CN109569568A - 一种核壳结构BiO2-x@TiO2异质结光催化材料及其制备方法与应用 - Google Patents

一种核壳结构BiO2-x@TiO2异质结光催化材料及其制备方法与应用 Download PDF

Info

Publication number
CN109569568A
CN109569568A CN201811352800.4A CN201811352800A CN109569568A CN 109569568 A CN109569568 A CN 109569568A CN 201811352800 A CN201811352800 A CN 201811352800A CN 109569568 A CN109569568 A CN 109569568A
Authority
CN
China
Prior art keywords
bio
tio
core
shell structure
photocatalysis material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811352800.4A
Other languages
English (en)
Inventor
刘章生
王锦响
范贺良
陶雪钰
郭立童
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Mining and Technology CUMT
Original Assignee
China University of Mining and Technology CUMT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Mining and Technology CUMT filed Critical China University of Mining and Technology CUMT
Priority to CN201811352800.4A priority Critical patent/CN109569568A/zh
Publication of CN109569568A publication Critical patent/CN109569568A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/18Arsenic, antimony or bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/399Distribution of the active metal ingredient homogeneously throughout the support particle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/033Using Hydrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种核壳结构BiO2‑x@TiO2异质结光催化材料及其制备方法与应用,该材料是由BiO2‑x微米片及原位生长于其上的TiO2纳米颗粒组成的片状异质结光催化材料。制备步骤如下:首先制备BiO2‑x微米片,然后将钛酸四丁酯与制得的BiO2‑x按照一定质量比溶于乙醇中,加入适量氨水,在45℃温度下反应12~24小时,得到褐色沉淀,洗涤,烘干即可制得核壳结构BiO2‑x@TiO2异质结光催化材料。本发明通过在BiO2‑x表面包覆壳层材料,BiO2‑x得到有效保护,极大地增强了其耐光腐蚀的能力;制备工艺简单,设备简单、性能稳定,可用于可见光下高效降解有机染料废水。

Description

一种核壳结构BiO2-x@TiO2异质结光催化材料及其制备方法与 应用
技术领域
本发明属于半导体材料领域,涉及一种光催化材料,具体涉及一种核壳结构BiO2-x@TiO2异质结光催化材料及其制备方法与应用。
背景技术
随着经济社会的快速发展,能源与环境污染问题日益突出。光催化技术因其能利用太阳能光解水制氢及高效降解有机污染物,而被认为是解决当前能源与环境问题的最佳途径。光催化技术的核心在于高效光催化剂的发展。传统的光催化材料如TiO2、ZnO等虽然具有无毒、高效、稳定性好、低成本等优点,但是宽的能带间隙使它们只能对太阳光中的紫外光(能量占比约4%)有所响应,其对太阳能的利用效率极其低下。因此,开发新型高效可见光光催化剂材料越来越受到研究人员的重视。
BiO2-x是一类新型光催化材料。它具有独特的层片式结构,内部形成自建电场,非常有利于光生载流子分离。同时,该化合物因含有不同价态的铋离子(Bi5+与Bi3+共存)而存在“价振荡”现象,导致其具有非常窄的能带间隙(1.9eV) 以及低的导带带底电势(-0.37eV),可以吸收利用更多的可见光,因而在光催化技术方面极具应用潜力。尽管如此,BiO2-x中Bi5+离子具有较强的氧化能力,它们很容易与具有高还原能力的光生电子结合而被还原成Bi3+离子,导致其耐光腐蚀能力普遍较差,因此如何提高BiO2-x材料的光化学稳定性是迫切需要解决的实际问题。目前,与第二相半导体构建异质结被认为是提高BiO2-x耐光腐蚀能力的有效途径。许多研究表明,通过构建BiO2-x基半导体异质结,材料的耐光腐蚀能力和光催化活性均有不同程度的提高,其原因在于异质结中两半导体之间的能级电势差可驱使光生电子与空穴反向迁移,BiO2-x上的光生电子被迅速转移至第二相,进而避免了其对BiO2-x中Bi5+离子的光还原。遗憾的是,目前构筑BiO2-x基异质结所用颗粒普遍较大,异质结质量较差,导致第二相对BiO2-x保护作用极其有限。
发明内容
本发明的目的之一是提供一种核壳结构BiO2-x@TiO2异质结光催化材料,第二相对核心材料全覆盖,提高对BiO2-x的保护作用。
本发明的目的之二是提供上述核壳结构BiO2-x@TiO2异质结光催化材料的制备方法,工艺简单,易于实现工业化生产。
本发明的目的之三是提供上述核壳结构BiO2-x@TiO2异质结光催化材料的应用。
为实现上述目的,本发明采用的技术方案如下:一种核壳结构BiO2-x@TiO2异质结光催化材料,该异质结光催化材料是由BiO2-x微米片及原位生长于其上的 TiO2纳米颗粒组成的片状异质结光催化材料。
本发明还提供上述核壳结构BiO2-x@TiO2异质结光催化材料的制备方法,包括以下步骤:
(1)将铋酸钠溶解于0.8~1.5mol/L的NaOH溶液中,搅拌均匀得到悬浊液;
(2)将悬浊液转移至反应釜中,在160~200℃温度下加热4~8小时,离心分离得到沉淀A;将沉淀A用去离子水洗涤后干燥,得到BiO2-x
(3)将钛酸四丁酯和步骤(2)制得的BiO2-x按质量比0.05~0.1:1溶解到乙醇溶液中,搅拌均匀,得到混合溶液;然后在搅拌状态下再向混合溶液中加入氨水,于45℃温度下反应12~24小时,离心分离得到沉淀B;
(4)步骤(3)得到的沉淀B经洗涤、干燥处理后,即得到核壳结构 BiO2-x@TiO2异质结光催化材料。
优选的,步骤(3)中,所述钛酸四丁酯和BiO2-x的质量比为0.05:1。
优选的,步骤(2)中,所述反应釜的内衬为聚四氟乙烯。
优选的,步骤(4)中,所述洗涤的条件为:依次用无水乙醇、蒸馏水洗涤沉淀E直至pH为7。
本发明还提供由上述方法制得的核壳结构BiO2-x@TiO2异质结光催化材料在有机染料废水降解方面的应用。
将BiO2-x@TiO2异质结光催化材料与含有罗丹明B的水体混合,在黑暗条件下搅拌达到吸附-解吸平衡,然后在可见光条件下进行光催化反应,完成对水体中罗丹明B的去除,光降解效率在30分钟后可达到98.4%。
与现有技术相比,本发明具有如下有益效果:
(1)本发明以钛酸四丁酯为前驱体,通过控制水解的方法在BiO2-x表面沉淀第二相TiO2纳米颗粒,构建出高质量核壳结构BiO2-x@TiO2异质结光催化材料,有效促进了壳层-核心材料之间光生载流子的分离,实现壳层材料对核心材料BiO2-x的全面保护,使其光催化降解性能得到大幅度提高,在30分钟后对罗丹明B的降解效率可达到98.4%;
(2)通过工艺调控,所得核壳结构光催化材料由BiO2-x微米片和TiO2纳米颗粒组成,壳层材料TiO2分散均匀,壳层厚度可控,耐光腐蚀能力强。
(3)本发明原料成本低廉、合成环境温和、工艺流程简单、生成产物稳定,不需要复杂设备,适宜大规模工业化生产。
附图说明
图1为本发明实施例1制得的核壳结构BiO2-x@TiO2异质结的XRD谱图;
图2为本发明实施例1制得的BiO2-x微米片的TEM图;
图3为本发明实施例1制得的BiO2-x微米片的FESEM图;
图4为本发明实施例1制得的核壳结构BiO2-x@TiO2异质结的FESEM图 (2μm)。
图5为本发明实施例1制得的核壳结构BiO2-x@TiO2异质结的FESEM图 (500nm)。
图6为本发明实施例1制得的核壳结构BiO2-x@TiO2异质结的TEM全图。
图7为本发明实施例1制得的核壳结构BiO2-x@TiO2异质结的局部纳米片 HR-TEM图。
图8为本发明实施例1制得的核壳结构BiO2-x@TiO2异质结光催化降解罗丹明B的吸光度随时间变化的关系曲线。
图9为本发明实施例1、2、3制得的核壳结构BiO2-x@TiO2异质结在不同循环次数下的罗丹明B光催化降解效率。
具体实施方式
下面结合附图和具体实施例对本发明作进一步详细说明。
实施例1
将0.732gNaBiO3溶解于100ml浓度为1mol/L的NaOH溶液中,搅拌均匀得到悬浊液,然后将悬浊液转移至100ml内衬为聚四氟乙烯的反应釜中,在180℃温度下加热6小时,自然冷却至室温后,离心分离得到沉淀A,用去离子水清洗沉淀A三次,经干燥得到BiO2-x;将0.5gBiO2-x加入到50ml乙醇中,搅拌均匀,用移液管加入0.025g钛酸四丁酯,磁力搅拌1h后再加入0.315ml氨水(28wt%),然后在45℃温度下反应24小时,离心分离得到沉淀B,将沉淀B依次用无水乙醇、蒸馏水洗涤多次,然后在60℃温度下烘干,即得到具有核壳结构的BiO2-x@TiO2复合可见光催化剂。
图1为本发明实施例1制得的核壳结构BiO2-x@TiO2异质结光催化材料的 XRD图。由图1可以看出,本实施例制得的BiO2-x的衍射峰均与立方相BiO2-x的标准卡片(PDF#47-1057)一一对应,说明其为纯相;对于BiO2-x@TiO2而言,除了立方相BiO2-x的衍射峰外,其他两个衍射峰2θ=25.2、37.7归因于TiO2,说明其由BiO2-x和TiO2两相组成。
图2为本发明实施例1制得的BiO2-x微米片的TEM图。图3为本发明实施例1制得的BiO2-x微米片的FESEM图。由图可以看出,BiO2-x微米片表面光滑,厚度约70-80nm。
图4、图5为本发明实施例1制得的核壳结构BiO2-x@TiO2异质结光催化材料的FESEM图。由图2可以看出,样品是由粒径约30nm的TiO2纳米颗粒生长在片状BiO2-x上形成异质结,其中BiO2-x微米片表面粗糙。
图6为本发明实施例1合成核壳结构BiO2-x@TiO2异质结光催化材料的TEM 图。由图6可以看出,BiO2-x微米片确实被一些TiO2纳米颗粒所包覆,形成核壳结构。
图7为本发明实施例1制得的核壳结构BiO2-x@TiO2异质结光催化材料所包覆的TiO2-xHR-TEM图。由图7可以看出,样品结晶良好,纳米颗粒的晶体间距为d=0.19nm,对应TiO2的(200)晶面,说明壳层纳米颗粒为TiO2
实施例2
将0.732gNaBiO3溶解于100ml浓度为1mol/L的NaOH溶液中,搅拌均匀得到悬浊液,然后将悬浊液转移至100ml内衬为聚四氟乙烯的反应釜中,在180℃温度下加热6小时,自然冷却至室温后,离心分离得到沉淀A,用去离子水清洗沉淀A三次,经干燥得到BiO2-x;将0.5gBiO2-x加入到50ml乙醇中,搅拌均匀,用移液管加入0.05g钛酸四丁酯,磁力搅拌1h后再加入0.315ml氨水(28wt%),然后在45℃温度下反应24小时,离心分离得到沉淀B,将沉淀B依次用无水乙醇、蒸馏水洗涤多次,然后在60℃温度下烘干,即制备出具有核壳结构的 BiO2-x@TiO2异质结光催化材料。
实施例3
将0.732gNaBiO3溶解于100ml浓度为1mol/L的NaOH溶液中,搅拌均匀得到悬浊液,然后将悬浊液转移至100ml内衬为聚四氟乙烯的反应釜中,在180℃温度下加热6小时,自然冷却至室温后,离心分离得到沉淀A,用去离子水清洗沉淀A三次,经干燥得到BiO2-x;将0.5gBiO2-x加入到50ml乙醇中,搅拌均匀,用移液管加入0.01g钛酸四丁酯,磁力搅拌1h后再加入0.315ml氨水(28wt%),然后在45℃温度下反应24小时,离心分离得到沉淀B,将沉淀B依次用无水乙醇、蒸馏水洗涤多次,然后在60℃温度下烘干,即制备出具有核壳结构的 BiO2-x@TiO2异质结光催化材料。
实施例4
将0.732gNaBiO3溶解于100ml浓度为1.5mol/L的NaOH溶液中,搅拌均匀得到悬浊液,然后将悬浊液转移至100ml内衬为聚四氟乙烯的反应釜中,在180℃温度下加热6小时,自然冷却至室温后,离心分离得到沉淀A,用去离子水清洗沉淀A三次,经干燥得到BiO2-x;将0.5g BiO2-x加入到50ml乙醇中,搅拌均匀,用移液管加入0.025g钛酸四丁酯,磁力搅拌1h后再加入0.315ml氨水(28wt%),然后在45℃温度下反应24小时,离心分离得到沉淀B,将沉淀B依次用无水乙醇、蒸馏水洗涤多次,然后在60℃温度下烘干,即制备出具有核壳结构的BiO2-x@TiO2异质结光催化材料。
实施例5
将0.732gNaBiO3溶解于100ml浓度为0.8mol/L的NaOH溶液中,搅拌均匀得到悬浊液,然后将悬浊液转移至100ml内衬为聚四氟乙烯的反应釜中,在180℃温度下加热6小时,自然冷却至室温后,离心分离得到沉淀A,用去离子水清洗沉淀A三次,经干燥得到BiO2-x;将0.5g BiO2-x加入到50ml乙醇中,搅拌均匀,用移液管加入0.025g钛酸四丁酯,磁力搅拌1h后再加入0.315ml氨水(28wt%),然后在45℃温度下反应24小时,离心分离得到沉淀B,将沉淀B依次用无水乙醇、蒸馏水洗涤多次,然后在60℃温度下烘干,即制备出具有核壳结构的BiO2-x@TiO2异质结光催化材料。
实施例6
将0.732gNaBiO3溶解于100ml浓度为1mol/L的NaOH溶液中,搅拌均匀得到悬浊液,然后将悬浊液转移至100ml内衬为聚四氟乙烯的反应釜中,在160℃温度下加热8小时,自然冷却至室温后,离心分离得到沉淀A,用去离子水清洗沉淀A三次,经干燥得到BiO2-x;将0.5gBiO2-x加入到50ml乙醇中,搅拌均匀,用移液管加入0.025g钛酸四丁酯,磁力搅拌1h后再加入0.315ml氨水(28wt%),然后在45℃温度下反应12小时,离心分离得到沉淀B,将沉淀B依次用无水乙醇、蒸馏水洗涤多次,然后在60℃温度下烘干,即制备出具有核壳结构的BiO2-x@TiO2异质结光催化材料。
实施例7
将0.732gNaBiO3溶解于100ml浓度为1mol/L的NaOH溶液中,搅拌均匀得到悬浊液,然后将悬浊液转移至100ml内衬为聚四氟乙烯的反应釜中,在200℃温度下加热4小时,自然冷却至室温后,离心分离得到沉淀A,用去离子水清洗沉淀A三次,经干燥得到BiO2-x;将0.5gBiO2-x加入到50ml乙醇中,搅拌均匀,用移液管加入0.025g钛酸四丁酯,磁力搅拌1h后再加入0.315ml氨水(28wt%),然后在45℃温度下反应16小时,离心分离得到沉淀B,将沉淀B依次用无水乙醇、蒸馏水洗涤多次,然后在60℃温度下烘干,即制备出具有核壳结构的BiO2-x@TiO2异质结光催化材料。
以纯BiO2-x、实施例1、2和3制得的核壳结构BiO2-x@TiO2异质结光催化材料进行光催化降解以及光催化循环测试,实施方案如下:
所用光催化反应光源为500WXe灯,滤波片为400nm,目标污染物为15mol/L 的100mL罗丹明B溶液。在光照前,在室温条件下,将0.1g催化剂放入罗丹明B溶液中,置于暗室搅拌1h,达到吸附脱附平衡。之后,打开光源,进行可见光催化实验。整个实验在固定时间取样,离心后,取上清液进行吸光度测试。进行光催化循环实验时,将每次光催化降解实验后的溶液离心、干燥,回收光催化剂,然后用回收样品继续进行下一次光催化降解实验。
试验结果如图8,图9所示。图8中a为实施例1、b为实施例2、c为实施例3,可以看出各实施例制备的催化剂具有明显不同的光催化降解效果。其中,实施例1制备的催化剂的光降解效率在30分钟后可达到98.4%。而实施例2和实施例3制备的催化剂的光催化降解能力与实施例1有较大差距,说明钛酸四丁酯的加入量即TiO2壳层材料的厚度对最终催化剂产品的催化性能有较大影响。此外,实施例1-3制备的催化剂的光降解效率均比纯BiO2-x的降解效率高,说明与纯BiO2-x相比,由于TiO2纳米颗粒的包覆作用,核壳结构BiO2-x@TiO2异质结的光催化活性得到了很大提高。
图9为实施例1的光催化循环实验结果。从图9可已看出,核壳结构 BiO2-x@TiO2异质结光催化材料具有极为优越的光催化稳定性,经过5次循环后,其光降解效率在30分钟内仍达到93.2%,说明壳层材料的确对核心材料BiO2-x形成有效保护。

Claims (8)

1.一种核壳结构BiO2-x@TiO2异质结光催化材料,其特征在于,该异质结光催化材料是由BiO2-x微米片及原位生长于其上的TiO2纳米颗粒组成的片状异质结光催化材料。
2.一种权利要求1所述的核壳结构BiO2-x@TiO2异质结光催化材料的制备方法,其特征在于,包括以下步骤:
(1)将铋酸钠溶解于0.8~1.5mol/L的NaOH溶液中,搅拌均匀得到悬浊液;
(2)将悬浊液转移至反应釜中,在160~200℃温度下加热4~8小时,离心分离得到沉淀A;将沉淀A用去离子水洗涤后干燥,得到BiO2-x
(3)将钛酸四丁酯和步骤(2)制得的BiO2-x按质量比0.05~0.1:1溶解到乙醇溶液中,搅拌均匀,得到混合溶液;然后在搅拌状态下再向混合溶液中加入氨水,于45℃温度下反应12~24小时,离心分离得到沉淀B;
(4)步骤(3)得到的沉淀B经洗涤、干燥处理后,即得到核壳结构BiO2-x@TiO2异质结光催化材料。
3.根据权利要求2所述的核壳结构BiO2-x@TiO2异质结光催化材料的制备方法,其特征在于,步骤(3)中,所述钛酸四丁酯和BiO2-x的质量比为0.05:1。
4.根据权利要求2或3所述的核壳结构BiO2-x@TiO2异质结光催化材料的制备方法,其特征在于,步骤(2)中,所述反应釜的内衬为聚四氟乙烯。
5.根据权利要求2或3所述的核壳结构BiO2-x@TiO2异质结光催化材料的制备方法,其特征在于,步骤(4)中,所述洗涤的条件为:依次用无水乙醇、蒸馏水洗涤沉淀B直至pH为7。
6.权利要求1所述的核壳结构BiO2-x@TiO2异质结光催化材料在有机染料废水降解方面的应用。
7.根据权利要求6所述的应用,其特征在于,所述有机染料为罗丹明B。
8.根据权利要求6或7所述的应用,其特征在于,降解反应在可见光下进行。
CN201811352800.4A 2018-11-14 2018-11-14 一种核壳结构BiO2-x@TiO2异质结光催化材料及其制备方法与应用 Pending CN109569568A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811352800.4A CN109569568A (zh) 2018-11-14 2018-11-14 一种核壳结构BiO2-x@TiO2异质结光催化材料及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811352800.4A CN109569568A (zh) 2018-11-14 2018-11-14 一种核壳结构BiO2-x@TiO2异质结光催化材料及其制备方法与应用

Publications (1)

Publication Number Publication Date
CN109569568A true CN109569568A (zh) 2019-04-05

Family

ID=65922250

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811352800.4A Pending CN109569568A (zh) 2018-11-14 2018-11-14 一种核壳结构BiO2-x@TiO2异质结光催化材料及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN109569568A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112156787A (zh) * 2020-10-30 2021-01-01 武汉工程大学 一种无定型FeOOH修饰的BiO2-x异质结光催化剂及其制备方法和应用
CN115124092A (zh) * 2022-08-30 2022-09-30 浙江帕瓦新能源股份有限公司 具备卤氧化铋晶核的前驱体材料及其制备方法、正极材料
CN116984001A (zh) * 2023-09-20 2023-11-03 中国市政工程西北设计研究院有限公司 一种全光谱驱动降解雷尼替丁的光催化纳米材料及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106622201A (zh) * 2016-12-26 2017-05-10 成都理工大学 一种石墨烯二氧化钛光催化纳米晶的制备方法与应用
CN107899591A (zh) * 2017-10-20 2018-04-13 上海应用技术大学 一种光触媒杀菌空气清洁剂及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106622201A (zh) * 2016-12-26 2017-05-10 成都理工大学 一种石墨烯二氧化钛光催化纳米晶的制备方法与应用
CN107899591A (zh) * 2017-10-20 2018-04-13 上海应用技术大学 一种光触媒杀菌空气清洁剂及其制备方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
LINNA LI等: "Novel BiO2-x photocatalyst: Typical hierarchical architecture and commendable activity", 《MATERIALS LETTERS》 *
SWATI SOOD等: "Bi2O3/TiO2 heterostructures: Synthesis, characterization and their application in solar light mediated photocatalyzed degradation of an antibiotic, ofloxacin", 《CHEMICAL ENGINEERING JOURNAL》 *
YA LIU等: "Enhancing the photocatalytic activity of CdS nanorods for selective oxidation of benzyl alcohol by coating amorphous TiO2 shell layer", 《CATALYSIS COMMUNICATIONS》 *
ZHANGSHENG LIU等: "Fabrication of BiO2-x@TiO2 heterostructures with enhanced photocatalytic activity and stability", 《APPLIED SURFACE SCIENCE》 *
王杏 等: "《纳米二氧化钛的生产与应用》", 31 July 2014, 贵州科技出版社 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112156787A (zh) * 2020-10-30 2021-01-01 武汉工程大学 一种无定型FeOOH修饰的BiO2-x异质结光催化剂及其制备方法和应用
CN115124092A (zh) * 2022-08-30 2022-09-30 浙江帕瓦新能源股份有限公司 具备卤氧化铋晶核的前驱体材料及其制备方法、正极材料
CN115124092B (zh) * 2022-08-30 2022-11-25 浙江帕瓦新能源股份有限公司 具备卤氧化铋晶核的前驱体材料及其制备方法、正极材料
CN116984001A (zh) * 2023-09-20 2023-11-03 中国市政工程西北设计研究院有限公司 一种全光谱驱动降解雷尼替丁的光催化纳米材料及其制备方法
CN116984001B (zh) * 2023-09-20 2024-02-09 中国市政工程西北设计研究院有限公司 一种全光谱驱动降解雷尼替丁的光催化纳米材料及其制备方法

Similar Documents

Publication Publication Date Title
Lu et al. Hydrothermal synthesis of type II ZnIn2S4/BiPO4 heterojunction photocatalyst with dandelion-like microflower structure for enhanced photocatalytic degradation of tetracycline under simulated solar light
CN103433060B (zh) 核-壳型TiO2/ZnIn2S4复合光催化剂及其制备方法与应用
CN103599800B (zh) 玻璃纤维负载银-溴化银-氧化钛复合材料的制备方法
CN108126756A (zh) 钨酸铋-MIL-53(Al)复合材料、其制备方法和应用
CN106902810A (zh) 碳量子点修饰的单层钨酸铋纳米片复合光催化剂及其制备方法和应用
CN108786923A (zh) 一种核壳结构可见光催化剂的制备方法
CN109569568A (zh) 一种核壳结构BiO2-x@TiO2异质结光催化材料及其制备方法与应用
CN102974373A (zh) 一种可见光光催化材料及其制备方法
CN110639555A (zh) 一种可见光响应的CdS/CdIn2S4复合纳米结构光催化剂的制备方法及应用
CN108262050A (zh) 一种二维复合可见光催化剂及其制备方法与应用
CN109174082A (zh) 一种制备BiVO4/MnO2复合光催化氧化剂的方法
CN108855140A (zh) 一种CuS/Bi2WO6异质结光催化剂及其制备方法和应用
CN110078126A (zh) 不同形貌的固载型三氧化钨纳米材料及其制备方法和应用
CN107051545A (zh) 一种纳米二氧化钛/硫化铜纳米复合材料
CN110589886A (zh) 一种碳酸氧铋的制备方法
CN106693994A (zh) 一种核壳结构硫化铋@硫化铜复合物微球的制备与应用
CN107511154A (zh) 一种海胆状CeO2/Bi2S3复合可见光催化剂及其制备方法
CN104971762A (zh) 一种g-C3N4/CaIn2S4可见光复合光催化剂的制备方法与应用
CN107442139A (zh) 用于高效降解龙胆紫的片状Z型SnS2/Bi2MoO6异质结光催化材料的制备方法
CN106964366A (zh) 一种CdS/ZnFe2O4复合光催化剂及其制备方法
CN109731585A (zh) 一种BiOCl/Bi2WO6复合材料的制备方法
CN104275200B (zh) 一种核壳结构ZnS/Ni2P复合物微球的制备方法
CN109046450A (zh) 一种BiOCl/(BiO)2CO3负载的醋酸纤维素/丝素杂化膜的制备方法和应用
WO2023108950A1 (zh) 一种Z型α-Fe2O3/ZnIn2S4复合光催化剂的制备方法和应用
Chen et al. Microwave-assisted synthesis of organic–inorganic hybrid porous g-C3N4/CdS–diethylenetriamine S-scheme heterojunctions with enhanced visible light hydrogen production

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190405

RJ01 Rejection of invention patent application after publication