CN112133802B - 一种GaN薄膜及其制备方法 - Google Patents

一种GaN薄膜及其制备方法 Download PDF

Info

Publication number
CN112133802B
CN112133802B CN202011005050.0A CN202011005050A CN112133802B CN 112133802 B CN112133802 B CN 112133802B CN 202011005050 A CN202011005050 A CN 202011005050A CN 112133802 B CN112133802 B CN 112133802B
Authority
CN
China
Prior art keywords
gan
layer
substrate
sio
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011005050.0A
Other languages
English (en)
Other versions
CN112133802A (zh
Inventor
赵桂娟
邢树安
刘贵鹏
汤金金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanzhou University
Original Assignee
Lanzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou University filed Critical Lanzhou University
Priority to CN202011005050.0A priority Critical patent/CN112133802B/zh
Publication of CN112133802A publication Critical patent/CN112133802A/zh
Application granted granted Critical
Publication of CN112133802B publication Critical patent/CN112133802B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C23C16/303Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

本发明涉及一种GaN薄膜及其制备方法。其中GaN薄膜,包括Si衬底和位于Si衬底上图形化的SiO2掩膜层,所述Si衬底的Si{111}晶面上有Si3N4缓冲层,所述SiO2掩膜层和不参与GaN生长的Si3N4缓冲层上有溅射SiO2膜;所述参与GaN生长的Si3N4缓冲层上有GaN插入层,所述GaN插入层上生长有GaN薄膜层。本发明的GaN薄膜,通过在Si图形衬底上外延生长非极性GaN薄膜的方法制得,不仅成本低廉,且性能优良能够广泛地用于器件的制作中。

Description

一种GaN薄膜及其制备方法
技术领域
本发明涉及半导体领域,具体涉及一种在Si图形衬底上外延生长非极性GaN的GaN薄膜及其制备方法。
背景技术
GaN是一种直接带隙的宽禁带半导体,由于其高热导率、高强场漂移速度和高击穿电压等优良特性受到了人们的广泛关注,且已经被应用于许多光电和大功率电子器件。目前,在充电器方面,GaN材料可以做成小尺寸、大功率的快速充电器,在快充市场有很大的前景;而由GaN材料制造的如LED等照明器件更是已经实现了商品化生产,且其中由GaN材料制造的蓝光LED获得2014年诺贝尔物理学奖;此外在5G时代,GaN也会由于其小尺寸、高效率和高的功率密度等特点而被用于基站功放之中。
现阶段,以蓝宝石(Al2O3)和碳化硅(SiC)为衬底来生长GaN薄膜的技术已经比较成熟,但是蓝宝石材料的导电导热性比较差,碳化硅材料的价格又十分的昂贵,因此对应器件的成本高。而相反,Si材料作为当今应用最广的半导体材料,有着价格低廉、导热好、尺寸大等优点。因此,以Si材料作为生长Ga N的衬底不仅可以在很大的程度上降低GaN器件的制造成本,而且还可以提高GaN器件的兼容性,在未来有望应用到集成电路中。传统的GaN基器件多采用GaN的极性面,将会产生沿[0001]方向的自发极化和压电极化,从而引起量子限制斯塔克效应(QCSE)。这种效应会降低电子-空穴复合几率,从而导致器件发光效率下降,对发光器件有很大的影响。而采用非极性的GaN材料能极大的改善这一情况。
但是,在Si衬底上直接生长GaN时,由于较大的晶格失配和热失配会在G aN薄膜中产生很大的应力和较高的位错密度,从而使得生长的GaN薄膜无法用来制作器件。
发明内容
本发明的目的在于克服现有技术的不足,提出一种成本低廉且性能优良的在Si图形衬底上外延生长非极性GaN薄膜的方法,且制得的薄膜能够广泛地用于器件的制作。
本发明的一种GaN薄膜,包括Si衬底和位于Si衬底上图形化的SiO2掩膜层,所述Si衬底的Si{111}晶面上有Si3N4缓冲层,所述SiO2掩膜层和不参与GaN生长的Si3N4缓冲层上有溅射SiO2膜;所述参与GaN生长的Si3N4缓冲层上有GaN插入层,所述GaN插入层上生长有GaN薄膜层。本发明的GaN薄膜中的缓冲层Si3N4层为有序的密排六方结构,不仅可以很好的解决晶格失配和热失配所带来的问题,而且可以避免Ga-Si回熔刻蚀,以及弛豫和补偿后续GaN生长累积的残余应力。其中GaN插入层可以使生长出来的GaN表面快速愈合,从而提高GaN薄膜层的质量。本发明所生长的GaN薄膜层为非极性的GaN,非极性的GaN在发光器件中有十分良好的性能,可以避免由于极化所引起量子限制斯塔克效应(QCSE)。
进一步,本发明的GaN薄膜,所述SiO2掩膜层(2a)的厚度为50-100nm,所述不参与GaN生长的Si3N4缓冲层(3)厚度为20-100nm,所述GaN插入层(5)的厚度为200-400nm,所述溅射SiO2膜(4)的厚度为40-60nm,所述GaN薄膜层(6)的厚度为1000-2000nm。其中SiO2掩膜层一方面可以通过光刻与刻蚀形成所需的条状掩膜,为下一步刻蚀硅片做准备,同时也能够阻止Si衬底与GaN的直接接触。若SiO2掩膜层厚度小于50nm,则会导致Ga-Si回熔刻蚀,降低最后生长出的GaN薄膜质量;若SiO2掩膜层厚度大于100nm,则GaN薄膜层的生长愈合速度变慢。所述Si3N4缓冲层可以缓解Si与GaN晶格失配与热失配的问题,同时将Si衬底与GaN插入层隔开,可以避免Ga-Si回熔刻蚀。但当Si3N4缓冲层的厚度超过100nm,将会由于晶格失配而导致后续生长的GaN插入层开裂,当Si3N4缓冲层的厚度小于20nm,则会导致Ga-Si回熔刻蚀。
进一步,本发明的GaN薄膜,所述SiO2掩膜层为条状掩膜层,其中条状掩膜的宽度为1-3μm,各条状掩膜之间的间距为3-10μm。当条状掩膜之间的间距过大时,会使得在Si3N4缓冲层上生长出的GaN插入层以及GaN薄膜层很难愈合,需要长很厚的GaN薄膜层;间距过小则会导致GaN薄膜层愈合过快,生长的厚度不足,使位错密度增大。条状掩膜的宽度同样会影响GaN薄膜层的愈合效果;而且若条状掩膜的宽度太小还会导致对下方Si衬底的保护减弱,可能会在后续湿法刻蚀中将条状掩膜下方的Si衬底腐蚀掉,导致穿通。同时由于光刻工艺的限制,条状掩膜的宽度过小更会极大地提高生产成本。
进一步,本发明的GaN薄膜,所述的Si衬底的晶面包括(110)晶面和/或(112)晶面,所述用于生长GaN的晶面包括(-111)晶面和(-1-11)晶面。
本发明的一种GaN薄膜的制备方法,包括首先在Si衬底上制作一层图形化的SiO2掩膜层,并在Si衬底表面刻蚀出Si{111}晶面;然后在刻蚀出的Si{111}晶面上生长一层Si3N4缓冲层,在SiO2掩膜层和不参与GaN生长的Si3N4缓冲层上溅射一层溅射SiO2膜;最后在参与GaN生长的Si3N4缓冲层上依次生长GaN插入层和GaN薄膜层。
进一步,本发明的GaN薄膜的制备方法,具体包括如下步骤:
步骤1)、在Si衬底上用等离子体增强型化学气相沉积法(PECVD)生长一层50-100nm的SiO2膜,通过光刻显影的方法对覆盖SiO2膜的Si衬底进行光刻显影,制作出图形化的SiO2掩膜层,所述SiO2掩膜层为条状掩膜层,其中条状掩膜层的宽度为1-3μm,各条状掩膜层之间的间距为3-10μm;然后通过湿法刻蚀的方法,用质量浓度为20%-40%的KOH溶液在30℃-40℃的温度下腐蚀10-20min,在Si衬底表面刻蚀出凹槽,凹槽的侧面是Si{111}晶面;
步骤2)、将步骤1)中刻蚀出的Si{111}晶面氮化,即在所述Si{111}晶面上生长一层Si3N4缓冲层,在SiO2掩膜层和不参与GaN生长的Si3N4缓冲层上溅射一层溅射SiO2膜;
步骤3)、在参与GaN生长的Si3N4缓冲层上利用金属有机化学气相沉积法(MOCVD)依次生长GaN插入层和GaN薄膜层。
进一步,本发明的GaN薄膜的制备方法,所述步骤1)中的Si衬底的晶面包括(112)晶面和/或(110)晶面,所述Si{111}晶面包括(-1-11)晶面、(111)晶面、(-111)晶面以及(1-1-1)晶面。
进一步,本发明的GaN薄膜的制备方法,所述步骤2)中,氮化Si{111}晶面的过程具体包括,将刻蚀好的Si衬底放入真空石英管中,通入高纯氮气,在温度为1100-1300℃,气压为104-105Pa的条件下氮化1-2h,得到Si3N4缓冲层;合适的氮化温度不仅能很好地生成Si3N4更能够避免能源的浪费。而且需要保证石英管中为高纯氮气,并通过氮化时间的长短来控制生成Si3N4缓冲层的厚度。
进一步,所述通过在溅射过程中倾斜Si衬底来保证Si3N4缓冲层上用于生长GaN的面不被溅射SiO2膜覆盖,所述溅射SiO2膜的厚度为40-60nm;
进一步,所述所述溅射过程中Si衬底倾斜角度为10°-20°。
进一步,本发明的GaN薄膜的制备方法,其特征在于,所述步骤2)中用于生长Si3N4缓冲层和GaN薄膜的Si{111}晶面有(-1-11)晶面和(-111)晶面。
进一步,本发明的GaN薄膜的制备方法,其特征在于,所述步骤3)中所述的GaN插入层的生长条件为:温度1000-1100℃、反应腔内的气压为500-600Torr、Ⅴ/Ⅲ比为400-500,GaN插入层的厚度控制在200-400nm。且高压低Ⅴ/Ⅲ比会推迟岛与岛的合并时间,能够在合并前先长出一定厚度的GaN插入层从而使穿透位错的密度降低,有利于形核。此外,由于GaN插入层的存在,避免了使用异质衬底生长GaN薄膜层时产生的晶格失配和热失配的问题,从而提高GaN薄膜层的质量。
进一步,所述步骤3)中所述的GaN薄膜层的生长条件为:温度1100-1300℃、反应腔内的气压为250-350Torr、Ⅴ/Ⅲ比为1000-5000,GaN薄膜层的厚度控制在1000-2000nm。低压高Ⅴ/Ⅲ比有助于加速合并过程,使GaN薄膜层快速形成平整的表面。采用两步法可以获得光滑平整的表面。生长的GaN薄膜层厚度太薄的话可能会导致GaN薄膜层愈合的不是太好,表面不平整。在具体操作过程中,可以根据需要自行调整制备适合厚度的GaN薄膜。
进一步,步骤3)中生长的GaN薄膜层的晶面包括(1-100)晶面和(11-20)晶面;
进一步,所述步骤3)中所需的镓源和氮源分别为三甲基镓和氨气。
与现有技术相比,本发明具有以下有益的技术效果:
本发明的GaN薄膜,通过在Si图形衬底上外延生长非极性GaN薄膜的方法制得,不仅成本低廉,且性能优良能够广泛地用于器件的制作中。所述GaN薄膜中的缓冲层Si3N4层为有序的密排六方结构,不仅可以很好的解决晶格失配和热失配所带来的问题,而且可以避免Ga-Si回熔刻蚀,以及弛豫和补偿后续GaN生长累积的残余应力。其中GaN插入层可以降低生长过程中产生的位错,从而提高GaN薄膜层的质量。本发明所生长的GaN薄膜层为非极性的GaN,非极性的GaN在发光器件中有十分良好的性能,可以避免由于极化所引起量子限制斯塔克效应(QCSE)。
附图说明
图1是本发明实施例1所述GaN薄膜的结构示意图;
图2是本发明实施例2所述GaN薄膜的结构示意图;
图3是本发明实施例3和实施例4所述的SiO2掩膜层的结构示意图;
图4是本发明实施例3详细过程示意图;
图5是本发明实施例3完成步骤1后的结构示意图;
图6是本发明实施例4完成步骤1后的结构示意图。
其中,1.Si衬底,1a.(110)晶向Si衬底,1b.(112)晶向Si衬底,2.SiO2膜,2a.SiO2掩膜层,3.Si3N4缓冲层,4.溅射SiO2膜,5.GaN插入层,6.GaN薄膜层。
具体实施方式
下面结合具体的实施例对本发明做进一步的详细说明。
实施例1:
如图1所示,一种GaN薄膜,包括Si衬底1a和位于Si衬底1a上图形化的SiO2掩膜层2a,所述Si衬底1a的Si{111}晶面上有Si3N4缓冲层3,所述SiO2掩膜层2a和不参与GaN生长的Si3N4缓冲层3上有溅射SiO2膜4;所述参与GaN生长的Si3N4缓冲层3上有GaN插入层5,所述GaN插入层5上生长有GaN薄膜层6。所述SiO2掩膜层2a的厚度为50-100nm,且为条状掩膜层,其中条状掩膜层的宽度为1-3μm,各条状掩膜层之间的间距为3-10μm。所述不参与GaN生长的Si3N4缓冲层3厚度为20-100nm,所述GaN插入层5的厚度为200-400nm,所述溅射SiO2膜4的厚度为40-60nm,所述GaN薄膜层6的厚度为1000-2000nm。
其中,所述的GaN薄膜的Si衬底1a为(110)晶向,Si衬底1a的晶面包括(110)晶面,所述刻蚀出的Si{111}包括(-111)晶面和(1-1-1)晶面;用于生长Si3N4缓冲层3的Si{111}晶面为(-111)晶面;生长出所述GaN薄膜层6的晶面为(11-20)晶面。
其中,Si衬底上的Si3N4缓冲层,其晶格匹配程度和热膨胀系数均介于Si和GaN之间,见下表1。在Si3N4缓冲层上生长的GaN插入层,其作用是用于形核,在岛与岛合并前生长一定的厚度来降低位错密度;最后生长的GaN薄膜层是我们的目标产物。该层是在GaN插入层上生长的,属于同质外延,因此本发明的GaN薄膜不存在晶格失配和热失配的问题。此外,本发明得到的非极性的GaN薄膜性能良好。传统的GaN基发光二极管(LED)都是在[0001]c轴方向上生长的,这是一个高度极性取向,因此在器件中常常会发生自发极化和压电极化的现象。极化效应会在GaN中引起能带的倾斜,从而在电子器件中形成高密度的二维电子气,这造成电子与空穴在空间上分离,使得两者的波函数交叠变小,材料的发光效率降低,而且发光波长会产生红移现象,这被称为量子限制斯塔克效应(QCSE)。而对于非极性以及半极性材料而言,由于沿着材料生长方向的极化效应消失或者削弱,因此可以消除QCSE,从而提高器件性能。
表1不同材料参数
实施例2:
如图2所示:本实施例2与实施例1的不同之处仅在于,所述的GaN薄膜的Si衬底1b为(112)晶向,Si衬底1b的晶面包括(112)晶面,所述刻蚀出的Si{111}包括(-1-11)晶面和(111)晶面;用于生长Si3N4缓冲层3的Si{111}晶面为(-1-11)晶面;生长出所述GaN薄膜层6的晶面为(1-100)晶面。
实施例3:
一种GaN薄膜的制备方法,具体包括如下步骤:
步骤1)、在Si(110)的衬底1a上用等离子体增强型化学气相沉积法(PECVD)生长一层50-100nm的SiO2膜2,通过光刻工艺将光刻板图案转移到SiO2膜2上,然后通过感应耦合等离子体(ICP)刻蚀工艺制作出图形化的SiO2掩膜层2a,所述SiO2掩膜层2a为条状掩膜层,其中条状掩膜层的宽度为1-3μm,各条状掩膜层之间的间距为3-10μm,如图3所示;然后通过湿法刻蚀的方法,用质量浓度为20%-40%的KOH溶液在30℃-40℃的温度下腐蚀10-20min,在Si衬底1a表面刻蚀形成凹槽,凹槽的侧面是Si{111}晶面,包括(-111)晶面和(1-1-1)晶面,如图5所示;
步骤2)、将步骤1)中刻蚀出的Si{111}晶面氮化,即在所述Si{111}晶面上生长一层Si3N4缓冲层3。氮化Si{111}晶面的过程具体包括,将刻蚀好的Si衬底1a放入真空石英管中,通入高纯氮气,在温度为1100-1300℃,压力为104-105Pa的条件下氮化1-2h,得到Si3N4缓冲层3;通过在溅射过程中倾斜Si衬底1a来保证Si3N4缓冲层3上用于生长GaN的面不被溅射SiO2膜4覆盖,倾斜角度为10°-20°。所述溅射SiO2膜4的厚度为40-60nm;在SiO2掩膜层2a和不参与GaN生长的Si3N4缓冲层3上溅射一层溅射SiO2膜4;
其中,用于生长Si3N4缓冲层3的Si{111}晶面为(-111)晶面。
步骤3)、在参与GaN生长的Si3N4缓冲层3上利用金属有机化学气相沉积法(MOCVD)依次生长GaN插入层5和GaN薄膜层6。所述的GaN插入层5的生长条件为:温度1000-1100℃、反应腔内的气压为500-600Torr、Ⅴ/Ⅲ比为400-500,GaN插入层5的厚度控制在200-400nm;所述的GaN薄膜层6的生长条件为:温度1100-1300℃、反应腔内的气压为250-350Torr、Ⅴ/Ⅲ比为1000-5000,GaN薄膜层6的厚度控制在1000-2000nm。生长出的GaN薄膜层6的晶面为(11-20)晶面;所需的镓源和氮源分别为三甲基镓和氨气。
实施例4:
一种GaN薄膜的制备方法,本实施例4与实施例3的不同之处仅在于:
所述的GaN薄膜的Si衬底1b为(112)晶向,Si衬底1a的晶面包括(112)晶面,所述湿法刻蚀出的Si{111}晶面包括(-1-11)晶面和(111)晶面,如图6所示;用于生长Si3N4缓冲层3的Si{111}晶面为(-1-11)晶面;最终生长出的GaN薄膜层6的晶面为(1-100)晶面。

Claims (7)

1.一种GaN薄膜,其特征在于:所述GaN薄膜包括Si衬底(1)和位于Si衬底(1)上图形化的SiO2掩膜层(2a),所述Si衬底(1)的Si{111}晶面上有Si3N4缓冲层(3),在不参与GaN生长的Si3N4缓冲层(3)上有溅射SiO2膜(4);在参与GaN生长的Si3N4缓冲层(3)上有GaN插入层(5),所述GaN插入层(5)上生长有非极性GaN薄膜层(6);所述Si3N4缓冲层(3)为有序的密排六方结构;
所述SiO2掩膜层(2a)的厚度为50-100nm,所述不参与GaN生长的Si3N4缓冲层(3)厚度为20-100nm,所述GaN插入层(5)的厚度为200-400nm,所述溅射SiO2膜(4)的厚度为40-60nm,所述非极性GaN薄膜层(6)的厚度为1000-2000nm;
所述SiO2掩膜层(2a)为条状掩膜层,其中条状掩膜层的宽度为1-3μm,各条状掩膜层之间的间距为3-10μm。
2.根据权利要求1所述的GaN薄膜,其特征在于,所述Si衬底(1)包括(110)晶向Si衬底(1a)和(112)晶向Si衬底(1b),所述Si衬底(1)的晶面包括(110)晶面和/或(112)晶面,用于生长GaN的晶面包括(-1-11)晶面和(-111)晶面。
3.一种GaN薄膜的制备方法,其特征在于,所述制备方法包括首先在Si衬底(1)上制作一层图形化的SiO2掩膜层(2a),并在Si衬底(1)表面刻蚀出Si{111}晶面;然后在刻蚀出的Si{111}晶面上生长一层Si3N4缓冲层(3),在不参与GaN生长的Si3N4缓冲层(3)上溅射一层溅射SiO2膜(4);最后在参与GaN生长的Si3N4缓冲层(3)上依次生长GaN插入层(5)和非极性GaN薄膜层(6);
所述制备方法具体包括如下步骤:
步骤1)、在Si衬底(1)上用等离子体增强型化学气相沉积法生长一层50-100nm的SiO2膜(2),通过光刻工艺将光刻板图案转移到SiO2膜(2)上,然后通过感应耦合等离子体刻蚀工艺制作出图形化的SiO2掩膜层(2a),所述SiO2掩膜层(2a)为条状掩膜层,其中条状掩膜层的宽度为1-3μm,各条状掩膜层之间的间距为3-10μm;然后通过湿法刻蚀的方法,用质量浓度为20%-40%的KOH溶液在30℃-40℃的温度下腐蚀10-20min,在Si衬底(1)表面刻蚀形成凹槽,凹槽的侧面是Si{111}晶面;
步骤2)、将步骤1)中刻蚀出的Si{111}晶面氮化,即在所述Si{111}晶面上生长一层Si3N4缓冲层(3),在不参与GaN生长的Si3N4缓冲层(3)上溅射一层溅射SiO2膜(4);
氮化Si{111}晶面的过程具体包括,将刻蚀好的Si衬底(1)放入真空石英管中,通入高纯氮气,在温度为1100-1300℃,压力为104-105Pa的条件下氮化1-2h,得到Si3N4缓冲层(3);
通过在溅射过程中倾斜Si衬底(1)来保证Si3N4缓冲层(3)上用于生长GaN的面不被溅射SiO2膜(4)覆盖,所述溅射SiO2膜(4)的厚度为40-60nm;
步骤3)、在参与GaN生长的Si3N4缓冲层(3)上利用金属有机化学气相沉积法依次生长GaN插入层(5)和非极性GaN薄膜层(6);GaN插入层(5)的厚度控制在200-400nm;非极性GaN薄膜层(6)的厚度控制在1000-2000nm。
4.根据权利要求3所述的GaN薄膜的制备方法,其特征在于,所述步骤1)中的Si衬底(1)的晶面包括(112)晶面和/或(110)晶面,所述Si{111}晶面包括(-1-11)晶面、(111)晶面、(-111)晶面以及(1-1-1)晶面。
5.根据权利要求4所述的GaN薄膜的制备方法,其特征在于,步骤2)的溅射过程中Si衬底(1)倾斜角度为10°-20°。
6.根据权利要求5所述的GaN薄膜的制备方法,其特征在于,所述步骤2)中用于生长Si3N4缓冲层(3)的Si{111}晶面有(-1-11)晶面和(-111)晶面。
7.根据权利要求6所述的GaN薄膜的制备方法,其特征在于,所述步骤3)中GaN插入层(5)的生长条件为:温度1000-1100℃、反应腔内的气压为500-600Torr、Ⅴ/Ⅲ比为400-500;
步骤3)中非极性GaN薄膜层(6)的生长条件为:温度1100-1300℃、反应腔内的气压为250-350Torr、Ⅴ/Ⅲ比为1000-5000;
步骤3)中生长的非极性GaN薄膜层(6)的晶面包括(1-100)晶面和(11-20)晶面;
步骤3)中所需的镓源和氮源分别为三甲基镓和氨气。
CN202011005050.0A 2020-09-23 2020-09-23 一种GaN薄膜及其制备方法 Active CN112133802B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011005050.0A CN112133802B (zh) 2020-09-23 2020-09-23 一种GaN薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011005050.0A CN112133802B (zh) 2020-09-23 2020-09-23 一种GaN薄膜及其制备方法

Publications (2)

Publication Number Publication Date
CN112133802A CN112133802A (zh) 2020-12-25
CN112133802B true CN112133802B (zh) 2023-09-22

Family

ID=73843070

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011005050.0A Active CN112133802B (zh) 2020-09-23 2020-09-23 一种GaN薄膜及其制备方法

Country Status (1)

Country Link
CN (1) CN112133802B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115376910B (zh) * 2022-09-06 2023-06-13 兰州大学 一种制备平行斜刻凹槽图形化硅衬底的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102208497A (zh) * 2011-04-22 2011-10-05 中山大学 一种硅衬底上半极性、非极性GaN复合衬底的制备方法
CN102214557A (zh) * 2011-04-28 2011-10-12 中山大学 一种半极性、非极性GaN自支撑衬底的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6967355B2 (en) * 2003-10-22 2005-11-22 University Of Florida Research Foundation, Inc. Group III-nitride on Si using epitaxial BP buffer layer
US7803717B2 (en) * 2003-10-23 2010-09-28 North Carolina State University Growth and integration of epitaxial gallium nitride films with silicon-based devices
US7012016B2 (en) * 2003-11-18 2006-03-14 Shangjr Gwo Method for growing group-III nitride semiconductor heterostructure on silicon substrate
US7902047B2 (en) * 2008-07-18 2011-03-08 The United States Of America As Represented By The United States Department Of Energy Dual chamber system providing simultaneous etch and deposition on opposing substrate sides for growing low defect density epitaxial layers

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102208497A (zh) * 2011-04-22 2011-10-05 中山大学 一种硅衬底上半极性、非极性GaN复合衬底的制备方法
CN102214557A (zh) * 2011-04-28 2011-10-12 中山大学 一种半极性、非极性GaN自支撑衬底的制备方法

Also Published As

Publication number Publication date
CN112133802A (zh) 2020-12-25

Similar Documents

Publication Publication Date Title
CN111682061B (zh) 氮化物外延片及其制备方法和半导体器件
US7811902B2 (en) Method for manufacturing nitride based single crystal substrate and method for manufacturing nitride based light emitting diode using the same
CN113206003B (zh) 一种在任意自支撑衬底上生长单晶氮化镓薄膜的方法
WO2018076407A1 (zh) 生长在镓酸锂衬底上的非极性纳米柱led及其制备方法
CN108878266B (zh) 一种在多晶或非晶衬底上生长单晶氮化镓薄膜的方法
WO2024040958A1 (zh) 基于氧化铝氧化硅复合衬底的led芯片及其制造方法
CN114574959B (zh) 一种氮化物外延层制备方法及其半导体外延片
CN101901757A (zh) 基于a面6H-SiC衬底上非极性a面GaN的MOCVD生长方法
CN112133802B (zh) 一种GaN薄膜及其制备方法
CN109599468B (zh) 超宽禁带氮化铝材料外延片及其制备方法
CN113130296B (zh) 一种六方氮化硼上生长氮化镓的方法
CN213905295U (zh) 一种大尺寸SiC衬底低应力GaN薄膜
CN116682910B (zh) 一种氮化镓外延片结构及其制备方法
CN117577748A (zh) 发光二极管外延片及其制备方法、led
CN110791805A (zh) 一种衬底、外延片及其生长方法
CN109148654B (zh) 非极性面ⅲ族氮化物外延结构及其制备方法
CN115084329B (zh) 一种应用于Si衬底上的LED外延片及其生长方法
CN109411580B (zh) 氮化镓基功率器件及其制备方法
US20140151714A1 (en) Gallium nitride substrate and method for fabricating the same
JP2000150388A (ja) Iii族窒化物半導体薄膜およびその製造方法
TWI703243B (zh) 單晶三族氮化物的形成方法
WO2020228336A1 (zh) 一种基于GaN的LED外延片及其制备方法
CN112687527A (zh) 一种大尺寸SiC衬底低应力GaN薄膜及其外延生长方法
CN111146318A (zh) 一种基于MoS2的薄层紫外发光二极管及其制作方法
CN116454184B (zh) 一种高光效led外延片及其制备方法、led

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant