CN112156787B - 一种无定型FeOOH修饰的BiO2-x异质结光催化剂及其制备方法和应用 - Google Patents

一种无定型FeOOH修饰的BiO2-x异质结光催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN112156787B
CN112156787B CN202011191170.4A CN202011191170A CN112156787B CN 112156787 B CN112156787 B CN 112156787B CN 202011191170 A CN202011191170 A CN 202011191170A CN 112156787 B CN112156787 B CN 112156787B
Authority
CN
China
Prior art keywords
bio
solution
preparation
salt
photocatalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011191170.4A
Other languages
English (en)
Other versions
CN112156787A (zh
Inventor
陈嵘
黄圣男
代嘉伟
苏春平
朱德雨
田雪松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Institute of Technology
Original Assignee
Wuhan Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Institute of Technology filed Critical Wuhan Institute of Technology
Priority to CN202011191170.4A priority Critical patent/CN112156787B/zh
Publication of CN112156787A publication Critical patent/CN112156787A/zh
Application granted granted Critical
Publication of CN112156787B publication Critical patent/CN112156787B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/843Arsenic, antimony or bismuth
    • B01J23/8437Bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Toxicology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种具有近红外响应的无定型FeOOH/BiO2‑x异质结复合光催化材料,通过在常温条件下将三价铁离子在弱碱性条件下原位沉积在亚稳态BiO2‑x薄片上制备而成。本发明所述复合光催化材料具有较宽的光吸收范围,在近红外光及太阳光下催化有机物降解效果优异;且涉及的制备方法简单,重复性好,原料自然丰度大,无毒无害,具有良好的生物相容性,不易造成二次污染,适合推广应用。

Description

一种无定型FeOOH修饰的BiO2-x异质结光催化剂及其制备方法 和应用
技术领域
本发明属于功能复合材料及其制备技术领域,具体涉及一种无定型FeOOH修饰的BiO2-x异质结光催化剂及其制备方法和应用。
背景技术
随着经济社会的快速发展,环境污染问题日益突出。光催化氧化具有利用太阳能、能耗小、反应条件温和、污染物分解彻底等特点而备受关注。然而,光催化降解技术仍处于萌芽阶段,催化剂对光有限的利用率仍是制约其实现工业化的巨大瓶颈。大部分光催化系统仅在紫外线或可见光下具有活性,它们分别仅占太阳辐射的4%和46%,占太阳光谱近50%的红外光(NIR)一直未得到充分利用。因此,开发新型高效具有全谱响应的光催化剂,有效提高光利用效率,具有重要的实际应用意义。
BiO2-x是一类新型光催化剂,具有管状、球状以及片状结构,其中片状结构易于合成且具有较大的比表面积,有利于提供更多的吸附位点。它的光响应范围可延伸至近红外光区,长波长、低能量的近红外光就可以将其激发产生电子及空穴,参与有机污染物的氧化还原反应。其太阳能利用能力较强,也是近年来研究的热点。然而,光响应范围宽的光催化材料其禁带宽度较窄(1.39eV),一方面会造成电子空穴对的快速复合,另一方面材料表面不易形成丰富的活性氧物种用于有机物的催化降解。除此之外,材料表面的五价铋容易得电子而被还原,使材料的稳定性降低,这大大限制了缺陷态氧化铋在实际污水处理中的应用。
构筑异质结是提升单组分催化剂性能的一种广泛使用的方法。目前已有通过构筑异质结提升缺陷态氧化铋性能方法专利的报道。例如专利CN109569568中将钛酸四丁酯与BiO2-x共同水热形成TiO2包覆层,核壳结构的形成有效的减少了BiO2-x的光腐蚀,但这种方法同时也缩小了材料的光吸收范围,降低了太阳光利用率。专利CN108816214通过一步水热法合成 Bi2O2.75/BiO2-x复合催化剂,使材料在紫外-可见-近红外下的吸收都有提升。但上述专利中缺陷的精确合成难以控制,并且氧空缺的存在不一定有利于催化活性的提升。因此,进一步开发具有宽光谱响应同时可缓解光腐蚀,并可大批量制备的提升BiO2-x性能的复合材料的方法具有重要的实际应用价值。
发明内容
本发明的主要目的在于针对现有技术存在的不足,提供一种无定型FeOOH修饰的BiO2-x异质结光催化剂,它具有全谱响应特性并可有效减少光腐蚀,且生物相容性好,可实现氯酚类污染物的高效降解及矿化;且涉及的制备方法简单,操作方便,适合推广应用。
为实现上述目的,本发明采用的技术方案为:
一种具有近红外响应的无定型FeOOH修饰的BiO2-x异质结光催化剂,它利用Fe基前驱体溶液在片状BiO2-x表面原位生长FeOOH形成异质结而成;其中片状BiO2-x的厚度为0.021-0.058μm。
上述方案中,所述片状BiO2-x以铋盐和氢氧化钠为主要原料进行水热反应生成BiO2-x,并加入乙醇溶液中进行超声剥离而成。
上述方案中,所述Fe基前驱体溶液由Fe盐和碱液构成。
上述方案中,所述碱液为氨水溶液或氢氧化钠溶液。
上述一种无定型FeOOH修饰的BiO2-x异质结光催化剂的制备方法,包括如下步骤:
1)将铋源加入NaOH溶液中,超声分散均匀,然后将所得混合液加热进行水热反应,再经离心洗涤干燥,得BiO2-x
2)将所得BiO2-x加入乙醇溶液中,超声分散,得BiO2-x悬浊液;
3)将铁盐溶液逐滴加入所得BiO2-x悬浊液中,混合均匀,再加入碱液;铁盐溶液和碱液构成Fe基前驱体溶液;将所得溶液体系进行搅拌反应,再经离心洗涤干燥,即得所述无定型 FeOOH修饰的BiO2-x异质结光催化剂(FeOOH/BiO2-x)。
上述方案中,所述铋源为铋酸钠或二水铋酸钠等。
上述方案中,所述水热反应温度为160-180℃,时间为12-18h。
上述方案中,所述NaOH溶液的浓度为1-2mol/L。
上述方案中,步骤1)中所得混合液中铋源的浓度为0.03-0.17mol/L。
上述方案中,步骤2)中所述BiO2-x悬浊液中BiO2-x的浓度为0.003-0.017g/mL;乙醇溶液中乙醇的体积分数为50-60%。
上述方案中,步骤2)中所述超声时间为2-3h。
上述方案中,所述铁盐为氯化铁、硝酸铁、硫酸铁中的任意一种;碱液为氨水溶液或氢氧化钠溶液。
上述方案中,所述BiO2-x与铁盐的摩尔比为(0.7-11.1):1,当BiO2-x与氯化铁摩尔比为2.77:1 时可得到性能最佳复合型催化剂。
上述方案中,步骤3)所得溶液体系中,铁盐的摩尔浓度为2.5-40mmol/L;所得溶液体系的pH值范围为8.0-9.5。
上述方案中,所述常温搅拌反应时间为8-12h。
将上述方案所述无定型FeOOH修饰的BiO2-x异质结光催化剂应用于降解含氯酚类污染物废水,其中催化剂相对废水用量为4×10-4-6×10-4g/mL;含氯酚类污染物为氯代苯酚,如4-CP、 2,4-DCP等。
上述方案中,所述催化剂的催化条件为太阳光。
本发明的原理为:
本发明首先以铋酸钠和氢氧化钠为原料,在高温条件下进行水热反应,利用氢氧根的还原性使得具有层状结构的铋酸钠晶格中两种不同化学环境中的Bi5+不同程度的还原,形成 BiO2-x;所得BiO2-x在机械超声的过程中,乙醇分子进入BiO2-x层间,在乙醇插层和超声剥离的共同作用下使BiO2-x厚度变小,形成超薄BiO2-x片的悬浊液,然后加入三价铁离子,使其吸附在亚稳态BiO2-x的薄片上,并在碱液营造的弱碱性氛围下原位沉积无定形的FeOOH在 BiO2-x的表面,形成异质结结构。
本发明所得超薄片状的形貌可有效提升材料的比表面积,且有利于载流子迁移;同时 FeOOH/BiO2-x异质结结构的形成可有效分离光生电子和空穴,减少载流子复合几率,并使所得复合材料表现出良好的催化氧化能力。
与现有技术相比,本发明的有益效果为:
1)首次提出无定型FeOOH/BiO2-x异质结的构建,可有效提高BiO2-x类材料的带隙值,促进材料表面表现出更丰富的活性物质,并表现出全谱响应特性,可实现氯酚类污染物的高效降解及矿化;
2)所述光催化材料涉及的制备方法简单,操作方便,可大批量合成;且原料自然丰度大,无毒无害,具有良好的生物相容性,不易造成二次污染,环境友好。
附图说明
图1为本发明实施例1所得复合光催化剂的XRD图;
图2为本发明实施例1所得复合光催化剂的SEM图;
图3为本发明实施例1所得复合光催化剂的EDX mapping图;
图4为本发明实施例1-3所得复合光催化剂的DRS图;
图5为本发明实施例1-3所得复合光催化剂的光电流图;
图6为本发明实施例1-3所得复合光催化剂在近红外光下降解氯酚的活性图;
图7为本发明实施例4所得复合光催化剂在自然光下降解氯酚的活性图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
实施例1
一种无定型FeOOH修饰的BiO2-x异质结光催化剂(FeOOH/BiO2-x),其制备方法包括如下步骤:
1)取3.6g氢氧化钠溶解于90mL去离子水中,待冷却后加入4.2g二水铋酸钠,超声分散30min后,将所得铋酸钠悬浊液转移至120mL不锈钢反应釜中,并在180℃下连续反应12h;水热反应结束后,用去离子水将得到的固体洗涤至中性,于60℃下真空干燥,即得BiO2-x
2)取0.4g所得BiO2-x于锥形瓶中,加入60mL乙醇溶液(乙醇浓度为50vol%),连续超声3h,得BiO2-x薄片;然后向所得悬浊液中加入0.0406g六水三氯化铁,搅拌30min后,逐滴加入氨水溶液调整pH至8.5,常温搅拌反应12h后离心洗涤,于60℃度真空下干燥,即得所述复合光催化剂(FeOOH/BiO2-x-1)。
图1为本发明所得产物的XRD图谱,图中BiO2-x为步骤1)所得产物,FeOOH为参照步骤2)所述步骤,去除其中引入的BiO2-x后所得产物;从谱图可以看出采用本发明所述条件制备的单组分FeOOH与标准卡片对应良好,说明该条件下可以生成FeOOH;所制备的复合材料的峰型与单组分BiO2-x的衍射峰一致(无定型FeOOH的特征峰在所得复合材料中较难体现),说明BiO2-x仍然保持良好的晶型,晶体结构未被破坏。
图2为本发明所得产物的SEM图,可以看出所制备复合材料为超薄片状结构,FeOOH均匀的分布在BiO2-x薄片上。图3为发明所得材料的元素分布图,可进一步表明FeOOH均匀负载于BiO2-x之上。
实施例2
一种无定型FeOOH修饰的BiO2-x异质结光催化剂(FeOOH/BiO2-x),其制备方法包括如下步骤:
1)取1.2g氢氧化钠溶解于30mL去离子水中,待冷却后加入1.4g二水铋酸钠,超声分散30min后,将所得铋酸钠悬浊液转移至50mL不锈钢反应釜中,并在180℃下连续反应18h;水热反应结束后,用去离子水将得到的固体洗涤至中性,于60℃下真空干燥,即得BiO2-x
2)取0.4g所得BiO2-x于锥形瓶中,加入60mL 50wt%的乙醇溶液,连续超声3h,得BiO2-x薄片;然后向所得悬浊液中加入0.1622g六水三氯化铁,搅拌30min后,逐滴加入氨水溶液调整pH至8.5,常温搅拌反应12h后离心洗涤,于60℃度真空下干燥,即得所述复合光催化剂(FeOOH/BiO2-x-2)。
实施例3
一种无定型FeOOH修饰的BiO2-x异质结光催化剂(FeOOH/BiO2-x),其制备方法包括如下步骤:
1)取3.6g氢氧化钠溶解于90mL去离子水中,待冷却后加入4.2g二水铋酸钠,超声分散30min后,将所得铋酸钠悬浊液转移至120mL不锈钢反应釜中,并在180℃下连续反应12h;水热反应结束后,用去离子水将得到的固体洗涤至中性,于60℃下真空干燥,即得BiO2-x
2)取0.4g所得BiO2-x于锥形瓶中,加入60mL 50%的乙醇溶液,连续超声3h,得BiO2-x薄片;然后向所得悬浊液中加入0.6488g六水三氯化铁,搅拌30min后,逐滴加入氨水溶液调整pH至8.5,常温搅拌反应12h后离心洗涤,于60℃度真空下干燥,即得所述复合光催化剂(FeOOH/BiO2-x-3)。
图4为实施例1~3所得所得复合光催化剂的DRS图,结果表明所得复合材料在近红外区域均有吸收,且随着FeOOH量的增大吸收边逐渐扩大。
图5为实施例1~3所得所得复合光催化剂的光电流图,结果表明所得复合材料的光电流密度明显高于单组分的BiO2-x,说明与单一的BiO2-x相比,复合材料中产生了更多的光生电子与空穴,FeOOH的引入有利于活性的提升。
实施例4
一种无定型FeOOH修饰的BiO2-x异质结光催化剂(FeOOH/BiO2-x),其制备方法包括如下步骤:
1)取3.6g氢氧化钠溶解于90mL去离子水中,待冷却后加入4.2g二水铋酸钠,超声分散30min后,将所得铋酸钠悬浊液转移至120mL不锈钢反应釜中,并在180℃下连续反应12h;水热反应结束后,用去离子水将得到的固体洗涤至中性,于60℃下真空干燥,即得BiO2-x
2)取0.4g所得BiO2-x于锥形瓶中,加入60mL 50%的乙醇溶液,连续超声3h,得BiO2-x薄片;然后向所得悬浊液中加入0.1622g六水三氯化铁,搅拌30min后,逐滴加入氨水溶液调整pH至8.5,避光搅拌反应12h后离心洗涤,于60℃度真空下干燥,即得所述复合光催化剂。
对所本实施例所得复合材料进行活性评价,具体步骤如下:
称取0.02g所制备的复合材料加入40mL 20mg/L的2,4-DCP溶液,超声分散,暗吸附30min使2,4-DCP在材料表面达到吸附脱附平衡,然后于近红外光下照射50min,所得活性图如图6所示,结果表明:本发明所得复合材料在近红外光下均具有较高得降解活性,其中实施例2中所得复合材料在近红外光下照射60min后去除率可达到100%。说明这种方法可以有效提升BiO2-x的光催化性能。
此外,将本实施例所得复合光催化剂在自然光下进行活性评价,连续七天在自然光下进行实验,并记录了每日的辐照度;结果如图7所示,结果表明:自然光照射50min后,2,4-DCP 的去除率几乎达到100%,说明所得复合光催化剂材具有实际应用的巨大潜力。
上述实施例仅是为了清楚地说明所做的实例,而并非对实施方式的限制。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其他不同形式的变化或者变动,这里无需也无法对所有的实施方式予以穷举,因此所引申的显而易见的变化或变动仍处于本发明创造的保护范围之内。

Claims (10)

1.一种无定型FeOOH修饰的BiO2-x异质结光催化剂,其特征在于,利用Fe基前驱体溶液在片状BiO2-x表面原位生长无定形FeOOH形成异质结而成;其中片状BiO2-x的厚度为0.021-0.058μm;
其制备方法包括如下步骤:
1)将铋盐加入NaOH溶液中,超声分散均匀,然后将所得混合液加热进行水热反应,再经离心洗涤干燥,得BiO2-x
2)将所得BiO2-x加入乙醇溶液中,超声分散,得BiO2-x悬浊液;
3)将铁盐溶液逐滴加入所得BiO2-x悬浊液中,混合均匀,再加入碱液;将所得溶液体系进行搅拌反应,再经离心洗涤干燥,即得所述无定型FeOOH修饰的BiO2-x异质结光催化剂;
步骤2)中所述超声时间为2-3 h。
2.根据权利要求1所述的光催化剂,其特征在于,所述片状BiO2-x以铋盐和氢氧化钠为主要原料进行水热反应生成BiO2-x,并在乙醇溶液中进行超声剥离而成。
3.根据权利要求1所述的光催化剂,其特征在于,所述Fe基前驱体溶液由Fe盐和碱液构成。
4.权利要求1~3任一项所述无定型FeOOH修饰的BiO2-x异质结光催化剂的制备方法,其特征在于,包括如下步骤:
1)将铋盐加入NaOH溶液中,超声分散均匀,然后将所得混合液加热进行水热反应,再经离心洗涤干燥,得BiO2-x
2)将所得BiO2-x加入乙醇溶液中,超声分散,得BiO2-x悬浊液;
3)将铁盐溶液逐滴加入所得BiO2-x悬浊液中,混合均匀,再加入碱液;将所得溶液体系进行搅拌反应,再经离心洗涤干燥,即得所述无定型FeOOH修饰的BiO2-x异质结光催化剂。
5.根据权利要求4所述的制备方法,其特征在于,所述水热反应温度为160-180 ℃,时间为12-18 h。
6.根据权利要求4所述的制备方法,其特征在于,步骤1)中所得混合液中铋源的浓度为0.03-0.17 mol/L;步骤2)中所述BiO2-x悬浊液中BiO2-x的浓度为0.003-0.017 g/mL。
7.根据权利要求4所述的制备方法,其特征在于,步骤3)中所述铁盐为氯化铁、硝酸铁、硫酸铁中的任意一种;所述碱液为氨水或氢氧化钠溶液。
8.根据权利要求4所述的制备方法,其特征在于,步骤3)所得溶液体系中,BiO2-x与铁盐的摩尔比为(0.7-11.1):1;铁盐的浓度为2.5-40mmol/L;所得溶液体系的pH值范围为8.0-9.5。
9.根据权利要求4所述的制备方法,其特征在于,所述搅拌反应为常温搅拌反应,时间为8-12 h。
10.权利要求1-3任一项或权利要求4-9任一项所述制备方法制得的无定型FeOOH修饰的BiO2-x异质结光催化剂对水体有机污染物进行催化降解的应用。
CN202011191170.4A 2020-10-30 2020-10-30 一种无定型FeOOH修饰的BiO2-x异质结光催化剂及其制备方法和应用 Active CN112156787B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011191170.4A CN112156787B (zh) 2020-10-30 2020-10-30 一种无定型FeOOH修饰的BiO2-x异质结光催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011191170.4A CN112156787B (zh) 2020-10-30 2020-10-30 一种无定型FeOOH修饰的BiO2-x异质结光催化剂及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN112156787A CN112156787A (zh) 2021-01-01
CN112156787B true CN112156787B (zh) 2022-12-06

Family

ID=73865221

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011191170.4A Active CN112156787B (zh) 2020-10-30 2020-10-30 一种无定型FeOOH修饰的BiO2-x异质结光催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN112156787B (zh)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109569568A (zh) * 2018-11-14 2019-04-05 中国矿业大学 一种核壳结构BiO2-x@TiO2异质结光催化材料及其制备方法与应用
CN109772355B (zh) * 2019-03-11 2022-04-08 辽宁石油化工大学 非晶羟基氧化铁/矾酸铋复合光催化材料的制备方法
CN110540243B (zh) * 2019-08-09 2021-04-20 红河学院 无定型羟基氧化铁的制备方法及吸附有机物后的回收方法

Also Published As

Publication number Publication date
CN112156787A (zh) 2021-01-01

Similar Documents

Publication Publication Date Title
CN108671907B (zh) 一种铂/二氧化钛纳米花复合材料及其制备方法与应用
CN114534759A (zh) 单原子钴负载管状氮化碳催化剂及其制备方法和应用
CN106944074B (zh) 一种可见光响应型复合光催化剂及其制备方法和应用
CN113908878B (zh) 一种双金属普鲁士蓝类似物催化剂的制备方法及应用
CN112844484B (zh) 一种氮化硼量子点/多孔金属有机框架复合光催化材料及其制备方法和应用
CN111185210A (zh) 二碳化三钛/二氧化钛/黑磷纳米片复合光催化剂及其制备方法和应用
CN113457663A (zh) 一种3D纳米花状Zn3(VO4)2制备方法及其应用
CN114247452A (zh) 一种铋-硫化铋-钨酸铋复合光催化剂及其制备方法和应用
CN111701583A (zh) 一种超薄六边形BiO2-x片晶光催化剂及其制备方法
CN113976147B (zh) 一种Bi/Bi4O5Br2光催化剂、制备方法及其应用
CN113441145B (zh) 一种钛酸钡/羟基氧化铁光催化剂的制备方法
CN111203234A (zh) 一种CdIn2S4纳米块/SnIn4S8片状堆集结构双功能复合光催化剂的制备方法
CN108579738B (zh) 一种金纳米颗粒/二氧化钛纳米花复合材料及其制备方法与应用
CN112156787B (zh) 一种无定型FeOOH修饰的BiO2-x异质结光催化剂及其制备方法和应用
CN117680168A (zh) 一种具有规整花状形貌的木质素碳基卤氧铋z型异质结复合材料及其制备方法和应用
CN110586149B (zh) 钼酸铋/碳化钛异质结二维光催化材料及其制备方法和应用
CN115845832B (zh) ZIF-8衍生的ZnO/BiVO4异质结复合物的制备方法与应用
CN108404948B (zh) 一种(BiO)2CO3-BiO2-x复合光催化剂及其制备方法和应用
CN110801857A (zh) 一种制备二氧化钛-氮掺杂石墨烯复合光催化材料的方法
CN113426461B (zh) 银掺杂多晶面铁酸锌光催化纳米材料的制备方法
CN113582218B (zh) 一种氧缺陷型灰色氧化锌及其制备方法和应用
CN110075879B (zh) 碳包覆四氧化三铁磁性微球修饰碘氧化铋复合光催化材料及其制备方法与应用
CN113477250A (zh) 碳纤维布@多孔ZnO二维纳米片阵列@Ag2O纳米颗粒三元异质结的合成方法
CN111359633A (zh) 一种z型磁性复合可见光催化剂及其制备与应用
CN115679684B (zh) 一种Ag@MoS2/TiO2/碳纤维复合材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant