CN114100648A - 一种ZnMo-MOF衍生的碳包裹碳化钼的合成方法 - Google Patents

一种ZnMo-MOF衍生的碳包裹碳化钼的合成方法 Download PDF

Info

Publication number
CN114100648A
CN114100648A CN202111398447.5A CN202111398447A CN114100648A CN 114100648 A CN114100648 A CN 114100648A CN 202111398447 A CN202111398447 A CN 202111398447A CN 114100648 A CN114100648 A CN 114100648A
Authority
CN
China
Prior art keywords
znmo
carbon
particles
molybdenum carbide
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111398447.5A
Other languages
English (en)
Inventor
李启彭
郭园园
钱金杰
胡悦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhaotong University
Original Assignee
Zhaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhaotong University filed Critical Zhaotong University
Priority to CN202111398447.5A priority Critical patent/CN114100648A/zh
Publication of CN114100648A publication Critical patent/CN114100648A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公布了一种利用双金属有机框架通过碳化原位合成多孔碳包裹的碳化钼纳米颗粒复合材料及其制备方法,具体操作如下:(1)将硝酸锌,2‑甲基咪唑(MI)溶于甲醇中,在室温下搅拌24小时后得到纳米级Zn‑MI颗粒。(2)将Zn‑MI,钼酸钠和聚乙烯吡咯烷酮溶于二甲基甲酰胺中,将溶液置于反应釜中在150℃反应12小时,通过引入MoO4四面体次级结构单元形成截角八面体形的ZnMo‑MI。(3)将粉末状ZnMo‑MI置于石英舟上并在氩气气氛下进行管式炉煅烧。炉温以5℃/min的升温速率升至1000℃且保持2小时后,获得ZnMo‑MI‑1000。本发明所需材料廉价、制备工艺简单,稳定性和重复性好,具有很强的可操作性和实用性,其中在电催化产氢等领域具有潜在的应用价值及很强的实用性。

Description

一种ZnMo-MOF衍生的碳包裹碳化钼的合成方法
技术领域
本发明属于微纳米材料合成技术领域,具体涉及一种双金属MOF原位衍生的碳包裹碳化钼纳米颗粒的合成方法。
背景技术
碳化钼(Mo2C)属于过渡金属碳化物,具有良好的热稳定性、机械性能、高导电性或超导性,在能源存储、环境治理和电子器件等领域具有广泛的应用前景。Mo2C具有低成本和高析氢反应活性(HER)等优点,而纳米级Mo2C具有更多活性位点,因此备受关注。已合成出Mo2C的各种纳米结构,包括纳米线、纳米片、纳米球、纳米颗粒等等。到目前为止,已经发展了几种合成具有纳米结构的Mo2C的方法,如六羰基钼的直接热解、熔盐法、电化学法、溶液制备、钼氧化物与碳的高温碳热还原、化学气相沉积法等等。其中化学气相沉积法由于流程简单、可大面积制备等优点,得到了广泛研究。
金属有机框架(MOFs)是由金属离子和有机配体通过多功能配位键组装而成的高度有序结晶态的固体化合物,由于MOFs中有机配体较长,导致MOFs具有较高的的孔隙率和比表面积,以及高的气体吸收能力。以上特点赋予了MOFs的多种重要功能和明确的应用前景。近年来,以MOFs作为前驱体合成的碳包裹Mo2C纳米颗粒由于具有MOFs衍生得到的多孔性与大的比表面积、丰富的碳层及Mo2C纳米颗粒的催化活性等优点使其成为一大热点。然而,因为通常需要较高的渗碳温度来构建纯碳化物相,但纳米结构往往在高温下团聚,这可能大大降低活性中心的密度。因此,开发新的策略来构建具有高孔隙度和大量暴露活性位点的Mo2C纳米结构仍然是一个挑战。
发明内容
本发明还提供了该碳包裹Mo2C纳米颗粒的制备方法,本发明采用化学气相沉积法(CVD)制备Mo2C纳米颗粒,其操作过程简单、重复性及可控性好。
为了达到上述发明目的,本发明具体技术方案如下:
一种碳包裹的Mo2C纳米颗粒的制备方法,其特征在于,包括步骤:(1)将六水合硝酸锌,MI(MI=2-甲基咪唑)溶于甲醇中,且将溶液在室温下搅拌24小时后得到正十二面体形貌的Zn-MI。(2)将Zn-MI,Na2MoO4·2H2O和聚乙烯吡咯烷酮溶于N,N-二甲基甲酰胺中,采用溶剂热的方法将溶液置于反应釜中在150℃反应12小时,通过引入MoO4四面体次级结构单元形成截角八面体形的ZnMo-MI。(3)利用CVD法使ZnMo-MI在1000℃碳化后,得到ZnMo-MI-1000,原位合成碳包裹碳化钼纳米颗粒。
进一步地,在所述步骤中,Zn-MI到ZnMo-MI的相态发生了明显转变。
进一步地,在所述步骤中,Zn-MI十二面体的尺寸为70~80nm,由Zn和MI配体构筑得到一种三维笼基MOF。
进一步地,在所述步骤中,ZnMo-MI截角八面体的尺寸为2~4μm,表面较光滑。Mo通过与Zn连接,引入MoO4四面体实现了结构的转变。
进一步地,在所述步骤中,Zn-MI和ZnMo-MI的BET比表面积分别为1709.7m2 g-1和861.6m2 g-1
进一步地,在所述步骤中,ZnMo-MI截角八面体在氩气气氛中1000℃煅烧得到碳包裹的Mo2C纳米颗粒。
进一步地,在所述步骤中,Mo2C纳米颗粒由石墨化碳层包裹,Mo2C纳米颗粒的尺寸为3~4nm。
进一步地,在所述步骤中,ZnMo-MI-1000的BET表面积为339.5m2 g-1
进一步地,在所述步骤中,ZnMo-MI-1000粉末的缺陷峰与石墨峰峰强比值为ID/IG=0.946,具备高度石墨化特征。
进一步地,在所述步骤中,所述沉淀物经离心、洗涤、并在85℃下进行真空干燥12小时,获得所述的ZnMo-MI粉末。
本发明利用双金属ZnMo-MOF原位热分解反应得到碳包裹碳化钼纳米颗粒,提供了一种制备碳化钼纳米颗粒的新方法。该方法所需材料廉价、制备过程简单,操作简便,制得的产品形貌规则,比表面积较大,形貌可控性强,稳定性和重复性好,具有很强的可操作性和实用性,其中在电催化性能等领域具有潜在的应用价值及很强的实用性。
附图说明
图1为本发明制备碳包裹碳化钼纳米颗粒的流程示意图;
图2为合成的Zn-MI和溶剂热法转化得到的ZnMo-MI的粉末X射线衍射(PXRD)图;
图3为Zn-MI和ZnMo-MI的扫描电子显微镜(SEM)图;
图4为Zn-MI和ZnMo-MI的N2吸附-脱附曲线和孔径分布(PSD)曲线;
图5为Zn-MI和ZnMo-MI在氮气气氛下的热重分析(TGA)图;
图6为化学气相沉积法(CVD)得到的碳包裹的Mo2C材料的SEM图。其中,(a)和(b)为同一样品不同放大倍数下的SEM图,对应的标尺大小分别为10μm、2μm;
图7为CVD法得到的碳包裹的Mo2C材料的PXRD图;
图8为CVD法得到的碳包裹的Mo2C材料的透射电子显微镜(TEM)图,其中,(a)为该样品在1μm标尺下的TEM图,(b)、(c)为在碳包裹的Mo2C材料边缘处的高分辨透射电子显微镜图(HR-TEM),其中(c)图显示了指向Mo2C(002)、Mo(110)以及石墨碳层(002)的晶格条纹,(b)、(c)对应的标尺大小分别为10nm、5nm;
图9为CVD法得到的碳包裹的ZnMo-MI-1000的N2吸附-脱附曲线和PSD曲线;
图10为CVD法得到的ZnMo-MI-1000的拉曼谱图。
具体实施方式
下面通过实施例,结合附图进一步详细描述本发明,但本发明并不限于以下实施例。
本发明公开了一种使用双金属基MOF作为前驱体,采用CVD法,原位合成碳包裹的Mo2C纳米颗粒的方法;换句话说,本发明提供了一种新的碳包裹碳化钼纳米颗粒的制备方法。
根据本发明的碳包裹的Mo2C纳米颗粒的制备方法包括下述步骤:
(1)在烧杯中将5mmol的六水合硝酸锌和40mmol的MI(MI=2-甲基咪唑)分别溶入50mL的甲醇溶液中,并进行混合。混合物在室温下剧烈搅拌24小时。所得的白色粉末经过滤从混合溶液中分离出来,随后在真空干燥箱(85℃)中过夜干燥,得到具有光滑表面的十二面体。
(2)在反应釜采用溶剂热法合成了微米级ZnMo-MI截角八面体,首先将Zn-MI(1.00mmol)、200mg PVP(PVP=聚乙烯吡咯烷酮)和Na2MoO4·2H2O(0.25mmol)溶于DMF(10mL)溶液中在150℃下加热反应12小时,随后将混合物离心分离,依次使用DMF、水、乙醇进行洗涤,最后在真空干燥箱(85℃)中过夜干燥,得到微米级截角八面体形貌的ZnMo-MI。
(3)CVD法得到ZnMo-MI-1000,即碳包裹的Mo2C纳米颗粒。将粉末状ZnMo-MI(200mg)置于石英舟上并在氩气气氛下进行CVD管式炉煅烧。炉温以5℃/min的升温速率升至1000℃。在1000℃保持2小时后,所得的碳包裹的碳化钼纳米颗粒自然冷却至室温。得到的ZnMo-MI-1000粉末约40mg,产率为前体的20%。(如图1所示)。
图2为Zn-MI及溶剂热法合成的ZnMo-MI的PXRD图,从图中可以看出,以5.3°和7.3°两处峰为代表的峰位置转变,证明了Zn-MI到ZnMo-MI的转变,这是由于Mo通过与Zn连接,引入MoO4四面体实现了结构的转变,从而发生了相态的转变。
图3是Zn-MI和ZnMo-MI粉末的SEM图,从图中可以看出:Zn-MI十二面体的尺寸为70~80nm。ZnMo-MI微粒具有光滑表面的截角八面体形貌,微粒的尺寸远大于Zn-MI为2~4μm。
图4是Zn-MI和ZnMo-MI的N2吸附-脱附曲线和PSD曲线,从图中可以看出:Zn-MI及ZnMo-MI均存在微孔的特性,经BET测试,Zn-MI的比表面积为1709.7m2 g-1。由于MoO4四面体的引入,ZnMo-MI的比表面积有所降低(861.6m2 g-1)。
图5为Zn-MI和ZnMo-MI在氮气气氛下的TGA图,从图中可以看出:所得二者在较高温度下均能稳定存在,其中ZnMo-MI在氩气气氛下转化为碳包裹的Mo2C纳米颗粒的温度大约在900℃。
图6为CVD法得到的ZnMo-MI-1000粉末的SEM图,从图中可以看出:ZnMo-MI-1000微粒(2~4μm)的尺寸相较于作为起始底物没有发生明显变化。
图7为ZnMo-MI-1000,即碳包裹的Mo2C材料的PXRD谱图,在2θ=34.5°,37.9°,39.3°,52.1°和61.5°处的五个衍射峰分别归属于Mo2C(PDF#35-0787)的(100),(002),(101),(102)和(110)晶面。在2θ=40.0°,58.6°和73.7°处的三个衍射峰分别归属于Mo(PDF#42-1120)的(110),(200)和(211)晶面。在2θ=26.0°,37.0°处的两个衍射峰归属于石墨碳层(PDF#41-1487),证实了产物中各物相的存在。
图8为CVD法得到碳包裹碳化钼纳米颗粒的TEM图和HR-TEM图,从图中可以看出:证实了所得的碳包裹碳化钼纳米颗粒的结构,具有指向Mo2C的(002)面、Mo的(110)面和石墨碳层(002)的晶格条纹。
图9为CVD法得到多分散的碳包裹碳化钼纳米颗粒的N2吸附-脱附曲线和PSD曲线,从图中可以看出:ZnMo-MI-1000粉末具有介孔和大孔的特性,经BET测试,其比表面积为339.5m2 g-1
图10为CVD法得到的ZnMo-MI-1000的拉曼谱图,从图中可以看出:所得碳包裹的Mo2C材料的缺陷峰与石墨峰峰强比值ID/IG为0.946,表明了最终所得材料具有一定的石墨化程度。

Claims (10)

1.一种ZnMo-MOF原位合成碳包裹碳化钼的制备方法,其制备是包括下列步骤:
(1)纳米级Zn-MI的制备
在烧杯中将5mmol的六水合硝酸锌和40mmol的MI分别溶入50ml的甲醇溶液中,并进行混合。混合物在室温下剧烈搅拌24小时。所得的白色粉末经过滤从混合溶液中分离出来,随后在真空干燥箱(85℃)中过夜干燥。PXRD图中衍射峰与标准峰位置相同,峰强较强,证明了合成的Zn-MI具有较好的晶型。从SEM图像检测到具有光滑表面的十二面体。
(2)ZnMo-MI双金属MOF的制备。
在反应釜采用溶剂热法合成了微米级ZnMo-MI截角八面体,首先将Zn-MI(1.00mmol)、200mg PVP(PVP=聚乙烯吡咯烷酮)和Na2MoO4·2H2O(0.25mmol)溶于DMF(10mL)溶液中,在150℃下加热反应12小时,随后将混合物离心分离,依次使用DMF、水、乙醇进行洗涤,最后在真空干燥箱(85℃)中过夜干燥。首先通过PXRD谱图可以看到ZnMo-MI有明显的特征峰并与标准峰相吻合,且以5.3°和7.3°两处峰为代表的峰位置转变,证明了Zn-MI到ZnMo-MI的转变。这是由于Mo通过与Zn连接,引入MoO4四面体实现了结构的转变,从而发生了相态的转变。通过SEM表征这些颗粒的形态,从图像检测到ZnMo-MI具有光滑表面的截角八面体,尺寸为2~4μm。
(3)利用CVD法得到碳包裹的Mo2C纳米颗粒。将粉末状ZnMo-MI(200mg)置于石英舟上并在氩气气氛下CVD管式炉煅烧。炉温以5℃/min的升温速率升至1000℃,并保持2小时后,自然冷却至室温得到ZnMo-MI-1000,即碳包裹的碳化钼纳米颗粒,产量约40mg,产率为前驱体的20%。通过SEM,TEM,HRTEM,PXRD和Raman等表征手段对得到的碳包裹的碳化钼纳米颗粒进行了表征。SEM图像显示粉末状ZnMo-MI的原始形状在煅烧后形貌保存完好,且ZnMo-MI-1000微粒(2~4μm)的尺寸相较于作为起始底物没有发生明显变化。通过PXRD谱图证实产物相态发生转变,这与ZnMo-MI向碳包裹碳化钼的转化有关,ZnMo-MI-1000在2θ=34.5°,37.9°,39.3°,52.1°和61.5°处的五个衍射峰分别归属于Mo2C(PDF#35-0787)的(100),(002),(101),(102)和(110)晶面。在2θ=40.0°,58.6°和73.7°处的三个衍射峰分别归属于Mo(PDF#42-1120)的(110),(200)和(211)晶面。在2θ=26.0°,37.0°处的两个衍射峰归属于石墨碳层(PDF#41-1487)。通过TEM和HRTEM图像中晶格条纹等信息证实了所得Mo2C纳米颗粒的均匀分布及其大小(3~4nm)。
2.根据权利要求1所述的制备方法,其特征是:Zn-MI到ZnMo-MI的相态发生了明显转变。
3.根据权利要求1所述的制备方法,其特征是:所述步骤(1)中Zn-MI十二面体的尺寸为70~80nm。
4.根据权利要求1所述的制备方法,其特征是:所述步骤(2)中ZnMo-MI截角八面体的尺寸为2~4μm,表面较光滑。
5.根据权利要求1所述的制备方法,其特征是:Zn-MI和ZnMo-MI的BET比表面积分别为1709.7m2 g-1和861.6m2 g-1
6.根据权利要求1所述的制备方法,其特征是:所述步骤(3)中ZnMo-MI截角八面体在氩气气氛中1000℃煅烧得到碳包裹的Mo2C纳米颗粒。
7.根据权利要求1所述的制备方法,其特征是:Mo2C纳米颗粒由石墨化碳层包裹,碳化钼颗粒的尺寸为3~4nm。
8.根据权利要求1所述的制备方法,其特征是:ZnMo-MI-1000粉末的BET表面积为339.5m2 g-1
9.根据权利要求1所述的制备方法,其特征是:ZnMo-MI-1000粉末的缺陷峰与石墨峰峰强比值为ID/IG=0.946,具备高度石墨化特征。
10.根据权利要求1所述的制备方法,其特征是:所述步骤(1-2)中,所述混合物经离心分离,依次使用DMF、水、乙醇进行洗涤,最后在真空干燥箱(85℃)中过夜干燥。
CN202111398447.5A 2021-11-23 2021-11-23 一种ZnMo-MOF衍生的碳包裹碳化钼的合成方法 Pending CN114100648A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111398447.5A CN114100648A (zh) 2021-11-23 2021-11-23 一种ZnMo-MOF衍生的碳包裹碳化钼的合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111398447.5A CN114100648A (zh) 2021-11-23 2021-11-23 一种ZnMo-MOF衍生的碳包裹碳化钼的合成方法

Publications (1)

Publication Number Publication Date
CN114100648A true CN114100648A (zh) 2022-03-01

Family

ID=80440510

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111398447.5A Pending CN114100648A (zh) 2021-11-23 2021-11-23 一种ZnMo-MOF衍生的碳包裹碳化钼的合成方法

Country Status (1)

Country Link
CN (1) CN114100648A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114735780A (zh) * 2022-04-07 2022-07-12 昭通学院 一种高效选择性吸附水溶液中Cr(VI)离子的高稳定DUT-52材料的应用
CN116920811A (zh) * 2023-09-16 2023-10-24 山东海化集团有限公司 一种zif-8中空结构材料的钒吸附剂制备方法及应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105536835A (zh) * 2015-12-18 2016-05-04 济宁学院 一种杂原子掺杂的碳负载碳化铁/碳化钼或钨催化剂及其制备方法和应用
CN113652709A (zh) * 2021-07-07 2021-11-16 暨南大学 一种氮掺杂碳纳米管包裹镍铁/碳化钼及其制备方法和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105536835A (zh) * 2015-12-18 2016-05-04 济宁学院 一种杂原子掺杂的碳负载碳化铁/碳化钼或钨催化剂及其制备方法和应用
CN113652709A (zh) * 2021-07-07 2021-11-16 暨南大学 一种氮掺杂碳纳米管包裹镍铁/碳化钼及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YUANYUAN GUO ET AL.: "Ultrasmall Mo2C in N-doped carbon material from bimetallic ZnMo-MOF for efficient hydrogen evolution", 《INTERNATIONAL JOURNAL OF HYDROGEN ENERGY》, vol. 46, no. 2, pages 2182 - 2190, XP086426769, DOI: 10.1016/j.ijhydene.2020.10.121 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114735780A (zh) * 2022-04-07 2022-07-12 昭通学院 一种高效选择性吸附水溶液中Cr(VI)离子的高稳定DUT-52材料的应用
CN114735780B (zh) * 2022-04-07 2023-12-19 昭通学院 一种高效选择性吸附水溶液中Cr(VI)离子的高稳定DUT-52材料的应用
CN116920811A (zh) * 2023-09-16 2023-10-24 山东海化集团有限公司 一种zif-8中空结构材料的钒吸附剂制备方法及应用
CN116920811B (zh) * 2023-09-16 2024-01-30 山东海化集团有限公司 一种zif-8中空结构材料的钒吸附剂制备方法及应用

Similar Documents

Publication Publication Date Title
CN109309214B (zh) 碳包覆镍纳米复合材料的制备方法
CN109956463B (zh) 一种碳纳米管及其制备方法
Zheng et al. Nano electrochemical reactors of Fe 2 O 3 nanoparticles embedded in shells of nitrogen-doped hollow carbon spheres as high-performance anodes for lithium-ion batteries
Wu et al. Porous cobalt phosphide/graphitic carbon polyhedral hybrid composites for efficient oxygen evolution reactions
CN106564875B (zh) 一种单分散钴氮共掺杂中空碳纳米颗粒的制备方法
CN108806998B (zh) 溶剂热法合成基于ZIF-8的三元复合ZnO/ZnCo2O4/NiO的方法及其应用
Shi et al. Shape-controlled synthesis and characterization of cobalt oxides hollow spheres and octahedra
Chen et al. MOF-derived Co9S8/MoS2 embedded in tri-doped carbon hybrids for efficient electrocatalytic hydrogen evolution
CN106975489B (zh) 一种氧化镍原位包覆石墨烯纳米复合材料的制备方法
CN110152664B (zh) 一种一维氧化亚铜/碳纳米复合催化剂的制备方法及应用
CN107032408B (zh) 一种MnO掺杂的四氧化三铁/C分级纳米球结构复合材料及其制备方法
CN114100648A (zh) 一种ZnMo-MOF衍生的碳包裹碳化钼的合成方法
Hou et al. Three-dimensional porous ultrathin carbon networks reinforced PBAs-derived electrocatalysts for efficient oxygen evolution
Ren et al. Tunable nano-effect of Cu clusters derived from MOF-on-MOF hybrids for electromagnetic wave absorption
Asgarian et al. The effect of different sources of porous carbon on the synthesis of nanostructured boron carbide by magnesiothermic reduction
Juibari et al. Metal–organic framework-derived nanocomposite metal-oxides with enhanced catalytic performance in thermal decomposition of ammonium perchlorate
Zou et al. Controllable self-catalytic fabrication of carbon nanomaterials mediated by a nickel metal organic framework
Huang et al. Facile preparation of network-like porous hematite (α-Fe2O3) nanosheets via a novel combustion-based route
Shi et al. Thiacalix [4] arene-supported tetradecanuclear cobalt nanocage cluster as precursor to synthesize CoO/Co 9 S 8@ CN composite for supercapacitor application
CN108996557B (zh) 一种空心球结构氧化镍/氧化铜复合纳米材料及其制备方法
Liu et al. Hierarchically nanostructured vanadium nitride microspheres assembled with porous nanosheets fabricated by a template-free route
Ye et al. Efficient promotion of Calliandra haematocephala flower-like MXene/ZnCo2O4 nanocomposites on thermal decomposition of ammonium perchlorate
CN108946732B (zh) 一种二维mof衍生碳化物的制备方法
CN112978804B (zh) 多层盒状硫化亚铁@掺氮碳复合材料的制备方法
Liu et al. Janus coordination polymer derived PdO/ZnO nanoribbons for efficient 4-nitrophenol reduction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20220301

WD01 Invention patent application deemed withdrawn after publication