CN112133802A - 一种GaN薄膜及其制备方法 - Google Patents
一种GaN薄膜及其制备方法 Download PDFInfo
- Publication number
- CN112133802A CN112133802A CN202011005050.0A CN202011005050A CN112133802A CN 112133802 A CN112133802 A CN 112133802A CN 202011005050 A CN202011005050 A CN 202011005050A CN 112133802 A CN112133802 A CN 112133802A
- Authority
- CN
- China
- Prior art keywords
- gan
- layer
- sio
- crystal plane
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 10
- 239000013078 crystal Substances 0.000 claims abstract description 99
- 239000000758 substrate Substances 0.000 claims abstract description 61
- 239000010409 thin film Substances 0.000 claims abstract description 57
- 239000010408 film Substances 0.000 claims abstract description 53
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 36
- 229910052681 coesite Inorganic materials 0.000 claims abstract description 33
- 229910052906 cristobalite Inorganic materials 0.000 claims abstract description 33
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 33
- 229910052682 stishovite Inorganic materials 0.000 claims abstract description 33
- 229910052905 tridymite Inorganic materials 0.000 claims abstract description 33
- 238000000034 method Methods 0.000 claims abstract description 31
- 229910052581 Si3N4 Inorganic materials 0.000 claims abstract description 16
- 238000004544 sputter deposition Methods 0.000 claims abstract description 14
- 238000004519 manufacturing process Methods 0.000 claims abstract description 7
- 238000003780 insertion Methods 0.000 claims description 19
- 230000037431 insertion Effects 0.000 claims description 19
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 15
- 238000005530 etching Methods 0.000 claims description 13
- 238000005121 nitriding Methods 0.000 claims description 11
- 229910052757 nitrogen Inorganic materials 0.000 claims description 7
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 claims description 6
- 239000012528 membrane Substances 0.000 claims description 5
- 238000001039 wet etching Methods 0.000 claims description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 3
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 3
- 238000005229 chemical vapour deposition Methods 0.000 claims description 3
- 229910052733 gallium Inorganic materials 0.000 claims description 3
- 239000007789 gas Substances 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- 239000010453 quartz Substances 0.000 claims description 3
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 claims description 3
- 238000009616 inductively coupled plasma Methods 0.000 claims description 2
- 229910001873 dinitrogen Inorganic materials 0.000 claims 1
- 239000000463 material Substances 0.000 description 13
- 230000010287 polarization Effects 0.000 description 7
- 230000005701 quantum confined stark effect Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000005699 Stark effect Effects 0.000 description 3
- 230000035876 healing Effects 0.000 description 3
- 238000001259 photo etching Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 230000006911 nucleation Effects 0.000 description 2
- 238000010899 nucleation Methods 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 229910052594 sapphire Inorganic materials 0.000 description 2
- 239000010980 sapphire Substances 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 230000002269 spontaneous effect Effects 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000001657 homoepitaxy Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 230000005533 two-dimensional electron gas Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 230000005428 wave function Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/12—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/10—Glass or silica
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/301—AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
- C23C16/303—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/40—Oxides
- C23C16/401—Oxides containing silicon
- C23C16/402—Silicon dioxide
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/04—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02373—Group 14 semiconducting materials
- H01L21/02381—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/02433—Crystal orientation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02488—Insulating materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/0254—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
- H01L33/0062—Processes for devices with an active region comprising only III-V compounds
- H01L33/0066—Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
- H01L33/007—Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/26—Materials of the light emitting region
- H01L33/30—Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
- H01L33/32—Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Organic Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Plasma & Fusion (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Recrystallisation Techniques (AREA)
Abstract
本发明涉及一种GaN薄膜及其制备方法。其中GaN薄膜,包括Si衬底和位于Si衬底上图形化的SiO2掩膜层,所述Si衬底的Si{111}晶面上有Si3N4缓冲层,所述SiO2掩膜层和不参与GaN生长的Si3N4缓冲层上有溅射SiO2膜;所述参与GaN生长的Si3N4缓冲层上有GaN插入层,所述GaN插入层上生长有GaN薄膜层。本发明的GaN薄膜,通过在Si图形衬底上外延生长非极性GaN薄膜的方法制得,不仅成本低廉,且性能优良能够广泛地用于器件的制作中。
Description
技术领域
本发明涉及半导体领域,具体涉及一种在Si图形衬底上外延生长非极性GaN的GaN薄膜及其制备方法。
背景技术
GaN是一种直接带隙的宽禁带半导体,由于其高热导率、高强场漂移速度和高击穿电压等优良特性受到了人们的广泛关注,且已经被应用于许多光电和大功率电子器件。目前,在充电器方面,GaN材料可以做成小尺寸、大功率的快速充电器,在快充市场有很大的前景;而由GaN材料制造的如LED等照明器件更是已经实现了商品化生产,且其中由GaN材料制造的蓝光LED获得2014年诺贝尔物理学奖;此外在5G时代,GaN也会由于其小尺寸、高效率和高的功率密度等特点而被用于基站功放之中。
现阶段,以蓝宝石(Al2O3)和碳化硅(SiC)为衬底来生长GaN薄膜的技术已经比较成熟,但是蓝宝石材料的导电导热性比较差,碳化硅材料的价格又十分的昂贵,因此对应器件的成本高。而相反,Si材料作为当今应用最广的半导体材料,有着价格低廉、导热好、尺寸大等优点。因此,以Si材料作为生长Ga N的衬底不仅可以在很大的程度上降低GaN器件的制造成本,而且还可以提高GaN器件的兼容性,在未来有望应用到集成电路中。传统的GaN基器件多采用GaN的极性面,将会产生沿[0001]方向的自发极化和压电极化,从而引起量子限制斯塔克效应(QCSE)。这种效应会降低电子-空穴复合几率,从而导致器件发光效率下降,对发光器件有很大的影响。而采用非极性的GaN材料能极大的改善这一情况。
但是,在Si衬底上直接生长GaN时,由于较大的晶格失配和热失配会在G aN薄膜中产生很大的应力和较高的位错密度,从而使得生长的GaN薄膜无法用来制作器件。
发明内容
本发明的目的在于克服现有技术的不足,提出一种成本低廉且性能优良的在Si图形衬底上外延生长非极性GaN薄膜的方法,且制得的薄膜能够广泛地用于器件的制作。
本发明的一种GaN薄膜,包括Si衬底和位于Si衬底上图形化的SiO2掩膜层,所述Si衬底的Si{111}晶面上有Si3N4缓冲层,所述SiO2掩膜层和不参与GaN生长的Si3N4缓冲层上有溅射SiO2膜;所述参与GaN生长的Si3N4缓冲层上有GaN插入层,所述GaN插入层上生长有GaN薄膜层。本发明的GaN薄膜中的缓冲层Si3N4层为有序的密排六方结构,不仅可以很好的解决晶格失配和热失配所带来的问题,而且可以避免Ga-Si回熔刻蚀,以及弛豫和补偿后续GaN生长累积的残余应力。其中GaN插入层可以使生长出来的GaN表面快速愈合,从而提高GaN薄膜层的质量。本发明所生长的GaN薄膜层为非极性的GaN,非极性的GaN在发光器件中有十分良好的性能,可以避免由于极化所引起量子限制斯塔克效应(QCSE)。
进一步,本发明的GaN薄膜,所述SiO2掩膜层(2a)的厚度为50-100nm,所述不参与GaN生长的Si3N4缓冲层(3)厚度为20-100nm,所述GaN插入层(5)的厚度为200-400nm,所述溅射SiO2膜(4)的厚度为40-60nm,所述GaN薄膜层(6)的厚度为1000-2000nm。其中SiO2掩膜层一方面可以通过光刻与刻蚀形成所需的条状掩膜,为下一步刻蚀硅片做准备,同时也能够阻止Si衬底与GaN的直接接触。若SiO2掩膜层厚度小于50nm,则会导致Ga-Si回熔刻蚀,降低最后生长出的GaN薄膜质量;若SiO2掩膜层厚度大于100nm,则GaN薄膜层的生长愈合速度变慢。所述Si3N4缓冲层可以缓解Si与GaN晶格失配与热失配的问题,同时将Si衬底与GaN插入层隔开,可以避免Ga-Si回熔刻蚀。但当Si3N4缓冲层的厚度超过100nm,将会由于晶格失配而导致后续生长的GaN插入层开裂,当Si3N4缓冲层的厚度小于20nm,则会导致Ga-Si回熔刻蚀。
进一步,本发明的GaN薄膜,所述SiO2掩膜层为条状掩膜层,其中条状掩膜的宽度为1-3μm,各条状掩膜之间的间距为3-10μm。当条状掩膜之间的间距过大时,会使得在Si3N4缓冲层上生长出的GaN插入层以及GaN薄膜层很难愈合,需要长很厚的GaN薄膜层;间距过小则会导致GaN薄膜层愈合过快,生长的厚度不足,使位错密度增大。条状掩膜的宽度同样会影响GaN薄膜层的愈合效果;而且若条状掩膜的宽度太小还会导致对下方Si衬底的保护减弱,可能会在后续湿法刻蚀中将条状掩膜下方的Si衬底腐蚀掉,导致穿通。同时由于光刻工艺的限制,条状掩膜的宽度过小更会极大地提高生产成本。
进一步,本发明的GaN薄膜,所述的Si衬底的晶面包括(110)晶面和/或(112)晶面,所述用于生长GaN的晶面包括(-111)晶面和(-1-11)晶面。
本发明的一种GaN薄膜的制备方法,包括首先在Si衬底上制作一层图形化的SiO2掩膜层,并在Si衬底表面刻蚀出Si{111}晶面;然后在刻蚀出的Si{111}晶面上生长一层Si3N4缓冲层,在SiO2掩膜层和不参与GaN生长的Si3N4缓冲层上溅射一层溅射SiO2膜;最后在参与GaN生长的Si3N4缓冲层上依次生长GaN插入层和GaN薄膜层。
进一步,本发明的GaN薄膜的制备方法,具体包括如下步骤:
步骤1)、在Si衬底上用等离子体增强型化学气相沉积法(PECVD)生长一层50-100nm的SiO2膜,通过光刻显影的方法对覆盖SiO2膜的Si衬底进行光刻显影,制作出图形化的SiO2掩膜层,所述SiO2掩膜层为条状掩膜层,其中条状掩膜层的宽度为1-3μm,各条状掩膜层之间的间距为3-10μm;然后通过湿法刻蚀的方法,用质量浓度为20%-40%的KOH溶液在30℃-40℃的温度下腐蚀10-20min,在Si衬底表面刻蚀出凹槽,凹槽的侧面是Si{111}晶面;
步骤2)、将步骤1)中刻蚀出的Si{111}晶面氮化,即在所述Si{111}晶面上生长一层Si3N4缓冲层,在SiO2掩膜层和不参与GaN生长的Si3N4缓冲层上溅射一层溅射SiO2膜;
步骤3)、在参与GaN生长的Si3N4缓冲层上利用金属有机化学气相沉积法(MOCVD)依次生长GaN插入层和GaN薄膜层。
进一步,本发明的GaN薄膜的制备方法,所述步骤1)中的Si衬底的晶面包括(112)晶面和/或(110)晶面,所述Si{111}晶面包括(-1-11)晶面、(111)晶面、(-111)晶面以及(1-1-1)晶面。
进一步,本发明的GaN薄膜的制备方法,所述步骤2)中,氮化Si{111}晶面的过程具体包括,将刻蚀好的Si衬底放入真空石英管中,通入高纯氮气,在温度为1100-1300℃,气压为104-105Pa的条件下氮化1-2h,得到Si3N4缓冲层;合适的氮化温度不仅能很好地生成Si3N4更能够避免能源的浪费。而且需要保证石英管中为高纯氮气,并通过氮化时间的长短来控制生成Si3N4缓冲层的厚度。
进一步,所述通过在溅射过程中倾斜Si衬底来保证Si3N4缓冲层上用于生长GaN的面不被溅射SiO2膜覆盖,所述溅射SiO2膜的厚度为40-60nm;
进一步,所述所述溅射过程中Si衬底倾斜角度为10°-20°。
进一步,本发明的GaN薄膜的制备方法,其特征在于,所述步骤2)中用于生长Si3N4缓冲层和GaN薄膜的Si{111}晶面有(-1-11)晶面和(-111)晶面。
进一步,本发明的GaN薄膜的制备方法,其特征在于,所述步骤3)中所述的GaN插入层的生长条件为:温度1000-1100℃、反应腔内的气压为500-600Torr、Ⅴ/Ⅲ比为400-500,GaN插入层的厚度控制在200-400nm。且高压低Ⅴ/Ⅲ比会推迟岛与岛的合并时间,能够在合并前先长出一定厚度的GaN插入层从而使穿透位错的密度降低,有利于形核。此外,由于GaN插入层的存在,避免了使用异质衬底生长GaN薄膜层时产生的晶格失配和热失配的问题,从而提高GaN薄膜层的质量。
进一步,所述步骤3)中所述的GaN薄膜层的生长条件为:温度1100-1300℃、反应腔内的气压为250-350Torr、Ⅴ/Ⅲ比为1000-5000,GaN薄膜层的厚度控制在1000-2000nm。低压高Ⅴ/Ⅲ比有助于加速合并过程,使GaN薄膜层快速形成平整的表面。采用两步法可以获得光滑平整的表面。生长的GaN薄膜层厚度太薄的话可能会导致GaN薄膜层愈合的不是太好,表面不平整。在具体操作过程中,可以根据需要自行调整制备适合厚度的GaN薄膜。
进一步,步骤3)中生长的GaN薄膜层的晶面包括(1-100)晶面和(11-20)晶面;
进一步,所述步骤3)中所需的镓源和氮源分别为三甲基镓和氨气。
与现有技术相比,本发明具有以下有益的技术效果:
本发明的GaN薄膜,通过在Si图形衬底上外延生长非极性GaN薄膜的方法制得,不仅成本低廉,且性能优良能够广泛地用于器件的制作中。所述GaN薄膜中的缓冲层Si3N4层为有序的密排六方结构,不仅可以很好的解决晶格失配和热失配所带来的问题,而且可以避免Ga-Si回熔刻蚀,以及弛豫和补偿后续GaN生长累积的残余应力。其中GaN插入层可以降低生长过程中产生的位错,从而提高GaN薄膜层的质量。本发明所生长的GaN薄膜层为非极性的GaN,非极性的GaN在发光器件中有十分良好的性能,可以避免由于极化所引起量子限制斯塔克效应(QCSE)。
附图说明
图1是本发明实施例1所述GaN薄膜的结构示意图;
图2是本发明实施例2所述GaN薄膜的结构示意图;
图3是本发明实施例3和实施例4所述的SiO2掩膜层的结构示意图;
图4是本发明实施例3详细过程示意图;
图5是本发明实施例3完成步骤1后的结构示意图;
图6是本发明实施例4完成步骤1后的结构示意图。
其中,1.Si衬底,1a.(110)晶向Si衬底,1b.(112)晶向Si衬底,2.SiO2膜,2a.SiO2掩膜层,3.Si3N4缓冲层,4.溅射SiO2膜,5.GaN插入层,6.GaN薄膜层。
具体实施方式
下面结合具体的实施例对本发明做进一步的详细说明。
实施例1:
如图1所示,一种GaN薄膜,包括Si衬底1a和位于Si衬底1a上图形化的SiO2掩膜层2a,所述Si衬底1a的Si{111}晶面上有Si3N4缓冲层3,所述SiO2掩膜层2a和不参与GaN生长的Si3N4缓冲层3上有溅射SiO2膜4;所述参与GaN生长的Si3N4缓冲层3上有GaN插入层5,所述GaN插入层5上生长有GaN薄膜层6。所述SiO2掩膜层2a的厚度为50-100nm,且为条状掩膜层,其中条状掩膜层的宽度为1-3μm,各条状掩膜层之间的间距为3-10μm。所述不参与GaN生长的Si3N4缓冲层3厚度为20-100nm,所述GaN插入层5的厚度为200-400nm,所述溅射SiO2膜4的厚度为40-60nm,所述GaN薄膜层6的厚度为1000-2000nm。
其中,所述的GaN薄膜的Si衬底1a为(110)晶向,Si衬底1a的晶面包括(110)晶面,所述刻蚀出的Si{111}包括(-111)晶面和(1-1-1)晶面;用于生长Si3N4缓冲层3的Si{111}晶面为(-111)晶面;生长出所述GaN薄膜层6的晶面为(11-20)晶面。
其中,Si衬底上的Si3N4缓冲层,其晶格匹配程度和热膨胀系数均介于Si和GaN之间,见下表1。在Si3N4缓冲层上生长的GaN插入层,其作用是用于形核,在岛与岛合并前生长一定的厚度来降低位错密度;最后生长的GaN薄膜层是我们的目标产物。该层是在GaN插入层上生长的,属于同质外延,因此本发明的GaN薄膜不存在晶格失配和热失配的问题。此外,本发明得到的非极性的GaN薄膜性能良好。传统的GaN基发光二极管(LED)都是在[0001]c轴方向上生长的,这是一个高度极性取向,因此在器件中常常会发生自发极化和压电极化的现象。极化效应会在GaN中引起能带的倾斜,从而在电子器件中形成高密度的二维电子气,这造成电子与空穴在空间上分离,使得两者的波函数交叠变小,材料的发光效率降低,而且发光波长会产生红移现象,这被称为量子限制斯塔克效应(QCSE)。而对于非极性以及半极性材料而言,由于沿着材料生长方向的极化效应消失或者削弱,因此可以消除QCSE,从而提高器件性能。
表1不同材料参数
实施例2:
如图2所示:本实施例2与实施例1的不同之处仅在于,所述的GaN薄膜的Si衬底1b为(112)晶向,Si衬底1b的晶面包括(112)晶面,所述刻蚀出的Si{111}包括(-1-11)晶面和(111)晶面;用于生长Si3N4缓冲层3的Si{111}晶面为(-1-11)晶面;生长出所述GaN薄膜层6的晶面为(1-100)晶面。
实施例3:
一种GaN薄膜的制备方法,具体包括如下步骤:
步骤1)、在Si(110)的衬底1a上用等离子体增强型化学气相沉积法(PECVD)生长一层50-100nm的SiO2膜2,通过光刻工艺将光刻板图案转移到SiO2膜2上,然后通过感应耦合等离子体(ICP)刻蚀工艺制作出图形化的SiO2掩膜层2a,所述SiO2掩膜层2a为条状掩膜层,其中条状掩膜层的宽度为1-3μm,各条状掩膜层之间的间距为3-10μm,如图3所示;然后通过湿法刻蚀的方法,用质量浓度为20%-40%的KOH溶液在30℃-40℃的温度下腐蚀10-20min,在Si衬底1a表面刻蚀形成凹槽,凹槽的侧面是Si{111}晶面,包括(-111)晶面和(1-1-1)晶面,如图5所示;
步骤2)、将步骤1)中刻蚀出的Si{111}晶面氮化,即在所述Si{111}晶面上生长一层Si3N4缓冲层3。氮化Si{111}晶面的过程具体包括,将刻蚀好的Si衬底1a放入真空石英管中,通入高纯氮气,在温度为1100-1300℃,压力为104-105Pa的条件下氮化1-2h,得到Si3N4缓冲层3;通过在溅射过程中倾斜Si衬底1a来保证Si3N4缓冲层3上用于生长GaN的面不被溅射SiO2膜4覆盖,倾斜角度为10°-20°。所述溅射SiO2膜4的厚度为40-60nm;在SiO2掩膜层2a和不参与GaN生长的Si3N4缓冲层3上溅射一层溅射SiO2膜4;
其中,用于生长Si3N4缓冲层3的Si{111}晶面为(-111)晶面。
步骤3)、在参与GaN生长的Si3N4缓冲层3上利用金属有机化学气相沉积法(MOCVD)依次生长GaN插入层5和GaN薄膜层6。所述的GaN插入层5的生长条件为:温度1000-1100℃、反应腔内的气压为500-600Torr、Ⅴ/Ⅲ比为400-500,GaN插入层5的厚度控制在200-400nm;所述的GaN薄膜层6的生长条件为:温度1100-1300℃、反应腔内的气压为250-350Torr、Ⅴ/Ⅲ比为1000-5000,GaN薄膜层6的厚度控制在1000-2000nm。生长出的GaN薄膜层6的晶面为(11-20)晶面;所需的镓源和氮源分别为三甲基镓和氨气。
实施例4:
一种GaN薄膜的制备方法,本实施例4与实施例3的不同之处仅在于:
所述的GaN薄膜的Si衬底1b为(112)晶向,Si衬底1a的晶面包括(112)晶面,所述湿法刻蚀出的Si{111}晶面包括(-1-11)晶面和(111)晶面,如图6所示;用于生长Si3N4缓冲层3的Si{111}晶面为(-1-11)晶面;最终生长出的GaN薄膜层6的晶面为(1-100)晶面。
Claims (10)
1.一种GaN薄膜,其特征在于:所述GaN薄膜包括Si衬底(1)和位于Si衬底(1)上图形化的SiO2掩膜层(2a),所述Si衬底(1)的Si{111}晶面上有Si3N4缓冲层(3),所述SiO2掩膜层(2a)和不参与GaN生长的Si3N4缓冲层(3)上有溅射SiO2膜(4);所述参与GaN生长的Si3N4缓冲层(3)上有GaN插入层(5),所述GaN插入层(5)上生长有GaN薄膜层(6)。
2.根据权利要求1所述的GaN薄膜,其特征在于;所述SiO2掩膜层(2a)的厚度为50-100nm,所述不参与GaN生长的Si3N4缓冲层(3)厚度为20-100nm,所述GaN插入层(5)的厚度为200-400nm,所述溅射SiO2膜(4)的厚度为40-60nm,所述GaN薄膜层(6)的厚度为1000-2000nm。
3.根据权利要求1或2所述的GaN薄膜,其特征在于,所述SiO2掩膜层(2a)为条状掩膜层,其中条状掩膜层的宽度为1-3μm,各条状掩膜层之间的间距为3-10μm。
4.根据权利要求3所述的GaN薄膜,其特征在于,所述的Si衬底(1)包括(110)晶向Si衬底(1a)和(112)晶向Si衬底(1b),所述Si衬底(1)的晶面包括(110)晶面和/或(112)晶面,所述用于生长GaN的晶面包括(-1-11)晶面和(-111)晶面。
5.一种GaN薄膜的制备方法,其特征在于,所述制备方法包括首先在Si衬底(1)上制作一层图形化的SiO2掩膜层(2a),并在Si衬底(1)表面刻蚀出Si{111}晶面;然后在刻蚀出的Si{111}晶面上生长一层Si3N4缓冲层(3),在SiO2掩膜层(2a)和不参与GaN生长的Si3N4缓冲层(3)上溅射一层溅射SiO2膜(4);最后在参与GaN生长的Si3N4缓冲层(3)上依次生长GaN插入层(5)和GaN薄膜层(6)。
6.根据权利要求5所述的GaN薄膜的制备方法,具体包括如下步骤:
步骤1)、在Si衬底(1)上用等离子体增强型化学气相沉积法(PECVD)生长一层50-100nm的SiO2膜(2),通过光刻工艺将光刻板图案转移到SiO2膜(2)上,然后通过感应耦合等离子体(ICP)刻蚀工艺制作出图形化的SiO2掩膜层(2a),所述SiO2掩膜层(2a)为条状掩膜层,其中条状掩膜层的宽度为1-3μm,各条状掩膜层之间的间距为3-10μm;然后通过湿法刻蚀的方法,用质量浓度为20%-40%的KOH溶液在30℃-40℃的温度下腐蚀10-20min,在Si衬底(1)表面刻蚀形成凹槽,凹槽的侧面是Si{111}晶面;
步骤2)、将步骤1)中刻蚀出的Si{111}晶面氮化,即在所述Si{111}晶面上生长一层Si3N4缓冲层(3),在SiO2掩膜层(2a)和不参与GaN生长的Si3N4缓冲层(3)上溅射一层溅射SiO2膜(4);
步骤3)、在参与GaN生长的Si3N4缓冲层(3)上利用金属有机化学气相沉积法(MOCVD)依次生长GaN插入层(5)和GaN薄膜层(6)。
7.根据权利要求6所述的GaN薄膜的制备方法,其特征在于,所述步骤1)中的Si衬底(1)的晶面包括(112)晶面和/或(110)晶面,所述Si{111}晶面包括(-1-11)晶面、(111)晶面、(-111)晶面以及(1-1-1)晶面。
8.根据权利要求7所述的GaN薄膜的制备方法,其特征在于,所述步骤2)中,氮化Si{111}晶面的过程具体包括,将刻蚀好的Si衬底(1)放入真空石英管中,通入高纯氮气,在温度为1100-1300℃,压力为104-105Pa的条件下氮化1-2h,得到Si3N4缓冲层(3);
进一步地,通过在溅射过程中倾斜Si衬底(1a)来保证Si3N4缓冲层(3)上用于生长GaN的面不被溅射SiO2膜(4)覆盖,所述溅射SiO2膜(4)的厚度为40-60nm;
进一步地,所述溅射过程中Si衬底(1)倾斜角度为10°-20°。
9.根据权利要求8所述的GaN薄膜的制备方法,其特征在于,所述步骤2)中用于生长Si3N4缓冲层(3)的Si{111}晶面有(-1-11)晶面和(-111)晶面。
10.根据权利要求9所述的GaN薄膜的制备方法,其特征在于,所述步骤3)中所述的GaN插入层(5)的生长条件为:温度1000-1100℃、反应腔内的气压为500-600Torr、Ⅴ/Ⅲ比为400-500,GaN插入层(5)的厚度控制在200-400nm;
进一步,所述步骤3)中所述的GaN薄膜层(6)的生长条件为:温度1100-1300℃、反应腔内的气压为250-350Torr、Ⅴ/Ⅲ比为1000-5000,GaN薄膜层(6)的厚度控制在1000-2000nm。
进一步地,步骤3)中生长的GaN薄膜层(6)的晶面包括(1-100)晶面和(11-20)晶面;
进一步地,所述步骤3)中所需的镓源和氮源分别为三甲基镓和氨气。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011005050.0A CN112133802B (zh) | 2020-09-23 | 2020-09-23 | 一种GaN薄膜及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011005050.0A CN112133802B (zh) | 2020-09-23 | 2020-09-23 | 一种GaN薄膜及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112133802A true CN112133802A (zh) | 2020-12-25 |
CN112133802B CN112133802B (zh) | 2023-09-22 |
Family
ID=73843070
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011005050.0A Active CN112133802B (zh) | 2020-09-23 | 2020-09-23 | 一种GaN薄膜及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112133802B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115376910A (zh) * | 2022-09-06 | 2022-11-22 | 兰州大学 | 一种制备平行斜刻凹槽图形化硅衬底的方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050087746A1 (en) * | 2003-10-22 | 2005-04-28 | Olga Kryliouk | Group III-nitride on Si using epitaxial BP buffer layer |
US20050106849A1 (en) * | 2003-11-18 | 2005-05-19 | Shangir Gwo | Method for growing group-III nitride semiconductor heterostructure on silicon substrate |
US20050124161A1 (en) * | 2003-10-23 | 2005-06-09 | Rawdanowicz Thomas A. | Growth and integration of epitaxial gallium nitride films with silicon-based devices |
US20100013052A1 (en) * | 2008-07-18 | 2010-01-21 | Kulkarni Nagraj S | Dual chamber system providing simultaneous etch and deposition on opposing substrate sides for growing low defect density epitaxial layers |
CN102208497A (zh) * | 2011-04-22 | 2011-10-05 | 中山大学 | 一种硅衬底上半极性、非极性GaN复合衬底的制备方法 |
CN102214557A (zh) * | 2011-04-28 | 2011-10-12 | 中山大学 | 一种半极性、非极性GaN自支撑衬底的制备方法 |
-
2020
- 2020-09-23 CN CN202011005050.0A patent/CN112133802B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050087746A1 (en) * | 2003-10-22 | 2005-04-28 | Olga Kryliouk | Group III-nitride on Si using epitaxial BP buffer layer |
US20050124161A1 (en) * | 2003-10-23 | 2005-06-09 | Rawdanowicz Thomas A. | Growth and integration of epitaxial gallium nitride films with silicon-based devices |
US20050106849A1 (en) * | 2003-11-18 | 2005-05-19 | Shangir Gwo | Method for growing group-III nitride semiconductor heterostructure on silicon substrate |
US20100013052A1 (en) * | 2008-07-18 | 2010-01-21 | Kulkarni Nagraj S | Dual chamber system providing simultaneous etch and deposition on opposing substrate sides for growing low defect density epitaxial layers |
CN102208497A (zh) * | 2011-04-22 | 2011-10-05 | 中山大学 | 一种硅衬底上半极性、非极性GaN复合衬底的制备方法 |
CN102214557A (zh) * | 2011-04-28 | 2011-10-12 | 中山大学 | 一种半极性、非极性GaN自支撑衬底的制备方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115376910A (zh) * | 2022-09-06 | 2022-11-22 | 兰州大学 | 一种制备平行斜刻凹槽图形化硅衬底的方法 |
Also Published As
Publication number | Publication date |
---|---|
CN112133802B (zh) | 2023-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111682061B (zh) | 氮化物外延片及其制备方法和半导体器件 | |
CN113206003B (zh) | 一种在任意自支撑衬底上生长单晶氮化镓薄膜的方法 | |
WO2018076407A1 (zh) | 生长在镓酸锂衬底上的非极性纳米柱led及其制备方法 | |
WO2018040124A1 (zh) | 生长在r面蓝宝石衬底上的非极性LED外延片的制备方法及应用 | |
CN116190511B (zh) | 一种高光效led外延片、制备方法及led芯片 | |
WO2024040958A1 (zh) | 基于氧化铝氧化硅复合衬底的led芯片及其制造方法 | |
CN111599901A (zh) | 一种生长在Si衬底上的紫外LED外延片及其制备方法 | |
CN114574959B (zh) | 一种氮化物外延层制备方法及其半导体外延片 | |
CN109599468B (zh) | 超宽禁带氮化铝材料外延片及其制备方法 | |
CN213905295U (zh) | 一种大尺寸SiC衬底低应力GaN薄膜 | |
KR100781659B1 (ko) | 개선된 버퍼층을 사용하여 발광 다이오드를 제조하는 방법및 그것에 의해 제조된 발광 다이오드 | |
CN112133802B (zh) | 一种GaN薄膜及其制备方法 | |
CN117577748A (zh) | 发光二极管外延片及其制备方法、led | |
CN112687527A (zh) | 一种大尺寸SiC衬底低应力GaN薄膜及其外延生长方法 | |
US20140151714A1 (en) | Gallium nitride substrate and method for fabricating the same | |
CN111599904A (zh) | 一种生长在Si衬底上的LED外延片及其制备方法 | |
CN110791805A (zh) | 一种衬底、外延片及其生长方法 | |
CN109148654B (zh) | 非极性面ⅲ族氮化物外延结构及其制备方法 | |
CN115084329B (zh) | 一种应用于Si衬底上的LED外延片及其生长方法 | |
CN109411580B (zh) | 氮化镓基功率器件及其制备方法 | |
WO2012029216A1 (ja) | 化合物半導体の製造方法 | |
CN111146318A (zh) | 一种基于MoS2的薄层紫外发光二极管及其制作方法 | |
CN212542464U (zh) | 一种生长在Si衬底上的紫外LED外延片 | |
CN114717657A (zh) | 基于等离子体辅助激光分子束外延生长氧化镍单晶薄膜的方法 | |
WO2020228336A1 (zh) | 一种基于GaN的LED外延片及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |