钯或铂与杂多酸共负载纳米多孔碳复合材料的制备方法,其特征在于,所述钯或铂和杂多酸共负载纳米多孔碳复合材料由钯或铂、杂多酸以及碳材料构成;
其中,钯或铂与杂多酸共负载在纳米多孔碳材料上,形成复合材料。
2.根据权利要求1所述的铂或钯与杂多酸共负载碳复合材料的制备方法,其特征在于,所述杂多酸为H3PW12O40或H3PMo12O40
所述纳米多孔碳为ZIF-8通过高温隔氧煅烧而来。
3.根据权利要求1所述的铂或钯与杂多酸共负载碳复合材料的制备方法,其特征在于,在加入的原料中,H3PW12O40@NPC或H3PMo12O40@NPC、有机溶剂、PdCl2或H2PtCl6·6H2O的比可为1g:1ml:(8.35~33.4mg)或(13.28~53.13mg)。
4.根据权利要求1所述的铂或钯与杂多酸共负载碳复合材料的制备方法,其特征在于,步骤(1)中高温煅烧的温度为900~1000℃;
步骤(2)中放置温度100~140℃。
5.根据权利要求1所述的铂或钯与杂多酸共负载碳复合材料的制备方法,其特征在于,步骤(3)中加热进行还原反应的时间为2h~8h,加热还原温度为100~150℃。
CN202011143079.5A 2020-10-23 2020-10-23 一种钯或铂与杂多酸共负载纳米多孔碳复合材料的制备方法 Pending CN112169841A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011143079.5A CN112169841A (zh) 2020-10-23 2020-10-23 一种钯或铂与杂多酸共负载纳米多孔碳复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011143079.5A CN112169841A (zh) 2020-10-23 2020-10-23 一种钯或铂与杂多酸共负载纳米多孔碳复合材料的制备方法

Publications (1)

Publication Number Publication Date
CN112169841A true CN112169841A (zh) 2021-01-05

Family

ID=73922063

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011143079.5A Pending CN112169841A (zh) 2020-10-23 2020-10-23 一种钯或铂与杂多酸共负载纳米多孔碳复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN112169841A (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102641746A (zh) * 2012-04-05 2012-08-22 中国科学院青岛生物能源与过程研究所 一种杂多酸改性催化剂及其制备和催化剂催化水解反应体系
CN103145517A (zh) * 2013-02-07 2013-06-12 大连理工大学 一种用负载金的分子筛催化剂转化正丁烷为异丁烷的方法
CN103357401A (zh) * 2013-07-03 2013-10-23 中国科学院长春应用化学研究所 一种钯基催化剂的制备方法
CN106669831A (zh) * 2016-12-06 2017-05-17 北京林业大学 一种双功能加氢脱氧催化剂的制备方法及应用
CN106824287A (zh) * 2017-03-30 2017-06-13 长春工业大学 硒化镉量子点和uio‑67复合材料的制备方法
US20180272320A1 (en) * 2017-03-22 2018-09-27 Tda Research, Inc Nitrogen and phosphorous doped carbon supported nanoparticle platinum electrocatalyst and method of making
CN109794246A (zh) * 2019-01-11 2019-05-24 江苏理工学院 一种整体型蜂窝状Ni@C/C催化剂及其制备方法和应用
CN110621398A (zh) * 2017-05-05 2019-12-27 埃克森美孚化学专利公司 包含贵金属和羧酸根基封端基团的多金属氧酸盐及其金属簇
CN111359671A (zh) * 2020-03-12 2020-07-03 长春工业大学 一种钯负载或铂负载锆基微孔配位聚合物复合材料的制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102641746A (zh) * 2012-04-05 2012-08-22 中国科学院青岛生物能源与过程研究所 一种杂多酸改性催化剂及其制备和催化剂催化水解反应体系
CN103145517A (zh) * 2013-02-07 2013-06-12 大连理工大学 一种用负载金的分子筛催化剂转化正丁烷为异丁烷的方法
CN103357401A (zh) * 2013-07-03 2013-10-23 中国科学院长春应用化学研究所 一种钯基催化剂的制备方法
CN106669831A (zh) * 2016-12-06 2017-05-17 北京林业大学 一种双功能加氢脱氧催化剂的制备方法及应用
US20180272320A1 (en) * 2017-03-22 2018-09-27 Tda Research, Inc Nitrogen and phosphorous doped carbon supported nanoparticle platinum electrocatalyst and method of making
CN106824287A (zh) * 2017-03-30 2017-06-13 长春工业大学 硒化镉量子点和uio‑67复合材料的制备方法
CN110621398A (zh) * 2017-05-05 2019-12-27 埃克森美孚化学专利公司 包含贵金属和羧酸根基封端基团的多金属氧酸盐及其金属簇
CN109794246A (zh) * 2019-01-11 2019-05-24 江苏理工学院 一种整体型蜂窝状Ni@C/C催化剂及其制备方法和应用
CN111359671A (zh) * 2020-03-12 2020-07-03 长春工业大学 一种钯负载或铂负载锆基微孔配位聚合物复合材料的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J.A. WANG ET AL.: "Mesoporous structure, surface acidity and catalytic properties of Pt/Zr-MCM-41 catalysts promoted with 12-tungstophosphoric acid", 《MICROPOROUS AND MESOPOROUS MATERIALS》 *
JUN LI ET AL.: "Pd nanoparticles supported on hierarchically porous carbon derived from assembled nanoparticles of zeolitic imidazolate framework (ZIF-8) for methanol electrooxidation", 《CHEM.COMMUN》 *

Similar Documents

Publication Publication Date Title
EP2746226B1 (en) Method for preparing composites comprising crystalline hybrid nanoporous material powders
CN107185594B (zh) 一种Ni-Zn-K-Ru/MOF催化剂的制备方法
WO2017128946A1 (zh) 一种用于双氧水合成的高分散颗粒催化剂及其制备方法和应用
CN111359671B (zh) 一种钯负载或铂负载锆基微孔配位聚合物复合材料的制备方法
CN105195188A (zh) 镍-碳化钨/多孔碳纳米纤维复合催化剂及中间体与制备
KR20110123051A (ko) 메조포러스 실리카 구조체를 이용한 피셔-트롭시 공정용 촉매
CN110606959A (zh) 一种含杂多酸和过渡金属配合物的MOFs复合材料及其制备方法和应用
Feng et al. Using MOF-808 as a promising support to immobilize Ru for selective hydrogenation of levulinic acid to γ-valerolactone
CN109876804B (zh) 一种用于苯选择性加氢制环己烯的二氧化钛负载钌催化剂及其制备方法
Yang et al. Ru complex and N, P-containing polymers confined within mesoporous hollow carbon spheres for hydrogenation of CO2 to formate
CN109046442B (zh) 多级孔分子筛负载铂铁双金属催化剂及其制备和应用
CN113546687A (zh) 一种超薄钛基MOFs纳米片的可见光催化剂的制备方法及应用
CN112062086B (zh) Ni-MOF同时纳米限域和催化的LiBH4储氢材料的制备方法及应用
CN114797929A (zh) 一种多孔氮修饰碳材料负载钴基催化剂及制备和应用
WO2023160593A1 (zh) 用于丙烯氢氧环氧化的物理混合式催化剂及制备方法和应用
CN112169841A (zh) 一种钯或铂与杂多酸共负载纳米多孔碳复合材料的制备方法
CN114100691B (zh) 一种糖基介孔含锆复合材料及其制备方法和应用
CN114522708B (zh) 一种多孔氮杂碳材料负载钴基催化剂制备方法及其在co加氢制备高碳醇反应中的应用
CN111957352A (zh) 钯或铂和杂多酸共负载锆基微孔配位聚合物复合材料及其制备方法
CN113398968A (zh) 一种MOF衍生的TiO2/多孔g-C3N4复合光催化剂及其制备方法和应用
CN110201717B (zh) 一种铜基金属有机多面体复合材料的制备方法与应用
CN113083325A (zh) 一种氨硼烷水解制氢用催化剂Ru1-xCox/P25及其制备方法
CN115254118B (zh) 一种用于光催化还原co2的有机干凝胶纳米材料及其制备方法和应用
Yun et al. The controllable and efficient synthesis of two-dimensional metal–organic framework nanosheets for heterogeneous catalysis
CN105712822B (zh) 一种由乙醇脱水制备乙烯的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20210105

WD01 Invention patent application deemed withdrawn after publication