CN112138684A - 一种可见光催化剂及其制备方法和应用 - Google Patents

一种可见光催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN112138684A
CN112138684A CN202010951844.XA CN202010951844A CN112138684A CN 112138684 A CN112138684 A CN 112138684A CN 202010951844 A CN202010951844 A CN 202010951844A CN 112138684 A CN112138684 A CN 112138684A
Authority
CN
China
Prior art keywords
titanium dioxide
solution
light
sulfide
hydrochloric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010951844.XA
Other languages
English (en)
Other versions
CN112138684B (zh
Inventor
晏井春
陈玉东
姜若林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Weikang Environmental Protection Technology Co ltd
Nanjing Institute of Environmental Sciences MEE
Institute of Soil Science of CAS
Original Assignee
Zhejiang Weikang Environmental Protection Technology Co ltd
Nanjing Institute of Environmental Sciences MEE
Institute of Soil Science of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Weikang Environmental Protection Technology Co ltd, Nanjing Institute of Environmental Sciences MEE, Institute of Soil Science of CAS filed Critical Zhejiang Weikang Environmental Protection Technology Co ltd
Priority to CN202010951844.XA priority Critical patent/CN112138684B/zh
Publication of CN112138684A publication Critical patent/CN112138684A/zh
Application granted granted Critical
Publication of CN112138684B publication Critical patent/CN112138684B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/043Sulfides with iron group metals or platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8678Removing components of undefined structure
    • B01D53/8687Organic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • B01D2259/802Visible light

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)

Abstract

一种可见光催化剂及其制备方法和应用,在四氯化钛中加入盐酸溶液,搅拌均匀后加入碳酸钠溶液至pH 9.0,抽滤、洗涤后得到无定型二氧化钛;继续加入盐酸至pH为1.0,通入氮气排出溶解氧后,加入硫化钠和硫酸亚铁无氧水溶液,搅拌后将上述乳浊液置于水热反应釜中反应,得到纳米硫化亚铁/二氧化钛复合材料。该催化剂可以在自然光和可见光的作用下与甲醛和挥发性有机物进行反应,降解空气中甲醛和挥发性有机物。该催化剂制备方法简单,合成条件温和,在可见光及自然光下实现催化反应,波长响应范围宽,光催化活性强。

Description

一种可见光催化剂及其制备方法和应用
技术领域
本发明属于复合材料制备技术领域,具体涉及一种可见光催化剂及其制备方法和应用。
背景技术
随着人们生活水平的提高,室内装修的内容和形式也越来越丰富。一方面,人们享受着各种装修带来的舒适与便捷;另一方面,人们的健康也受到装修带来的有毒有害气体的危害。室内装修所用的胶水、地板、墙布、窗帘、沙发以及各种板材家具,颜色鲜艳的各类涂料、油漆等往往含有大量的甲醛及挥发性有机物(苯、甲苯、乙苯和二甲苯等)。人们如果长期在甲醛及挥发性有机物浓度超标的室内工作或生活,往往会导致头晕、流泪、恶心、胸闷、眼痛以及呼吸道疾病和神经紊乱等症状。更有甚者,会导致白血病、再生障碍性贫血和肺癌等严重危害人们身体健康的疾病。
利用二氧化钛光催化产生电子和空穴,进而生成羟基自由基和超氧负离子降解空气中甲醛及挥发性有机物,是一种净化室内空气、保障人体健康的有效方法。与传统通风法、植物吸收法、活性炭吸附法等空气净化技术相比,光催化空气净化技术具有处理效率高、能耗低和操作简单等优点。然而,二氧化钛的带隙较宽,只能被波长小于387nm的紫外光所激发,导致其可见光利用率低;此外,催化二氧化钛生成的电子和空穴容易复合,量子效率比较低,限制了二氧化钛的光催化效率。为了解决上述问题,人们尝试了多种方法对二氧化钛进行改性,目前常用的改性方法是贵金属掺杂,如Au、Ag和Pt等是最有效的可实现可见光激发的物质。贵金属的费米能级低于二氧化钛,导致光生电子能够有效地从二氧化钛导带转移到金属粒子,减少了电子与空穴的复合率。此外,非金属离子如氮掺杂二氧化钛也能够降低其带隙能级,也被认为是提高二氧化钛光催化活性的有效方法。
上述二氧化钛改性方法虽然能够有效提高其光催化活性,但是也存在一些问题。采用贵金属掺杂二氧化钛,一方面,贵金属价格高,另一方面贵金属对人体和环境存在潜在的健康风险和环境危害。而氮掺杂二氧化钛,往往需要高温煅烧,制备条件要求较高。本发明利用安全、无毒的铁元素和硫元素共掺杂二氧化钛,在相对温和的水热反应条件下制备纳米硫化亚铁/二氧化钛复合材料,实现可见光作用下的强催化活性。硫化亚铁掺杂使二氧化钛带隙中杂质能级被建立,实现了可见光吸收;硫化亚铁本身为半导体材料,在硫化亚铁存在条件下,光生电子能够有效地从一个半导体导带转移另一个半导体导,可以有效地实现电子与空穴分离,增强了光催化活性,拓宽波长响应范围,实现了二氧化钛在可见光或自然光催化性能。
发明内容
解决的技术问题:针对目前二氧化钛只能利用紫外光、光响应波长范围窄、光催化活性低等问题,本发明提供了一种可见光催化剂及其制备方法和应用。在条件相对温和的水热反应条件下制备纳米硫化亚铁/二氧化钛复合材料,实现二氧化钛在可见光及自然光下催化,拓宽波长响应范围,增强二氧化钛光催化活性。
技术方案:一种可见光催化剂的制备方法,制备步骤为:(1)在四氯化钛中加入浓度为12mol/L盐酸溶液,使四氯化钛与盐酸溶液的体积比为1:5,搅拌均匀后加入碳酸钠溶液至pH9.0,抽滤、洗涤后得到无定型二氧化钛;(2)继续加入盐酸至pH为1.0,通入氮气排出溶解氧后,按纳米硫化亚铁占纳米硫化亚铁/二氧化钛复合材料的质量比为1%~10%加入硫化钠和硫酸亚铁无氧水溶液,其中硫化钠与硫酸亚铁摩尔比为1:1,搅拌后将上述乳浊液置于水热反应釜中200~250℃反应10~15h,得到纳米硫化亚铁/二氧化钛复合材料。
上述制备方法制得的可见光催化剂。
上述可见光催化剂在可见光或自然光存在时降解甲醛和挥发性有机物中的应用。
上述挥发性有机物为苯、甲苯、乙苯和二甲苯。
有益效果:(1)本发明可见光催化剂为纳米硫化亚铁/二氧化钛复合材料,制备方法简单,合成条件温和;(2)本发明实现纳米硫化亚铁/二氧化钛复合材料在可见光及自然光下催化,拓宽波长响应范围,增强光催化活性;(3)本发明在可见光或自然光作用下,实现甲醛和苯、甲苯、乙苯和二甲苯等挥发性有机物快速降解。
附图说明
图1为纳米硫化亚铁/二氧化钛复合材料催化剂透射电镜(TEM)图;
图2为纳米硫化亚铁/二氧化复合材料催化剂X-射线粉末衍射(XRD)图。
具体实施方式
下面具体的实施例,对本发明作详细描述。但本发明的实施方式不限于此。
实施例1
(1)在10mL纯度为99.6%的四氯化钛溶液中加入50mL浓度为12mol/L盐酸溶液,搅拌均匀后加入碳酸钠溶液至pH 9.0,抽滤、洗涤后得到无定型二氧化钛;(2)继续加入盐酸至pH为1.0,通入氮气排出溶解氧后,加入0.065g硫化钠和0.23g七水合硫酸亚铁无氧水溶液,搅拌1h后将上述溶液置于水热反应釜中200℃反应10h,得到纳米硫化亚铁质量比为1%的纳米硫化亚铁/二氧化钛复合材料。
(2)将步骤(1)制得的纳米硫化亚铁/二氧化钛复合材料配成3%的溶液,在甲醛浓度为0.21mg/m3、面积为20m2(体积为58m3)房间的墙面和家具上喷涂2遍共800mL上述溶液,待其自然干燥后,在自然光的作用下,48h后检测该房间空气中甲醛的浓度。污染物去除情况见表1。
(3)将商业纳米二氧化钛配成3%的溶液,在甲醛浓度为0.21mg/m3、面积为20m2(体积为58m3)房间的墙面和家具上喷涂2遍共800mL上述溶液,待其自然干燥后,在自然光的作用下,48h后检测该房间空气中甲醛的浓度。污染物去除情况见表1。
实施例2
(1)在10mL纯度为99.6%的四氯化钛溶液中加入50mL浓度为12mol/L盐酸溶液,搅拌均匀后加入碳酸钠溶液至pH 9.0,抽滤、洗涤后得到无定型二氧化钛;(2)继续加入盐酸至pH为1.0,通入氮气排出溶解氧后,加入0.13g硫化钠和0.46g七水合硫酸亚铁无氧水溶液,搅拌1h后将上述溶液置于水热反应釜中210℃反应10h,得到纳米硫化亚铁质量比为2%的纳米硫化亚铁/二氧化钛复合材料。
(2)将步骤(1)制得的纳米硫化亚铁/二氧化钛复合材料配成3%的溶液,在苯浓度为0.19mg/m3、甲苯浓度为0.43mg/m3、乙苯浓度为0.24mg/m3、二甲苯浓度为0.31mg/m3、面积为20m2(体积为58m3)房间的墙面和家具上喷涂2遍共800mL上述溶液,待其自然干燥后,在自然光的作用下,48h后检测该房间空气中苯、甲苯、乙苯和二甲苯浓度。污染物去除情况见表1。
(3)将商业纳米二氧化钛配成3%的溶液,在苯浓度为0.19mg/m3、甲苯浓度为0.43mg/m3、乙苯浓度为0.24mg/m3、二甲苯浓度为0.31mg/m3、面积为20m2(体积为58m3)房间的墙面和家具上喷涂2遍共800mL上述溶液,待其自然干燥后,在自然光的作用下,48h后检测该房间空气中苯、甲苯、乙苯和二甲苯浓度。污染物去除情况见表1。
实施例3
(1)在10mL纯度为99.6%的四氯化钛溶液中加入50mL浓度为12mol/L盐酸溶液,搅拌均匀后加入碳酸钠溶液至pH 9.0,抽滤、洗涤后得到无定型二氧化钛;(2)继续加入盐酸至pH为1.0,通入氮气排出溶解氧后,加入0.33g硫化钠和1.15g七水合硫酸亚铁无氧水溶液,搅拌1h后将上述溶液置于水热反应釜中230℃反应10h,得到纳米硫化亚铁质量比为5%的纳米硫化亚铁/二氧化钛复合材料。
(2)将步骤(1)制得的纳米硫化亚铁/二氧化钛复合材料配成3%的溶液,在甲醛浓度为0.33mg/m3、苯浓度0.22mg/m3、甲苯浓度为0.27mg/m3、乙苯浓度为0.30mg/m3、二甲苯浓度为0.39mg/m3、面积为20m2(体积为58m3)房间的墙面和家具上喷涂2遍共800mL上述溶液,待其自然干燥后,开启24w日光灯,48h后检测该房间空气中甲醛、苯、甲苯、乙苯和二甲苯的浓度。污染物去除情况见表1。
(3)将商业纳米二氧化钛配成3%的溶液,在甲醛浓度为0.33mg/m3、苯浓度0.22mg/m3、甲苯浓度为0.27mg/m3、乙苯浓度为0.30mg/m3、二甲苯浓度为0.39mg/m3、面积为20m2(体积为58m3)房间的墙面和家具上喷涂2遍共800mL上述溶液,待其自然干燥后,开启24w日光灯,48h后检测该房间空气中甲醛、苯、甲苯、乙苯和二甲苯的浓度。污染物去除情况见表1。
实施例4
(1)在10mL纯度为99.6%的四氯化钛溶液中加入50mL浓度为12mol/L盐酸溶液,搅拌均匀后加入碳酸钠溶液至pH 9.0,抽滤、洗涤后得到无定型二氧化钛;(2)继续加入盐酸至pH为1.0,通入氮气排出溶解氧后,加入0.65g硫化钠和2.30g七水合硫酸亚铁无氧水溶液,搅拌1h后将上述溶液置于水热反应釜中250℃反应10h,得到纳米硫化亚铁质量比为10%的纳米硫化亚铁/二氧化钛复合材料。
(2)将步骤(1)制得的纳米硫化亚铁/二氧化钛复合材料配成3%的溶液,在甲醛浓度为0.27mg/m3、苯浓度0.30mg/m3、甲苯浓度为0.22mg/m3、乙苯浓度为0.16mg/m3、二甲苯浓度为0.24mg/m3、面积为20m2(体积为58m3)房间的墙面和家具上喷涂2遍共800mL上述溶液,待其自然干燥后,开启24w日光灯,48h后检测该房间空气中甲醛、苯、甲苯和二甲苯的浓度。污染物去除情况见表1。
(3)将商业纳米二氧化钛配成3%的溶液,在甲醛浓度为0.27mg/m3、苯浓度0.30mg/m3、甲苯浓度为0.22mg/m3、乙苯浓度为0.16mg/m3、二甲苯浓度为0.24mg/m3、面积为20m2(体积为58m3)房间的墙面和家具上喷涂2遍共800mL上述溶液,待其自然干燥后,开启24w日光灯,48h后检测该房间空气中甲醛、苯、甲苯和二甲苯的浓度。污染物去除情况见表1。
表1纳米硫化亚铁/二氧化钛复合材料催化剂对空气中污染物去除情况
Figure BDA0002677243410000051
由表1的结果可知,纳米硫化亚铁/二氧化钛复合材料在自然光及可见光的作用下可发生催化作用,实现甲醛及挥发性有机物有效降解,其催化活性远高于商业纳米二氧化钛。其中,在24w日光灯作用下,纳米硫化亚铁/二氧化钛复合材料对空气中甲苯的去除率最大可以达到88.9%,远高于同等条件下商业纳米二氧化钛对对空气中甲苯的去除率(37.0%)。
以上示意性地对本发明创造及其实施方式进行了描述,该描述没有限制性,所以,如果本领域技术人员受其启示,在不脱离本创造宗旨的情况下,不经创造性的设计出与该技术方案相似的结构方式及实施例,均应属于本发明的保护范围。

Claims (4)

1.一种可见光催化剂的制备方法,其特征在于制备步骤为:(1)在四氯化钛中加入浓度为12mol/L盐酸溶液,使四氯化钛与盐酸溶液的体积比为1:5,搅拌均匀后加入碳酸钠溶液至pH 9.0,抽滤、洗涤后得到无定型二氧化钛;(2)继续加入盐酸至pH为1.0,通入氮气排出溶解氧后,按纳米硫化亚铁占纳米硫化亚铁/二氧化钛复合材料的质量比为1%~10%加入硫化钠和硫酸亚铁无氧水溶液,其中硫化钠与硫酸亚铁摩尔比为1:1,搅拌后将上述乳浊液置于水热反应釜中200~250 ℃反应10~15 h,得到纳米硫化亚铁/二氧化钛复合材料。
2.权利要求1所述制备方法制得的可见光催化剂。
3.权利要求2所述可见光催化剂在可见光或自然光存在时降解甲醛和挥发性有机物中的应用。
4.根据权利要求3所述的应用,其特征在于所述的挥发性有机物为苯、甲苯、乙苯和二甲苯。
CN202010951844.XA 2020-09-11 2020-09-11 一种可见光催化剂及其制备方法和应用 Active CN112138684B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010951844.XA CN112138684B (zh) 2020-09-11 2020-09-11 一种可见光催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010951844.XA CN112138684B (zh) 2020-09-11 2020-09-11 一种可见光催化剂及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN112138684A true CN112138684A (zh) 2020-12-29
CN112138684B CN112138684B (zh) 2021-10-22

Family

ID=73889602

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010951844.XA Active CN112138684B (zh) 2020-09-11 2020-09-11 一种可见光催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN112138684B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114732921A (zh) * 2022-04-28 2022-07-12 陕西科技大学 黄铁矿修饰二氧化钛复合光催化抗菌材料及制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102786087A (zh) * 2012-08-22 2012-11-21 厦门大学 一种二氧化钛溶胶的制备方法
US20130263918A1 (en) * 2012-04-09 2013-10-10 Fundació Institut De Ciències Fotòniques Photovoltaic nanocomposite comprising solution processed inorganic bulk nano-heterojunctions, solar cell and photodiode devices comprising the nanocomposite
CN106031869A (zh) * 2015-03-12 2016-10-19 大连民族学院 一种具有可见光活性的BiVO4/TiO2复合纳米棒及制备和应用
CN108160064A (zh) * 2017-12-25 2018-06-15 中国科学院上海硅酸盐研究所 一种石墨烯/二氧化钛复合材料及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130263918A1 (en) * 2012-04-09 2013-10-10 Fundació Institut De Ciències Fotòniques Photovoltaic nanocomposite comprising solution processed inorganic bulk nano-heterojunctions, solar cell and photodiode devices comprising the nanocomposite
CN102786087A (zh) * 2012-08-22 2012-11-21 厦门大学 一种二氧化钛溶胶的制备方法
CN106031869A (zh) * 2015-03-12 2016-10-19 大连民族学院 一种具有可见光活性的BiVO4/TiO2复合纳米棒及制备和应用
CN108160064A (zh) * 2017-12-25 2018-06-15 中国科学院上海硅酸盐研究所 一种石墨烯/二氧化钛复合材料及其制备方法和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SHANGJUN DING ET AL: "One-Step High-Temperature Solvothermal Synthesis of TiO2/Sulfide Nanocomposite Spheres and Their Solar Visible-Light Applications", 《APPLIED MATERIALS & INTERFACES》 *
YU LI ET AL: "Highly efficient and stable photocatalytic properties of CdS/FeS nanocomposites", 《THE ROYAL SOCIETY OF CHEMISTRY》 *
宋关玲 等: "《纳米二氧化钛及其毒性效应研究》", 31 December 2017, 科学技术文献出版社 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114732921A (zh) * 2022-04-28 2022-07-12 陕西科技大学 黄铁矿修饰二氧化钛复合光催化抗菌材料及制备方法

Also Published As

Publication number Publication date
CN112138684B (zh) 2021-10-22

Similar Documents

Publication Publication Date Title
CN108970613B (zh) 一种羟基氧化铁改性的二氧化钛复合光催化剂及其制备方法与应用
Zhang et al. Preparation and performances of mesoporous TiO2 film photocatalyst supported on stainless steel
CN108620113B (zh) 一种氮掺杂的碳-铈复合纳米片的制备方法
CN115197591A (zh) 一种可见光催化复合材料及其制备方法
Wu et al. Study on TiO2/g-C3N4 S-Scheme heterojunction photocatalyst for enhanced formaldehyde decomposition
CN111056567A (zh) 一种黑色金红石相二氧化钛的制备方法
CN107376905B (zh) 一种可降解甲醛的Ag/ZnO复合材料的制备方法
CN112138684B (zh) 一种可见光催化剂及其制备方法和应用
CN1269568C (zh) 用于净化空气的纳米复合光催化剂
CN114768762A (zh) 一种同时脱除VOCs和甲醛吸附剂的制备方法
CN112961551B (zh) 一种二氧化钛催化空气净化涂料及其制备方法与应用
CN108435168B (zh) 一种具有可见光吸收及高效co2吸附和转化性能的复合光催化剂及其制备方法
Jalalat et al. Anchoring modified g-C3N4 with Bi5O7Br: S-scheme photocatalysts with boosted activities in elimination of inorganic and organic pollutants
CN1990102B (zh) 光催化消除臭氧的Au/TiO2催化剂
CN106178941B (zh) 一种碲化镉量子点/二氧化钛复合材料及其应用
CN110935441B (zh) 一种高效降解甲醛的钛基复合催化网及其制备方法
CN215481923U (zh) 一种具有去甲醛功能的遮阳复合材料
Li et al. Current progress on persistent fluorescence-assisted composite photocatalysts
CN106311210A (zh) 一种MSn(OH)6光催化剂及其制备方法和应用
CN111420685A (zh) 太阳光催化高效降解丙烯腈废水用FSBi掺杂TiO2/SiO2催化剂的制备及使用
CN113751071A (zh) 夹层片状Bi2O3/UiO-66-NH2复合材料及其的制备方法和应用
KR101532718B1 (ko) 전이금속이 도핑된 라돈 제거용 용액상 이산화티타늄 무광촉매 및 그 제조방법
CN109126445B (zh) 生物质成型活性炭负载三维纳米多孔贵金属复合材料及其制备方法和应用
CN113441001A (zh) 一种复合光催化材料在光催化降解甲醛中的应用
CN113617346A (zh) 一种小颗粒四氧化三钴的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant