CN112158829B - 类石墨超分子及其制备方法、掺杂石墨烯及其制备方法 - Google Patents

类石墨超分子及其制备方法、掺杂石墨烯及其制备方法 Download PDF

Info

Publication number
CN112158829B
CN112158829B CN202011047214.6A CN202011047214A CN112158829B CN 112158829 B CN112158829 B CN 112158829B CN 202011047214 A CN202011047214 A CN 202011047214A CN 112158829 B CN112158829 B CN 112158829B
Authority
CN
China
Prior art keywords
graphite
preparation
graphene
doped graphene
supramolecules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011047214.6A
Other languages
English (en)
Other versions
CN112158829A (zh
Inventor
蔡卫卫
周顺发
时佳维
李静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Geosciences
Original Assignee
China University of Geosciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Geosciences filed Critical China University of Geosciences
Priority to CN202011047214.6A priority Critical patent/CN112158829B/zh
Publication of CN112158829A publication Critical patent/CN112158829A/zh
Application granted granted Critical
Publication of CN112158829B publication Critical patent/CN112158829B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/19Preparation by exfoliation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/205Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/02Single layer graphene
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/04Specific amount of layers or specific thickness
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/20Graphene characterized by its properties
    • C01B2204/32Size or surface area

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明提供了一种类石墨超分子及其制备方法、掺杂石墨烯及其制备方法,类石墨超分子的制备方法,包括以下步骤:将金属盐、有机配体溶于溶剂中,加热反应后,即得类石墨超分子;其中,所述金属盐包括过渡金属硝酸盐、卤化盐、醋酸盐、硫酸盐以及磷酸盐中的一种或几种;所述有机配体包括卟啉、吡啶、联吡啶、邻菲罗啉中的一种或几种;所述溶剂包括水、甲醇、乙醇、丙醇、乙二醇、丙酮、四氢呋喃、二甲基亚砜、二甲基乙酰胺以及二甲基甲酰胺中的一种或几种。本发明利用类石墨超分子在在高温下会发生原位热解剥离形成石墨烯,得到的石墨烯杂原子含量和位置可调。

Description

类石墨超分子及其制备方法、掺杂石墨烯及其制备方法
技术领域
本发明涉及石墨烯材料制备技术领域,尤其涉及一种类石墨超分子及其制 备方法、掺杂石墨烯及其制备方法。
背景技术
石墨烯是一种碳原子以sp2杂化方式形成具有单原子层厚度的二维蜂窝状 结构,并具有巨大的表面积、电导率和化学稳定性等独特性能,在催化、电子 及通讯领域都具有较强的应用前景。
石墨烯制备一般是通过物理剥离或化学剥离方法实现,其中物理剥离方法 难以放大,而化学剥离方法存在严重的环保问题。
为了实现不同的功能,需要引入金属或非金属杂原子。为了制备杂原子掺 杂石墨烯,传统方法至少需要两个步骤:在杂原子掺杂之前必须先通过物理剥 离或化学剥离方法制备石墨烯或氧化石墨烯,同时,石墨烯中杂原子的掺杂位 置和含量不可控的。
类石墨材料是对具有二维单层或少层结构的材料的统称,而目前并没有公 开利用类石墨材料制备掺杂石墨烯以控制石墨烯中杂原子的状态。
发明内容
有鉴于此,本发明提出了一种类石墨超分子及其制备方法、掺杂石墨烯及 其制备方法,以控制石墨烯中杂原子的状态。
第一方面,本发明提供了一种类石墨超分子的制备方法,包括以下步骤:
将金属盐、有机配体溶于溶剂中,加热反应后,即得类石墨超分子;
其中,所述金属盐包括过渡金属硝酸盐、卤化盐、醋酸盐、硫酸盐以及磷酸 盐中的一种或几种;
所述有机配体包括卟啉、吡啶、联吡啶、邻菲罗啉、杯芳烃中的一种或几种;
所述溶剂包括水、甲醇、乙醇、丙醇、乙二醇、丙酮、四氢呋喃、二甲基亚 砜、二甲基乙酰胺以及二甲基甲酰胺中的一种或几种。
可选的,所述的类石墨超分子的制备方法,所述过渡金属包括Co、Ni、Fe、 Mn、Cu、Zn、V、Pt、Pd、Ru、Rh中的一种。
可选的,所述的类石墨超分子的制备方法,将金属盐、有机配体溶于溶剂 中,于温度为40~100℃加热反应后,即得类石墨超分子。
第二方面,本发明还提供了一种类石墨超分子,采用所述的制备方法制备 得到。
第三方面,本发明还提供了一种掺杂石墨烯的制备方法,包括以下步骤:
将所述的类石墨超分子于惰性气氛下升温至600~1200℃,然后保温1~5h即 得石墨烯。
可选的,所述的掺杂石墨烯的制备方法,将所述的类石墨超分子于惰性气 氛下以3~30℃/min升温至600~1200℃。
第四方面,本发明还提供了一种掺杂石墨烯,采用所述的制备方法制备得 到。
可选的,所述的掺杂石墨烯,所述掺杂石墨烯为单层或少于5层。
本发明的一种类石墨超分子的制备方法相对于现有技术具有以下有益效果:
(1)本发明的类石墨超分子的制备方法,通过液相液相合成了类石墨超分子, 类石墨超分子的设计是通过引入大尺寸的间隔物分子来模拟石墨的层状结构, 将碳原子聚集在一个薄层中类石墨类石墨;
(2)本发明的掺杂石墨烯的制备方法,利用类石墨超分子在在高温下会发生 原位热解剥离形成石墨烯,类似于石墨通过化学剥离得到氧化石墨烯的过程, 该方法所使用的类石墨超分子易于制备,价格低,通过本方法制备得到的掺杂 石墨烯为单层或少层(少于5层)石墨烯,得到的掺杂石墨烯尺寸较大,可以 达到10微米。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施 例或现有技术描述中所需要使用的附图作简单的介绍,显而易见地,下面描述 中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付 出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明的实施例1中制备得到的类石墨超分子的非对称单元示意图;
图2为本发明的实施例1中制备得到的类石墨超分子中[Co(bpdo)3]2+和 p-sulfonatocalix[4]arene5-通过弱相互作用结合在一起形成富含碳原子的层状结构 空间结构示意图;
图3为本发明的实施例1中制备得到的类石墨超分子的空间结构示意图;
图4为本发明实施例1中制备得到的类石墨超分子的粉末X射线衍射谱图;
图5为本发明实施例1中制备得到的Co,N共掺杂的石墨烯的X射线衍射 谱图;
图6为本发明实施例1中制备得到的Co,N共掺杂的石墨烯的N2吸脱附等 温线图;
图7为本发明实施例1中制备得到的类石墨超分子的扫描电镜图;
图8为本发明实施例1中制备得到的Co,N共掺杂的石墨烯的扫描电镜图;
图9为本发明实施例1中制备得到的Co,N共掺杂的石墨烯的透射电镜图;
图10为本发明实施例1中制备得到的Co,N共掺杂的石墨烯的原子力显微 镜图;
图11为本发明实施例2中制备得到的Ni,N共掺杂的石墨烯的高角暗场扫 描透射电镜图。
具体实施方式
下面将结合本发明实施方式,对本发明实施方式中的技术方案进行清楚、 完整的描述,显然,所描述的实施方式仅仅是本发明一部分实施方式,而不是 全部的实施方式。基于本发明中的实施方式,本领域普通技术人员在没有做出 创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。
实施例1
本发明提供了一种类石墨超分子的制备方法,包括以下步骤:
S1、将金属盐、有机配体溶于溶剂中,加热反应后,即得类石墨超分子;
其中,金属盐包括过渡金属硝酸盐、卤化盐、醋酸盐、硫酸盐以及磷酸盐 中的一种或几种;
有机配体包括卟啉、吡啶、联吡啶、邻菲罗啉、杯芳烃中的一种或几种;
溶剂包括水、甲醇、乙醇、丙醇、乙二醇、丙酮、四氢呋喃、二甲基亚砜、 二甲基乙酰胺以及二甲基甲酰胺中的一种或几种。
需要说明的是,本申请实施例中采用主客体化学法合成得到具有被间隔分 子隔开的富碳层状结构类石墨超分子,本申请实施例中采用的过渡金属为Co、 Ni、Fe、Mn、Cu、Zn、V、Pt、Pd、Ru、Rh中的一种;即本申请中金属盐可采 用硝酸钴、硝酸镍、硝酸铁、硝酸锰、氯化铁、氯化钴、醋酸钴、醋酸镍、醋 酸铁、硫酸镍、硫酸铁、磷酸铁等。
具体的,本申请实施例中,有机配体可采用卟啉、吡啶、联吡啶、邻菲罗 啉、杯芳烃中的一种或几种。
以下以六水合硝酸钴作为金属盐,进一步说明本申请实施例类石墨超分子 的制备方法。
一种类石墨超分子的制备方法,包括以下步骤:将0.2621g的六水合硝酸钴、0.4968g的有机配体(NH4)5·[p-sulfonato-calix[4]arene]即对磺酸基杯[4]芳烃铵(其中一个羟基被去质子化)和0.5076g的有机配体N,N’-二氧化-2,2’-联吡啶溶于 15mL的50~60℃的溶剂水中,保持1~2h,之后将溶液冷却至室温并在室温下将 溶剂完全挥发,即可得到红色的类石墨超分子(g-SOF)。
本申请实施例中,通过液相液相合成了类石墨超分子,类石墨超分子的设 计是通过引入大尺寸的间隔物分子[Co(bpdo)2·2H2O]2+来模拟石墨的层间分子间 作用力,将碳原子聚集在一个薄层中,在类石墨超分子设计中,通过对金属离 子和有机配体等单体的调整可以控制类石墨超分子中碳原子之外的杂原子含量 和位置。
本申请实施例中采用主客体化学法合成得到具有被间隔分子隔开的富碳层 状结构类石墨超分子,其中p-sulfonatocalix[4]arene5-作为主体分子,由 [Co(bpdo)3]2+和[Co(bpdo)2·2H2O]2+作为客体分子组装得到的富碳层状结构,同 时[Co(bpdo)2·2H2O]2+作为富碳层之间的间隔分子避免富碳层的堆叠,得到类石 墨结构超分子。
基于同一发明构思,本申请实施例还提供了一种类石墨超分子,采用上述 制备方法制备得到。
基于同一发明构思,本申请实施例还提供了一种掺杂石墨烯的制备方法, 包括以下步骤:
A1、将上述制备得到的类石墨超分子于惰性气氛下升温至600~1200℃,然 后保温1~5h即得石墨烯。
具体的,本申请实施例中掺杂石墨烯的制备方法A1具体包括:取上述实施 例中制备得到的类石墨超分子置于瓷舟中,再将瓷舟置于管式炉中,在氮气氛 围下以3℃/min的升温速率升温至800℃,然后于800℃下煅烧3h,酸洗干燥后, 即得到Co,N共掺杂的石墨烯(CoN-graphene)。
需要说明的是本申请实施例中,利用类石墨超分子在在高温下会发生原位 热解剥离形成石墨烯,类似于石墨通过化学剥离得到氧化石墨烯的过程,通过 本方法制备得到的掺杂石墨烯为单层或少层(少于5层)石墨烯,得到的掺杂 石墨烯比表面积大,可以达到10微米。
基于同一发明构思,本申请实施例还提供了一种掺杂石墨烯,其采用上述 制备方法制备得到。
实施例2
以下以六水合硝酸镍作为金属盐,进一步说明本申请实施例类石墨超分子 和掺杂石墨烯的制备方法。
一种类石墨超分子的制备方法,包括以下步骤:将0.2602g的六水合硝酸镍、0.4968g的有机配体(NH4)5·[p-sulfonato-calix[4]arene]即对磺酸基杯[4]芳烃铵(其中一个羟基被去质子化)和0.5076g的有机配体N,N’-二氧化-2,2’-联吡啶溶于 15mL的50~60℃的溶剂热水中,保持1~2h,之后将溶液冷却至室温并在室温下 将溶剂完全挥发,即可得到绿色的类石墨超分子。
本申请实施例中,通过液相液相合成了类石墨超分子,类石墨超分子的设 计是通过引入大尺寸的间隔物分子[Ni(bpdo)2·2H2O]2+来模拟石墨的层间分子间 作用力,将碳原子聚集在一个薄层中,在类石墨超分子设计中,通过对金属离 子和有机配体等单体的调整可以控制类石墨超分子中碳原子之外的杂原子含量 和位置。
基于同一发明构思,本申请实施例还提供了一种掺杂石墨烯的制备方法, 包括以下步骤:
A2、将上述制备得到的类石墨超分子于惰性气氛下升温至600~1200℃, 然后保温1~5h即得石墨烯。
具体的,本申请实施例中掺杂石墨烯的制备方法A1具体包括:取上述实施 例中制备得到的类石墨超分子置于瓷舟中,再将瓷舟置于管式炉中,在氮气氛 围下以10℃/min的升温速率升温至900℃,然后于900℃下煅烧3h,酸洗干燥 后,即得到Ni,N共掺杂的石墨烯(NiN-graphene)。
本申请实施例1中制备得到的类石墨超分子的不对称结构单元由一个 [Co(bpdo)3]2+(bpdo指代N,N’-二氧化-2,2’-联吡啶)、二分之一个 [Co(bpdo)2·2H2O]2+、两个NH4 +、一个p-sulfonatocalix[4]arenes5-和水分子组成。 其中[Co(bpdo)3]2+由Co2+与三个N,N’-二氧化-2,2’-联吡啶配位得到, [Co(bpdo)2·2H2O]2+作为大尺寸的间隔分子由Co2+与两个N,N’-二氧化-2,2’-联吡 啶分子和两个水分子配位得到。p-sulfonatocalix[4]arenes5-中一个酚羟基被去质子 化,总价态为-5。
图1为实施例1中制备得到的类石墨超分子的非对称单元示意图(为了更 加直观,省略了水分子和铵根离子);组成非对称单元的三部分分别如图所示 Co1为[Co(bpdo)3]2+,Co2为二分之一个[Co(bpdo)2·2H2O]2+,另一分子为 p-sulfonatocalix[4]arenes5-,三者通过氢键作用(图1虚线)形成一个非对称单元。
图2为本申请实施例1中制备得到的类石墨超分子中富含碳原子的层状结 构空间结构示意图;其由图1中所示非对称单元 (Co1+Co2+p-sulfonatocalix[4]arenes5-)通过共用[Co(bpdo)2·2H2O]2+分子(图2 虚线)而组装形成二维富碳原子层。
图3为本申请实施例1中制备得到的类石墨超分子的空间结构示意图,类 石墨超分子由图2所示的富碳原子层被间隔分子([Co(bpdo)2·2H2O]2+)隔开, 形成与石墨类似结构。高温热解时,富碳原子层被碳化成碳层并被剥离出来形 成石墨烯。
图4为本申请实施例1中的类石墨超分子的粉末X射线衍射谱图,其中a 为本申请实施例1制备得到的类石墨超分子的XRD图谱,b为根据图3单晶数 据得到的拟合XRD图谱,由图5中可知本申请制备得到的类石墨超分子与根据 单晶数据拟合得到的XRD图谱基本吻合,说明了类石墨超分子的成功合成。
图5为本申请实施例1中制备得到的Co,N共掺杂的石墨烯(CoN-graphene) 的X射线衍射谱图,从图6中可以看出Co,N共掺杂的石墨烯的主要组成为碳, 其在2θ=45°附近的宽峰证实其少层石墨烯的结构。
测试本申请实施例1中制备得到的Co,N共掺杂的石墨烯(CoN-graphene) 的N2吸脱附等温线图,结果如图6所示,从图6中可知,Co,N共掺杂的石墨 烯(CoN-graphene)具有较大的比表面积,为343.8m2/g。
图7为本申请实施例1中制备得到的类石墨超分子的扫描电镜图,从图7 中可以看出,类石墨超分子表现出典型的晶体形态,这是由于由于超分子是由 主体和客体有序组合而成的长程有序结构。
图8为本申请实施例1中制备得到的Co,N共掺杂的石墨烯(CoN-graphene) 的扫描电镜图,从图9中可以看出,热解温度达到800℃时,类石墨超分子中富 碳原子层被剥离为原子厚度的杂原子掺杂石墨烯纳米片层。
图9为本申请实施例1中制备得到的Co,N共掺杂的石墨烯(CoN-graphene) 的透射电镜图,从图10中可以看出Co,N共掺杂的石墨烯(CoN-graphene)的 片层厚度非常小,为原子级厚度。
图10为本申请实施例1中制备得到的Co,N共掺杂的石墨烯(CoN-graphene) 的原子力显微镜图,从图10中可以看出Co,N共掺杂的石墨烯(CoN-graphene) 层的厚度约为1.8nm,为少层石墨烯。
图11为本申请实施例2中制备得到的Ni,N共掺杂的石墨烯(NiN-graphene) 的高角暗场扫描透射电镜图,从图11中可以看出Ni,N共掺杂的石墨烯 (NiN-graphene)的为原子级厚度,其中白色亮点为原子级分散Ni。
以上所述仅为本发明的较佳实施方式而已,并不用以限制本发明,凡在本 发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本 发明的保护范围之内。

Claims (6)

1.一种类石墨超分子的制备方法,其特征在于,包括以下步骤:
将金属盐、有机配体溶于溶剂中,于50~60℃下加热反应后,即得类石墨超
分子;
其中,所述金属盐为过渡金属硝酸盐,所述过渡金属为Co或Ni;
所述有机配体对磺酸基杯[4]芳烃铵和N,N’-二氧化-2,2’-联吡啶;
所述溶剂为水。
2.一种类石墨超分子,其特征在于,采用如权利要求1所述的制备方法制备得到。
3.一种掺杂石墨烯的制备方法,其特征在于,包括以下步骤:
将权利要求2中所述的类石墨超分子于惰性气氛下升温至600~1200℃,然后保温1~5h即得石墨烯。
4.如权利要求3所述的掺杂石墨烯的制备方法,其特征在于,将权利要求2中所述的类石墨超分子于惰性气氛下以3~10℃/min 升温至600~1200℃。
5.一种掺杂石墨烯,其特征在于,采用如权利要求3或4所述的制备方法制备得到。
6.如权利要求5所述的掺杂石墨烯,其特征在于,所述掺杂石墨烯少于5层。
CN202011047214.6A 2020-09-29 2020-09-29 类石墨超分子及其制备方法、掺杂石墨烯及其制备方法 Active CN112158829B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011047214.6A CN112158829B (zh) 2020-09-29 2020-09-29 类石墨超分子及其制备方法、掺杂石墨烯及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011047214.6A CN112158829B (zh) 2020-09-29 2020-09-29 类石墨超分子及其制备方法、掺杂石墨烯及其制备方法

Publications (2)

Publication Number Publication Date
CN112158829A CN112158829A (zh) 2021-01-01
CN112158829B true CN112158829B (zh) 2022-02-01

Family

ID=73860559

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011047214.6A Active CN112158829B (zh) 2020-09-29 2020-09-29 类石墨超分子及其制备方法、掺杂石墨烯及其制备方法

Country Status (1)

Country Link
CN (1) CN112158829B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110148762A (zh) * 2019-06-26 2019-08-20 桂林电子科技大学 一种氮、氟和过渡金属共掺杂石墨烯结构的碳材料及其一步碳化制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102304141B (zh) * 2011-05-06 2013-09-04 南开大学 一种由杯芳烃构筑的超分子聚合物材料及其制备方法
CN105810956A (zh) * 2014-12-31 2016-07-27 北京有色金属研究总院 一种掺杂石墨烯或类石墨烯的制备方法
CN106315574B (zh) * 2015-06-29 2018-03-27 徐海波 氧化石墨烯量子点及与类石墨烯结构物构成的材料及制法
CN109851810B (zh) * 2019-03-22 2020-06-09 浙江大学 一种硼烷阴离子超分子有机框架材料及其制备方法和应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110148762A (zh) * 2019-06-26 2019-08-20 桂林电子科技大学 一种氮、氟和过渡金属共掺杂石墨烯结构的碳材料及其一步碳化制备方法

Also Published As

Publication number Publication date
CN112158829A (zh) 2021-01-01

Similar Documents

Publication Publication Date Title
CN110467731B (zh) 一种稳定超薄介孔金属有机框架材料的制备方法
Prince et al. Proposed general sol− gel method to prepare multimetallic layered double hydroxides: synthesis, characterization, and envisaged application
Ren et al. From three‐dimensional flower‐like α‐Ni (OH) 2 nanostructures to hierarchical porous NiO nanoflowers: microwave‐assisted fabrication and supercapacitor properties
CN106957439B (zh) 基于含钴双金属氧化物无溶剂制备Co-MOF材料的方法
CN111129468B (zh) 一种一维金属氧化物/碳化物复合材料及其制备方法
CN108997971A (zh) ZIF-67还原氧化石墨烯基吸波复合材料(CoC-rGo)的制备方法
Yutkin et al. Synthesis and characterization of expected and unexpected topologies of homochiral porous metal (II) malate frameworks
CN109449448B (zh) 一种燃料电池阴极催化剂及其制备方法和应用
Jiang et al. Enhanced performance of well-dispersed Co species incorporated on porous carbon derived from metal-organic frameworks in 1, 3-butadiene hydrogenation
CN111105935B (zh) 一种一维金属氧化物/碳化物复合材料及其制备方法
Zhao et al. Fe-Doped Metal-Organic Frameworks-Derived Electrocatalysts for Oxygen Reduction Reaction in Alkaline Media
Akhbari et al. Solid-and solution-state structural transformations in flexible lead (II) supramolecular polymers
CN112158829B (zh) 类石墨超分子及其制备方法、掺杂石墨烯及其制备方法
CN108946732B (zh) 一种二维mof衍生碳化物的制备方法
Wei et al. Three-phase composites of NiFe2O4/Ni@ C nanoparticles derived from metal-organic frameworks as electrocatalysts for the oxygen evolution reaction
Shi et al. Water-mediated proton conductive properties of three water-stable metal-organic frameworks constructed by pyromellitic acid
Chen et al. Rational design of cobalt catalysts embedded in N-Doped carbon for the alcohol dehydrogenation to carboxylic acids
CN104384527B (zh) 一种自支撑的二维过渡金属/金属氧化物混相纳米片的制备方法
CN114100648A (zh) 一种ZnMo-MOF衍生的碳包裹碳化钼的合成方法
Ghosh et al. Mesoporous CuO nanostructures for low-temperature CO oxidation
Moneeb et al. Bimetallic single-source precursor for the synthesis of pure nanocrystalline room temperature-stabilized β-NiMoO4
CN110862549A (zh) 一种基于延胡索酸及4,4’-联吡啶的三维金属-有机骨架晶体材料及其制备方法
CN111269431A (zh) 一种zif-67纳米花的制备方法
CN115475641B (zh) 一种金属原子锚定的硼氮共掺杂碳材料及其制备方法
CN112206777B (zh) 碳化八面体材料hkust-1-400的制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant