CN112156770A - 一种具有铋、氧双空位的钨酸铋复合光催化剂及其制备方法和应用 - Google Patents

一种具有铋、氧双空位的钨酸铋复合光催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN112156770A
CN112156770A CN202011198319.1A CN202011198319A CN112156770A CN 112156770 A CN112156770 A CN 112156770A CN 202011198319 A CN202011198319 A CN 202011198319A CN 112156770 A CN112156770 A CN 112156770A
Authority
CN
China
Prior art keywords
bismuth
bismuth tungstate
composite photocatalyst
preparation
tungstate composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011198319.1A
Other languages
English (en)
Other versions
CN112156770B (zh
Inventor
熊绍锋
刘平乐
魏稼轩
包顺东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiangtan University
Original Assignee
Xiangtan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiangtan University filed Critical Xiangtan University
Priority to CN202011198319.1A priority Critical patent/CN112156770B/zh
Publication of CN112156770A publication Critical patent/CN112156770A/zh
Application granted granted Critical
Publication of CN112156770B publication Critical patent/CN112156770B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/31Chromium, molybdenum or tungsten combined with bismuth
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/10Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by subjecting to electric or wave energy or particle or ionizing radiation
    • A62D3/17Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by subjecting to electric or wave energy or particle or ionizing radiation to electromagnetic radiation, e.g. emitted by a laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/40Carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2101/00Harmful chemical substances made harmless, or less harmful, by effecting chemical change
    • A62D2101/20Organic substances
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/24Chromium, molybdenum or tungsten
    • C07C2523/31Chromium, molybdenum or tungsten combined with bismuth

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Emergency Management (AREA)
  • Business, Economics & Management (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Plasma & Fusion (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种具有铋、氧双空位的钨酸铋光催化剂及其制备方法和应用。本发明通过水热法和添加还原性助剂来构造表面氧空位,通过调控铋源前驱体和钨酸盐前驱体的比例构造铋空位,从而制备具有铋、氧双空位的钨酸铋光催化剂。所述的铋、氧双空位钨酸铋光催化剂的可见光吸收范围宽、光生电荷复合率低,并且光催化还原CO2的活性高。同时,所述光催化剂的双空位构造工艺简单,制备参数可控。因此,本发明申请在可见光利用和环境保护方面具有广阔的应用前景。

Description

一种具有铋、氧双空位的钨酸铋复合光催化剂及其制备方法 和应用
技术领域
本发明属于光催化材料技术领域,具体涉及一种具有铋、氧双空位的钨酸铋复合光催化剂及其制备方法和应用。
背景技术
近几十年来,光还原CO2被认定是一种很有前途的绿色可持续发展技术,可以充分利用太阳能将温室气体CO2转化成为化学燃料,达到一种变废为宝的目的。然而目前光催化半导体材料存在一系列问题,如光生载流子复合速率快、表面活性位点数量少和可见光吸收能力弱等。上述问题不利于光催化活性的提升并且严重限制光催化还原CO2技术的推广应用。因此,开发一种高效的光催化剂尤为重要。
窄带隙(~2.7ev)的钨酸铋作为一种很有前途的铋基光催化剂,因其优良的物理化学性质,如无毒性、高稳定性等,引起了人们的广泛关注。但钨酸铋量子产率较低、光生电荷载流子复合速率快,导致光催化活性较低。构建光催化剂表面的阳离子和阴离子缺陷是提高光催化活性的一种手段。阳离子缺陷在反应过程中可以提供吸附/催化反应位点,提高光生载流子迁移率。阴离子缺陷具有拓宽可见光吸收范围、提供催化反应位点的特点。Siang-Piao Chai等人(Chem.Commun.,2016,52(99),14242)通过乙二醇溶剂热法制备含氧空位的钨酸铋,实现在紫外-可见光-近红外宽光谱范围内的光催化还原CO2,表面氧空位缺陷的存在使钨酸铋光催化CO2还原性能得到极大提高。李华明等人(Applied Catalysis B:Environmental,238(2018),119)通过模板法将铋空位定向植入到钨酸铋中,以形成含金属铋空位的超薄纳米片。其研究表明铋空位的存在会在禁带中产生新的缺陷能带,并在价带最大值处形成更高的态密度,从而导致电荷载流子浓度和电子电导率增加。在光催化领域,有关阴离子缺陷的报道有很多,而关于阳离子缺陷的报道很少并且目前所报道的光催化剂均只是包含单一离子的表面缺陷。
本发明提出一种具有铋、氧双空位的钨酸铋复合光催化剂结构及其制备方法。本专利申请首次制备铋空位、氧空位共存的钨酸铋纳米片状半导体材料。合成的铋、氧双空位修饰的钨酸铋拓宽其可见光吸收范围、降低了光生电荷载流子与空穴的复合率。同时,铋缺陷与氧缺陷可作为光催化CO2反应的活性位点。实施例证明这种含有双缺陷诱导的钨酸铋光催化剂对于CO2吸附和光催化还原具有积极的影响。本发明的重点在于设计了一种通过稳定可靠的方式合成金属阳离子缺陷和非金属阴离子缺陷共存的新型钨酸铋光催化剂材料。这种通过在水热法制备钨酸铋的前驱体溶液中添加具有还原性质溶剂处理的方法工艺简单,合成的缺陷在氧环境下耐久性影响较小,操作方便、结构稳定,不受所添加的其他掺杂剂干扰影响。可适用于大部分金属氧化物半导体光催化剂,是一种理想的光催化表面缺陷构造技术,应用前景非常广泛。
中国发明CN201910377005.9公开一种含有氧缺陷的碳掺杂钨酸铋光催化剂及其制备方法。与本申请具有区别的是该发明制备的光催化剂是仅含氧缺陷的钨酸铋光催化剂,氧空位制备方法为烘箱干燥产生。本发明申请所述的光催化剂包含铋、氧双空位,并且氧空位制备方法为还原性质溶剂处理办法。中国发明CN201910543986.X提供一种表面氧空位缺陷修饰的钨酸铋光催化剂及其制备方法和应用,在450~600℃烧结,将生长于平板导电基底上的钨酸铋薄膜在还原性氛围下150~400℃进行热处理,制得表面氧空位缺陷修饰的钨酸铋光催化剂,其制备方法与本发明申请具有明显区别。中国发明CN201811072043.5公开了一种含有铋缺陷的不同晶相的氧化铋光催化剂及其制备方法。与本申请有区别的是此发明所制备的光催化剂是仅含铋缺陷的Bi2O3,所采用的方法为硼氢化钠溶液后处理方式,其催化剂与还原性质溶剂都不相同。本发明专利申请采用添加具有还原性质的胺类物质在钨酸铋表面构筑含氧空位与铋空位,形成铋缺陷、氧缺陷共存的双缺陷体钨酸铋纳米片光催化剂,与上述发明有明显差异,具有独特性和创新性。
发明内容
针对现有光催化剂CO2吸收率低和光生电荷复合率高的问题,本发明提供一种具有铋、氧双空位的钨酸铋复合光催化剂及其制备方法,通过表面氧空位和表面铋共同修饰钨酸铋,构筑一种高活性的光催化剂。
本发明的技术构思是:通过引入铋、氧双空位,使得含有双空位诱导的Bi2WO6光催化剂对于CO2吸附和光催化还原具有积极的影响,同时更加深入地了解该物质在光催化反应中与CO2的相互作用。
本发明采取的技术方案为:
一种具有铋、氧双空位的钨酸铋复合光催化剂,所述钨酸铋复合催化剂由表面氧空位和铋空位共同修饰,即分别通过调整Bi(NO3)3·5H2O与Na2WO4·2H2O的摩尔比和在前驱体溶液中添加还原性助剂来实现。
上述钨酸铋复合光催化剂的制备方法,包括如下步骤:
(1)按Bi(NO3)3·5H2O与HNO3的摩尔比为1:4~8,向Bi(NO3)3·5H2O中滴加稀HNO3溶液,超声后进行搅拌获得澄清溶液;
(2)按Na2WO4·2H2O与还原性助剂的用量比为2~3mol:8~12L,将Na2WO4·2H2O加入还原性助剂和去离子水的混合溶液中,震荡后加入步骤(1)所得澄清溶液中,控制Bi(NO3)3·5H2O与Na2WO4·2H2O的摩尔比为1:1.5~2,得到前驱体溶液;
(3)在搅拌条件下,向步骤(2)所得前驱体溶液加入氨水调节pH至中性,再加入表面活性剂,然后进行水热处理;
(4)反应结束后,将获得的深蓝色沉淀进行洗涤和真空干燥,即得到具有铋、氧双空位的钨酸铋,记为B2-xWO6-y
进一步地,步骤(1)中,稀HNO3的浓度为1~2mol/L。
进一步地,步骤(1)中,超声时间为3~5min,搅拌时间为8~15min。
进一步地,步骤(2)中,所述还原性助剂为异丙醇,丙三醇或乙二醇,还原性助剂与去离子水的体积比为1:1.2~2.2。
进一步地,步骤(3)中,所述氨水的质量分数为25%~28%。
进一步地,步骤(3)中,所述表面活性剂为油胺、十六烷基三甲基溴化铵(CTAB)或聚乙烯吡咯烷酮(PVP)。
进一步地,步骤(3)中,水热处理的温度为180~220℃,时间为16~20h。
进一步地,步骤(4)中,真空干燥的温度为60~90℃,干燥时间为6~10h。
上述的钨酸铋复合光催化剂应用于光催化还原CO2、光催化产氢或降解有机物中。
本发明的发明点主要在于:
首先,本发明设计了一种通过稳定可靠的方式合成金属阳离子缺陷和非金属阴离子缺陷共存的新型钨酸铋光催化剂材料。
其次,本发明采用铋、氧双空位修饰钨酸铋,旨在提高钨酸铋对CO2的吸收率和抑制光生空穴-电子对的复合。铋空位形成同时伴随着结构形变,有助于降低表面能,从而保证更好的结构稳定性;氧空位的形成使得沿着有缺陷态的导电通道具有快速电子传输能力。
与现有技术相比,本发明的有益效果在于:
1、铋空位和氧空位的存在使得相邻原子产生畸变,导致明显的电子离域,这些改变有利于更快的载流子传输,实现更高效的CO2还原反应。
2、在钨酸铋表面引入氧空位,使复合催化剂的导带位置更负,还原能力更强,增强光催化还原CO2的能力。
附图说明
图1为氧空位BWO6-y的SEM图(a)、铋、氧双空位钨酸铋B2-xWO6-y的SEM图(b)和铋、氧缺陷型B2-xWO6-y光催化剂HRTEM图(c、d)(图d中①、②、③区域的点扫描EDS元素含量分布见右侧能谱图,表中Ra是以W元素为基准的元素摩尔比)。
图2为实施例1-4中对应的主要产物分布图,图中由下而上分别为CH4、CO、H2
图3为实施例4的主要气体产物随时间变化图。
具体实施方式
为了更清楚地说明本发明,下面结合具体实施例对本发明做进一步的说明。本领域技术人员应当理解,下面所具体描述的内容是说明性的而非限制性的,不应以此限制本发明的保护范围。
以下实施例中所采用的材料和仪器均为市售。
实施例1
采用水热法制备具有铋、氧双空位的钨酸铋复合光催化剂,该铋、氧双空位的钨酸铋复合光催化剂通过调整Bi(NO3)3·5H2O与Na2WO4·2H2O的比例和在前驱体溶液中添加弱还原性化合物来实现。
本实施例中钨酸铋光催化剂的制备方法,包括以下步骤:
1.向1mmol Bi(NO3)3·5H2O缓慢滴加5mL稀HNO3(1mol/L)溶液,超声3min,然后搅拌10min获得澄清溶液。
2.将0.5mmol Na2WO4·2H2O加入25mL去离子水中,震荡3分钟,然后缓缓加入上述试剂中。
3.前驱体溶液在磁力搅拌的同时通过质量分数为25%的氨水(NH3·H2O)调节pH=7,然后加入1mL油胺,使用高压反应釜封装上述制备的前驱体悬浮液,200℃恒温水热处理20h。
4.反应结束后取出反应釜,将获得的淡黄色沉淀用乙醇和去离子水清洗干净,然后在真空干燥箱里70℃下干燥8h,水分去除完全后使用药匙刮出并收集,得到原始未经过改性的钨酸铋,记为BWO。
5.光催化还原CO2活性测试实验
光催化还原CO2的反应在市售光催化CO2还原系统上进行,采用300W氙灯作为光源,配以420nm滤光片。为了保持溶液温度恒定,将循环冷却水的温度设置为0℃。取100mg催化剂分散90mL去离子水中,再在反应器中加入10mL三乙醇胺作为电子牺牲剂,然后将反应器加盖密封。通入CO2之前先将循环系统抽真空,然后缓慢充入高纯CO2气体,重复三遍,最后将高纯CO2充入系统直到系统压力为0MPa,搅拌30min以达到催化剂和CO2的吸/脱附平衡。打开氙灯光源,间隔1h取样,并用气相色谱仪在线检测甲烷和一氧化碳的含量。气相色谱仪配备有氢火焰离子检测器和热导检测器,并用N2作为载气。
实施例2
本实施例中铋空位修饰钨酸铋复合光催化剂制备的具体步骤如下:
1.向1mmol Bi(NO3)3·5H2O缓慢滴加5mL稀HNO3(1mol/L)溶液,超声3min,然后搅拌10min获得澄清溶液。
2.将2mmol Na2WO4·2H2O加入25mL去离子水中,震荡3分钟,然后缓缓加入上述试剂中。
3.前驱体溶液在磁力搅拌的同时通过质量分数为25%的NH3·H2O调节pH=7,然后加入1mL油胺。使用高压反应釜封装上述制备的前驱体悬浮液,200℃恒温水热处理20h。
4.反应结束后取出反应釜,将获得的淡绿色沉淀用乙醇和去离子水清洗干净,然后在真空干燥箱里70℃下干燥8h,水分去除完全后使用药匙刮出并收集,得到具有铋空位钨酸铋,记为B2-xWO。
5.光催化还原CO2活性测试实验操作方法和实施例1一致。
实施例3
本实施例中氧空位修饰钨酸铋复合光催化剂制备的具体步骤如下:
1.向1mmol Bi(NO3)3·5H2O缓慢滴加5mL稀HNO3(1mol/L)溶液,超声3min,然后搅拌10min获得澄清溶液。
2.将0.5mmol Na2WO4·2H2O加入25mL乙二醇和去离子水(VEG:VH2O=10:15)的混合溶液中,震荡3分钟,然后缓缓加入上述试剂中。
3.前驱体溶液在磁力搅拌的同时通过质量分数为25%的NH3·H2O调节pH=7,然后加入1mL油胺。使用高压反应釜封装上述制备的前驱体悬浮液,200℃恒温水热处理20h。
4.反应结束后取出反应釜,将获得的灰黑色沉淀用乙醇和去离子水清洗干净,然后在真空干燥箱里70℃下干燥8h,水分去除完全后使用药匙刮出并收集,得到具有氧空位的钨酸铋,记为BWO6-y
5.光催化还原CO2活性测试实验操作方法和实施例1一致。
实施例4
本实施例中氧空位修饰钨酸铋复合光催化剂制备的具体步骤如下:
1.向1mmol Bi(NO3)3·5H2O缓慢滴加5mL稀HNO3(1mol/L)溶液,超声3min,然后搅拌10min获得澄清溶液。
2.将2mmol Na2WO4·2H2O加入25mL乙二醇和去离子水(VEG:VH2O=10:15)的混合溶液中,震荡3分钟,然后缓缓加入上述试剂中。
3.前驱体溶液在磁力搅拌的同时通过质量分数为25%的NH3·H2O调节pH=7,然后加入1mL油胺。使用高压反应釜封装上述制备的前驱体悬浮液,200℃恒温水热处理20h。
4.反应结束后取出反应釜,将获得的深蓝色沉淀用乙醇和去离子水清洗干净,然后在真空干燥箱里70℃下干燥8h,水分去除完全后使用药匙刮出并收集,得到具有铋、氧双空位的钨酸铋,记为B2-xWO6-y
5.光催化还原CO2活性测试实验操作方法和实施例1一致。
从图2可知,在300W Xe弧光灯的照射下评估样品的光催化CO2还原性能,主要产物是CO、CH4和H2。从图3中可以看出,在光照3h时光催化剂B2-xWO6-y析出的CO和CH4产量最多,最高产量数值分别为87.99μmol·g-1·h-1和91.64μmol·g-1·h-1
从表1可以看出,具有铋、氧双空位的钨酸铋光催化剂(对应实施例4)对CO2的还原比其他三种具有更高的活性。而且相较于其他三种来说,铋、氧双空位钨酸铋对于副产物H2的形成具有更好的抑制作用。
表1.实施例1-4所对应主要产物第3小时的产率
Figure BDA0002754629860000061

Claims (10)

1.一种具有铋、氧双空位的钨酸铋复合光催化剂,其特征在于,所述钨酸铋复合催化剂由表面氧空位和铋空位共同修饰,即分别通过调整Bi(NO3)3·5H2O与Na2WO4·2H2O的摩尔比和在前驱体溶液中添加还原性助剂来实现。
2.权利要求1所述的钨酸铋复合光催化剂的制备方法,其特征在于,包括如下步骤:
(1)按Bi(NO3)3·5H2O与HNO3的摩尔比为1:4~8,向Bi(NO3)3·5H2O中滴加稀HNO3溶液,超声后进行搅拌获得澄清溶液;
(2)按Na2WO4·2H2O与还原性助剂的用量比为2~3mol:8~12L,将Na2WO4·2H2O加入还原性助剂和去离子水的混合溶液中,震荡后加入步骤(1)所得澄清溶液中,控制Bi(NO3)3·5H2O与Na2WO4·2H2O的摩尔比为1:1.5~2,得到前驱体溶液;
(3)在搅拌条件下,向步骤(2)所得前驱体溶液加入氨水调节pH至中性,再加入表面活性剂,然后进行水热处理;
(4)反应结束后,将获得的深蓝色沉淀进行洗涤和真空干燥,即得到具有铋、氧双空位的钨酸铋,记为B2-xWO6-y
3.根据权利要求1所述的钨酸铋复合光催化剂的制备方法,其特征在于,步骤(1)中,稀HNO3的浓度为1~2mol/L。
4.权利要求1所述的钨酸铋复合光催化剂的制备方法,其特征在于,步骤(1)中,超声时间为3~5min,搅拌时间为8~15min。
5.权利要求1所述的钨酸铋复合光催化剂的制备方法,其特征在于,步骤(2)中,所述还原性助剂为异丙醇,丙三醇或乙二醇,还原性助剂与去离子水的体积比为1:1.2~2.2。
6.权利要求1所述的钨酸铋复合光催化剂的制备方法,其特征在于,步骤(3)中,所述氨水的质量分数为25%~28%。
7.权利要求1所述的钨酸铋复合光催化剂的制备方法,其特征在于,步骤(3)中,所述表面活性剂为油胺、十六烷基三甲基溴化铵或聚乙烯吡咯烷酮。
8.权利要求1所述的钨酸铋复合光催化剂的制备方法,其特征在于,步骤(3)中,水热处理的温度为180~220℃,时间为16~20h。
9.权利要求1所述的钨酸铋复合光催化剂的制备方法,其特征在于,步骤(4)中,真空干燥的温度为60~90℃,干燥时间为6~10h。
10.权利要求1所述的钨酸铋复合光催化剂在光催化还原CO2、光催化产氢或降解有机物中的应用。
CN202011198319.1A 2020-10-31 2020-10-31 一种具有铋、氧双空位的钨酸铋复合光催化剂及其制备方法和应用 Active CN112156770B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011198319.1A CN112156770B (zh) 2020-10-31 2020-10-31 一种具有铋、氧双空位的钨酸铋复合光催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011198319.1A CN112156770B (zh) 2020-10-31 2020-10-31 一种具有铋、氧双空位的钨酸铋复合光催化剂及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN112156770A true CN112156770A (zh) 2021-01-01
CN112156770B CN112156770B (zh) 2022-04-12

Family

ID=73865470

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011198319.1A Active CN112156770B (zh) 2020-10-31 2020-10-31 一种具有铋、氧双空位的钨酸铋复合光催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN112156770B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113136602A (zh) * 2021-04-19 2021-07-20 西北师范大学 一种钒酸铋/Vo-FeNiOOH复合光阳极的制备及应用
CN113209987A (zh) * 2021-04-20 2021-08-06 中山大学 一种由缺陷氧化物半导体和铋基修饰组分组成的光催化剂及其在分解水制氢中的应用
CN113231099A (zh) * 2021-05-21 2021-08-10 吉林大学 一种z型聚吡咯-钨酸铋光催化剂的制备及应用
CN113262778A (zh) * 2021-05-17 2021-08-17 南昌航空大学 一种含氧空位的二氧化钼/铋光催化剂及其制备方法和应用
CN114939422A (zh) * 2022-05-05 2022-08-26 华南理工大学 一种疏水性的缺陷型硫化铟光催化剂及其制备与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110180532A (zh) * 2019-05-07 2019-08-30 重庆工商大学 一种含有氧缺陷的碳掺杂钨酸铋光催化剂及其制备方法
CN110273165A (zh) * 2019-07-24 2019-09-24 台州学院 一种低温等离子体技术制备氧缺陷型钨酸铋光电极的方法
CN111604083A (zh) * 2020-06-29 2020-09-01 湖南大学 含氧空位钨酸铋/富氧结构的石墨型氮化碳复合光催化材料及其制备方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110180532A (zh) * 2019-05-07 2019-08-30 重庆工商大学 一种含有氧缺陷的碳掺杂钨酸铋光催化剂及其制备方法
CN110273165A (zh) * 2019-07-24 2019-09-24 台州学院 一种低温等离子体技术制备氧缺陷型钨酸铋光电极的方法
CN111604083A (zh) * 2020-06-29 2020-09-01 湖南大学 含氧空位钨酸铋/富氧结构的石墨型氮化碳复合光催化材料及其制备方法和应用

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113136602A (zh) * 2021-04-19 2021-07-20 西北师范大学 一种钒酸铋/Vo-FeNiOOH复合光阳极的制备及应用
CN113209987A (zh) * 2021-04-20 2021-08-06 中山大学 一种由缺陷氧化物半导体和铋基修饰组分组成的光催化剂及其在分解水制氢中的应用
CN113209987B (zh) * 2021-04-20 2024-03-26 中山大学 一种由缺陷氧化物半导体和铋基修饰组分组成的光催化剂及其在分解水制氢中的应用
CN113262778A (zh) * 2021-05-17 2021-08-17 南昌航空大学 一种含氧空位的二氧化钼/铋光催化剂及其制备方法和应用
CN113231099A (zh) * 2021-05-21 2021-08-10 吉林大学 一种z型聚吡咯-钨酸铋光催化剂的制备及应用
CN114939422A (zh) * 2022-05-05 2022-08-26 华南理工大学 一种疏水性的缺陷型硫化铟光催化剂及其制备与应用
CN114939422B (zh) * 2022-05-05 2023-08-18 华南理工大学 一种疏水性的缺陷型硫化铟光催化剂及其制备与应用

Also Published As

Publication number Publication date
CN112156770B (zh) 2022-04-12

Similar Documents

Publication Publication Date Title
CN112156770B (zh) 一种具有铋、氧双空位的钨酸铋复合光催化剂及其制备方法和应用
CN107456991B (zh) 一种g-C3N4量子点负载钨酸铋纳米片光催化剂的制备方法
Xu et al. Construction of heterojunction Bi/Bi5O7I/Sn3O4 for efficient noble-metal-free Z-scheme photocatalytic H2 evolution
Li et al. In situ reorganization of Bi3O4Br nanosheet on the Bi24O31Br10 ribbon structure for superior visible-light photocatalytic capability
CN106964339B (zh) 碳掺杂超薄钨酸铋纳米片光催化材料及其制备方法
CN110344029B (zh) 一种表面羟基化氧化铁薄膜光阳极材料的制备方法
CN109876841B (zh) 一种2-氨基对苯二甲酸和胺化合物共聚合制备石墨相氮化碳可见光催化剂的方法
CN115069262B (zh) 一种氧空位修饰的MoO3-x/Fe-W18O49光催化剂及其制备和固氮中的应用
CN115999614B (zh) 一种紫外-可见-近红外光响应的二氧化碳还原光催化剂
CN113976155A (zh) 含氮/氧双重缺陷结构多孔氮化碳-铁酸盐复合催化剂的制备方法及光固氮应用
CN103395822B (zh) 一种氧化亚铜微米空心球及其合成方法、应用方法
Shi et al. Regulating the band structure by modifying Ti3C2 and doping Fe ions improved photocatalytic activity and selectivity of ZnGa2O4–Ti3C2–Fe for photoreducted CO2 into CH4
CN107308973B (zh) 一种碱式磷酸钴纳米针复合lton光催化剂及其制备方法和应用
CN113582221A (zh) 一种缺陷可调控金属氧化物的高通量光热制备方法及应用
CN107349951A (zh) 一种CuO/g‑C3N4毛细血管状纳米复合物的制备方法
CN112371113A (zh) 一种Bi2WO6-rGO可见光催化剂的制备方法和应用
CN112675832B (zh) 一种二氧化碳还原有序介孔催化材料及其制备方法
CN113578368B (zh) 一种g-C3N4/Ag3PO4/BiFeO3复合可见光催化剂制备方法及其应用
CN114904541A (zh) 一种CdSe量子点/三维层状Ti3C2复合光催化剂的制备方法
Qian et al. Recent progress on Bi4O5Br2-based photocatalysts for environmental remediation and energy conversion
CN113856668A (zh) 一种Bi/BiVO4复合异质结光催化材料的制备方法
Zhang et al. Nanoengineering construction of g-C3N4/Bi2WO6 S-scheme heterojunctions for cooperative enhanced photocatalytic CO2 reduction and pollutant degradation
CN112044456B (zh) 一种Ag3PO4/α-Fe2O3复合材料的制备方法及应用
CN116747885B (zh) 一种ZIF-67衍生的CsPbBr3/Co3O4复合光催化剂的制备方法及其应用
CN114950397B (zh) 一种三氟乙酸改性硅表面TFA-Si光催化剂及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant