CN112126822A - 一种轧制(FeCoNiCrRn/Al)-2024Al复合板材及其制备方法 - Google Patents
一种轧制(FeCoNiCrRn/Al)-2024Al复合板材及其制备方法 Download PDFInfo
- Publication number
- CN112126822A CN112126822A CN202010893508.4A CN202010893508A CN112126822A CN 112126822 A CN112126822 A CN 112126822A CN 202010893508 A CN202010893508 A CN 202010893508A CN 112126822 A CN112126822 A CN 112126822A
- Authority
- CN
- China
- Prior art keywords
- feconicrr
- rolling
- powder
- composite
- composite material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 116
- 238000005096 rolling process Methods 0.000 title claims abstract description 44
- 238000002360 preparation method Methods 0.000 title claims abstract description 17
- 239000000956 alloy Substances 0.000 claims abstract description 60
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 59
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 37
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 31
- 239000000463 material Substances 0.000 claims abstract description 24
- 238000009768 microwave sintering Methods 0.000 claims abstract description 19
- 239000011159 matrix material Substances 0.000 claims abstract description 17
- 238000000034 method Methods 0.000 claims abstract description 15
- 238000013329 compounding Methods 0.000 claims abstract description 9
- 238000005516 engineering process Methods 0.000 claims abstract description 8
- 239000002905 metal composite material Substances 0.000 claims abstract description 8
- 238000005098 hot rolling Methods 0.000 claims abstract description 6
- 239000000843 powder Substances 0.000 claims description 54
- 229910000838 Al alloy Inorganic materials 0.000 claims description 40
- 238000000498 ball milling Methods 0.000 claims description 40
- 239000002245 particle Substances 0.000 claims description 33
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 24
- 238000010438 heat treatment Methods 0.000 claims description 24
- 238000005245 sintering Methods 0.000 claims description 19
- 238000001238 wet grinding Methods 0.000 claims description 18
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 13
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 12
- 229910052786 argon Inorganic materials 0.000 claims description 12
- 239000003795 chemical substances by application Substances 0.000 claims description 12
- 238000004321 preservation Methods 0.000 claims description 12
- 238000004886 process control Methods 0.000 claims description 12
- 230000008569 process Effects 0.000 claims description 11
- 238000004140 cleaning Methods 0.000 claims description 10
- 238000005520 cutting process Methods 0.000 claims description 10
- 238000009837 dry grinding Methods 0.000 claims description 10
- 230000003014 reinforcing effect Effects 0.000 claims description 10
- 239000011812 mixed powder Substances 0.000 claims description 8
- 238000002156 mixing Methods 0.000 claims description 8
- 239000007787 solid Substances 0.000 claims description 8
- 238000009694 cold isostatic pressing Methods 0.000 claims description 6
- 238000001035 drying Methods 0.000 claims description 6
- 238000005551 mechanical alloying Methods 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- 230000009467 reduction Effects 0.000 claims description 6
- 238000005303 weighing Methods 0.000 claims description 6
- 239000002994 raw material Substances 0.000 claims description 5
- 238000001291 vacuum drying Methods 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 238000000748 compression moulding Methods 0.000 claims 1
- 229910001250 2024 aluminium alloy Inorganic materials 0.000 abstract description 3
- 239000012770 industrial material Substances 0.000 abstract 1
- 238000010030 laminating Methods 0.000 abstract 1
- 230000001737 promoting effect Effects 0.000 abstract 1
- 230000002787 reinforcement Effects 0.000 description 7
- 238000000713 high-energy ball milling Methods 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910052755 nonmetal Inorganic materials 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000004626 scanning electron microscopy Methods 0.000 description 2
- 229910002545 FeCoNi Inorganic materials 0.000 description 1
- 244000137852 Petrea volubilis Species 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000002648 laminated material Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K20/00—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
- B23K20/04—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a rolling mill
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B1/00—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
- B21B1/38—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling sheets of limited length, e.g. folded sheets, superimposed sheets, pack rolling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/105—Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/12—Both compacting and sintering
- B22F3/14—Both compacting and sintering simultaneously
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/18—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by using pressure rollers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/24—After-treatment of workpieces or articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F7/00—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
- B22F7/02—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
- B22F7/04—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/04—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K20/00—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
- B23K20/22—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded
- B23K20/233—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded without ferrous layer
- B23K20/2336—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded without ferrous layer both layers being aluminium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K20/00—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
- B23K20/24—Preliminary treatment
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/0408—Light metal alloys
- C22C1/0416—Aluminium-based alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B1/00—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
- B21B1/38—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling sheets of limited length, e.g. folded sheets, superimposed sheets, pack rolling
- B21B2001/383—Cladded or coated products
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B1/00—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
- B21B1/38—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling sheets of limited length, e.g. folded sheets, superimposed sheets, pack rolling
- B21B2001/386—Plates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/105—Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
- B22F2003/1054—Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding by microwave
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/18—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by using pressure rollers
- B22F2003/185—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by using pressure rollers by hot rolling, below sintering temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F7/00—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
- B22F7/02—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
- B22F7/04—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
- B22F2007/042—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal characterised by the layer forming method
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/04—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
- B22F2009/041—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by mechanical alloying, e.g. blending, milling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/04—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
- B22F2009/043—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
- B22F2998/10—Processes characterised by the sequence of their steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2101/00—Articles made by soldering, welding or cutting
- B23K2101/18—Sheet panels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/08—Non-ferrous metals or alloys
- B23K2103/10—Aluminium or alloys thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/18—Dissimilar materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23P—METAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
- B23P17/00—Metal-working operations, not covered by a single other subclass or another group in this subclass
Landscapes
- Mechanical Engineering (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Optics & Photonics (AREA)
- Physics & Mathematics (AREA)
- Composite Materials (AREA)
- Powder Metallurgy (AREA)
- Pressure Welding/Diffusion-Bonding (AREA)
- Laminated Bodies (AREA)
Abstract
本发明提供了一种轧制(FeCoNiCrRn/Al)‑2024Al复合板材料及其制备方法,所述复合材料以纯铝为基体,添加具有高强韧性的FeCoNiCrRn中熵合金为增强项,再将FeCoNiCrRn/Al复合材料与2024铝合金叠压轧制复合,获得(FeCoNiCrRn/Al)‑2024Al复合板材,解决了高强度的铝基复合材料易发生瞬间断裂以及低延展性等问题以提升材料综合性能。本发明采用微波烧结技术制备中熵合金增强铝基复合材料,利用热轧复合制备(FeCoNiCrRn/Al)‑2024Al金属复合板材。本发明所制备的复合板材料具有优异的综合力学性能,对于推动航空航天、新能源汽车等现代轻质高效工业材料的应用具有很高的应用价值。
Description
技术领域
本发明属于复合板材制备领域,涉及轧制铝合金/铝基复合材料复合板的制备方法,尤其涉及一种(FeCoNiCrRn/Al)-2024Al复合板材及其制备方法。
背景技术
传统颗粒增强铝基复合材料由于增强体的引入使其具备高强度、高耐磨性、高比模量、高尺寸稳定性等优异性能在航空航天、汽车、医学、军事等制造领域取得了较为广泛的应用。低延展性和局部易瞬断性严重限制了其应用范围。因此开发一种兼具铝基复合材料高强度和铝合金良好塑性的复合板材得到了广泛关注,进一步提高其应用潜力。
新型中熵合金由两个到四个主元素以接近或者等原子比合金化得到。中熵合金具有许多优异的性能,如高温稳定性、高硬度、优异的抗腐蚀性及抗磨性,较之高熵合金相比,其改善了材料的疲劳及抗断裂性能,在保证获得高强度的同时,也拥有优良的塑性和韧性。若采用中熵合金作为铝基复合材料的增强体,一方面不仅利用金属了基增强体与铝合金基体之间良好的界面润湿,使增强体颗粒与铝基体之间产生稳定有效的界面,解决了现有非金属颗粒增强体与铝基难以生成有效界面和金属基增强相所存在的自身脆性以及烧结温度受到限制的问题,另一方面合理调控烧结参数控制中熵合金与铝基体在界面处生成有利于复合材料力学性能的FeCoNi1.5CrAl系FCC结构高熵合金体系,实现材料强韧性同步提高。
金属复合板是一类具有高韧性、高阻尼性、强抗冲击性和疲劳裂纹扩展性、更高的耐腐蚀性和耐磨性的多功能金属复合材料。基于中熵合金增强铝基复合材料高强度、良好的塑性等优异性,以及2024铝合金材料的高塑性、较好强度的特性。以铝合金和铝基复合材料为组元轧制制备叠层材料,是开发一种新型兼具中熵合金铝基复合材料与铝合金综合性能的复合板材重要方向。
发明内容
基于铝基复合材料及金属复合板材都具有优异的力学性能,本发明采用中熵合金增强铝基复合材料与2024铝合金进行轧制制备复合板材,提供了一种轧制铝合金/中熵合金增强铝基复合材料复合板材及其制备方法,在提高材料力学性能同时,复合板材还具有轻质高效、节约成本等特性。
本发明是通过以下技术手段实现上述技术目的的。
一种轧制(FeCoNiCrRn/Al)-2024Al复合板材及其制备方法,其特征在于:以纯铝为基体,添加具有高强韧性的FeCoNiCrRn中熵合金颗粒作增强相,制成FeCoNiCrRn/Al铝基复合材料,其中FeCoNiCrRn中熵合金增强相的添加量占材料总质量的10~30%;以2024Al铝合金板材和FeCoNiCrRn/Al铝基复合材料为原材料,采用热轧复合的方式制备金属复合板材。
进一步地,所述的FeCoNiCrRn中熵合金颗粒的成分组成为:原子比表达式为FeCoNiCrRn,其中R为B、Y、C中的任一种,0<n≤0.8。
进一步地,所述的制备方法,包括以下步骤:
(1)以高纯的金属粉末Fe、Co、Ni、Cr和R粉末为原料,按照设计的配比称重混粉;将配比好的混合粉末放入球磨罐中球磨,采用机械合金化的方法制备中熵合金粉末,球磨时抽真空,并通入氩气进行保护;
(2)将制得的中熵合金粉末进行真空干燥处理,将所述高熵合金粉末颗粒和基体铝粉末颗粒混合,采用球磨机低能球磨,得到混合粉末,球磨时抽真空,通氩气进行保护;
(3)将所述复合粉末干燥后利用超声波仪超声分散均匀,然后利用冷等静压工艺成型,制成块状固体复合材料;
(4)将所述块状固体复合材料放入坩埚中,采用微波烧结技术进行烧结固化,得到中熵合金颗粒增强铝基复合材料;
(5)将所述中熵合金颗粒增强铝基复合材料切割成板块,将其置于铝合金板块中间,利用铆钉对叠层板材进行固定后进行热轧制。
进一步地,所述的步骤(1)中,各种元素的粉末纯度≥99.95wt%,粉末粒径≤40μm。
进一步地,所述的步骤(1)中球磨过程实验参数为:球料质量比为8:1~15:1,球磨分为干磨和湿磨,先进行干磨,后进行湿磨,湿磨用无水乙醇作为过程控制剂,质量分数为10%~20%;其中干磨转速100~300r/min,时间20~40h。湿磨转速200~400r/min,时间10~20h;球磨后的粉末粒径范围为0.1~5μm,球磨结束后将粉体真空干燥48~72h后取出。
进一步地,所述的步骤(2)中,球磨参数为:球料质量比为5:1~10:1,湿磨10~30h,过程控制剂为无水乙醇,质量分数15~25%,转速120~180r/min。
进一步地,所述的步骤(3)中,压制成型过程的实验参数为:保压时间2~5min,成型压强为200~300Mpa。
进一步地,所述的步骤(4)中,微波烧结过程的实验参数为:烧结温度为400℃~600℃,保温30~50min,升温速率20℃/min~60℃/min,真空度<20Pa。
进一步地,所述的步骤(5)中,将微波烧结制成的FeCoNiCrRn/Al复合材料切割成直径 3~5mm、厚度2~3mm的备用板材。将铝合金切割成长宽90mm×70mm、厚度1~2mm的备用板材,利用微波马弗炉对铝合金板材进行真空预先热处理,热处理参数为:预热温度为400℃~600℃、保温时间为1~3h。
进一步地,利用角磨机、砂纸以及丙酮对复合材料与铝合金板材进行表面清洁处理,处理完依次按照铝合金、FeCoNiCrRn/Al铝基复合材料、铝合金的顺序进行叠层并铆接结合。轧制参数为:将铆接好的复合板材置于温度为300℃~500℃的加热炉中保温5~10min,随后立即进行轧制复合。轧制压下量为20%~60%,轧制速度控制在20~40r/min,轧辊温度100℃~150℃。
与现有技术相比较本发明的有益效果体现如下:
在结构材料中,强度和塑韧性都是非常重要的性能指标,且都与晶粒内部缺陷及其位错运动有关。然而对于金属材料,通常情况下,其强度和塑韧性是很难兼而有之的。而FeCoNiCrRn系中熵合金的孪晶网络结构能够很好的解决这一问题,在保证获得高强度的同时,也拥有优良的塑性和韧性,同时适量的R元素的加入提高其强度并且有利于其与基体结合。采用FeCoNiCrRn系中熵合金作为铝基复合材料增强相,一方面,利用金属与金属天然界面结合特性解决了非金属颗粒增强铝基复合材料时难以生成有效界面和增强相自身所存在的脆性等限制性问题;另一方面,FeCoNiCrRn系中熵合金在调节烧结温度时界面处易于与基体产生有利于增强复合材料界面处力学性能的FeCoNiCrAl系FCC结构,从而达到复合材料强韧性同步提高。
复合材料材料在界面处易沿着增强体排布的方向发生裂纹扩展断裂已成为复合材料公认的主要断裂原因。2024Al合金是硬质铝材料,其具有良好的塑性且强度性能优异。为进一步提高材料抗疲劳裂纹扩展性及提高材料塑性等问题,采用轧制复合技术制备2024Al-FeCoNiCrRn/Al-2024Al金属复合板材。一方面,金属复合板材兼具了FeCoNiCrRn/Al铝基复合材料高强度、高耐磨性、高弹性量和2024Al合金高强高韧、易变形等力学性能特性,使得复合板材具有较强的综合力学性能;另一方面,2024Al和FeCoNiCrRn/Al原材料具有轻质、产量较高等特性,一定量的FeCoNiCrRn系中熵合金又极大的提高了铝基复合材料的力学性能,使得复合板材具有轻质高效、成本低廉等优势。
附图说明
图1是本发明所述方法制备的复合板材的光学金相组织图。
图2是本发明所述方法制备的复合板材的SEM分析结果图。
具体实施方式
下面结合附图以及具体实施例对本发明作进一步的说明,但本发明的保护范围并不限于此。
实施例1:
(1)制备中熵合金粉末:增强基选用FeCoNiCrC0.2中熵合金,按照原子数1:1:1:1:0.2配比,计算并称量出相应质量的粉末,将混合好的粉末置于球磨罐中,抽真空并通入氩气,然后高能球磨机械合金化。球磨参数为,球料质量比12:1,先干磨30h,转速150r/min,后加入无水乙醇作为过程控制剂,湿磨12h,转速300r/min。干燥60h得到高熵合金粉末。
(2)制备复合粉末:将所述高熵合金粉末颗粒和纯铝粉末混合,增强相高熵合金粉末颗粒的添加量以质量分数计为20%。采用球磨机球磨,得到复合粉末,球磨在真空氩气保护下进行。球磨参数为:球料质量比比为6:1,湿磨12h,过程控制剂为无水乙醇,质量分数20%,转速150r/min。
(3)冷等静压成型:压制成型过程的实验参数为:保压时间2min,成型压强为250Mpa。
(4)烧结成型:将所述块状固体复合材料放入坩埚中,采用微波烧结技术进行烧结,得到磁性高熵合金颗粒增强铝基复合材料。微波烧结过程的实验参数为:烧结温度为500℃,保温40min,升温速率30℃/min,真空度<20Pa。
(5)将微波烧结制成的FeCoNiCrC0.2/Al复合材料切割成直径4mm、厚度2.2mm的备用板材。将铝合金切割成长宽90mm×70mm、厚度1.2mm的备用板材,利用微波马弗炉对铝合金板材进行真空预先热处理,热处理参数为:预热温度为500℃、保温时间为2h。利用角磨机、砂纸以及丙酮对复合材料与铝合金板材进行表面清洁处理,处理完依次按照铝合金、FeCoNiCrC0.2/Al铝基复合材料、铝合金的顺序进行叠层并铆接结合。轧制参数为:将铆接好的复合板材置于温度为450℃的加热炉中保温8min,随后立即进行轧制复合。轧制压下量为36%,轧制速度控制在30r/min,轧辊温度为120℃。图1是该实施例制备的复合板材的光学金相组织图,复合板在经历轧制复合过程中处于一个非常干燥的环境下且未使用任何润滑剂,导致轧制时辊表面与试样之间存在很大的摩擦力。大量的剪切应变通过轧制变形而形成的 2024层的不均匀分布。图2是该实施例制备的复合板材的SEM分析结果图,可见中熵合金颗粒在热轧复合过程中明显沿轧制方向被轻微拉伸。
复合板材的性能值为:硬度:90.4HV,抗拉强度:176MPa,屈服强度:120MPa,应变:19.7%。
实施例2:
(1)制备中熵合金粉末:增强基选用FeCoNiCrC0.5中熵合金,按照原子数1:1:1:1:0.5配比,计算并称量出相应质量的粉末,将混合好的粉末置于球磨罐中,抽真空并通入氩气,然后高能球磨机械合金化。球磨参数为,球料质量比12:1,先干磨30h,转速150r/min,后加入无水乙醇作为过程控制剂,湿磨12h,转速300r/min。干燥60h得到高熵合金粉末。
(2)制备复合粉末:将所述高熵合金粉末颗粒和纯铝粉末混合,增强相高熵合金粉末颗粒的添加量以质量分数计为20%。采用球磨机球磨,得到复合粉末,球磨在真空氩气保护下进行。球磨参数为:球料质量比比为6:1,湿磨12h,过程控制剂为无水乙醇,质量分数20%,转速150r/min。
(3)冷等静压成型:压制成型过程的实验参数为:保压时间2min,成型压强为250Mpa。
(4)烧结成型:将所述块状固体复合材料放入坩埚中,采用微波烧结技术进行烧结,得到磁性高熵合金颗粒增强铝基复合材料。微波烧结过程的实验参数为:烧结温度为500℃,保温40min,升温速率30℃/min,真空度<20Pa。
(5)将微波烧结制成的FeCoNiCrC0.5/Al复合材料切割成直径4mm、厚度2.2mm的备用板材。将铝合金切割成长宽90mm×70mm、厚度1.2mm的备用板材,利用微波马弗炉对铝合金板材进行真空预先热处理,热处理参数为:预热温度为500℃、保温时间为2h。利用角磨机、砂纸以及丙酮对复合材料与铝合金板材进行表面清洁处理,处理完依次按照铝合金、FeCoNiCrC0.5/Al铝基复合材料、铝合金的顺序进行叠层并铆接结合。轧制参数为:将铆接好的复合板材置于温度为450℃的加热炉中保温8min,随后立即进行轧制复合。轧制压下量为36%,轧制速度控制在30r/min,轧辊温度为120℃。
复合板材的性能值为:硬度:99.8HV,抗拉强度:189MPa,屈服强度:135MPa,应变:22.1%。
实施例3:
(1)制备中熵合金粉末:增强基选用FeCoNiCrB0.5中熵合金,按照原子数1:1:1:1:0.5配比,计算并称量出相应质量的粉末,将混合好的粉末置于球磨罐中,抽真空并通入氩气,然后高能球磨机械合金化。球磨参数为,球料质量比12:1,先干磨30h,转速150r/min,后加入无水乙醇作为过程控制剂,湿磨12h,转速300r/min。干燥60h得到高熵合金粉末。
(2)制备复合粉末:将所述高熵合金粉末颗粒和纯铝粉末混合,增强相高熵合金粉末颗粒的添加量以质量分数计为20%。采用球磨机球磨,得到复合粉末,球磨在真空氩气保护下进行。球磨参数为:球料质量比比为6:1,湿磨12h,过程控制剂为无水乙醇,质量分数20%,转速150r/min。
(3)冷等静压成型:压制成型过程的实验参数为:保压时间2min,成型压强为250Mpa。
(4)烧结成型:将所述块状固体复合材料放入坩埚中,采用微波烧结技术进行烧结,得到磁性高熵合金颗粒增强铝基复合材料。微波烧结过程的实验参数为:烧结温度为500℃,保温40min,升温速率30℃/min,真空度<20Pa。
(5)将微波烧结制成的FeCoNiCrB0.5/Al复合材料切割成直径4mm、厚度2.2mm的备用板材。将铝合金切割成长宽90mm×70mm、厚度1.2mm的备用板材,利用微波马弗炉对铝合金板材进行真空预先热处理,热处理参数为:预热温度为500℃、保温时间为2h。利用角磨机、砂纸以及丙酮对复合材料与铝合金板材进行表面清洁处理,处理完依次按照铝合金、FeCoNiCrB0.5/Al铝基复合材料、铝合金的顺序进行叠层并铆接结合。轧制参数为:将铆接好的复合板材置于温度为450℃的加热炉中保温8min,随后立即进行轧制复合。轧制压下量为56.8%,轧制速度控制在30r/min,轧辊温度为120℃。
复合板材的性能值为:硬度:124.8HV,抗拉强度:247MPa,屈服强度:180MPa,应变:30.8%。
实施例4:
(1)制备中熵合金粉末:增强基选用FeCoNiCrY0.5中熵合金,按照原子数1:1:1:1:0.5配比,计算并称量出相应质量的粉末,将混合好的粉末置于球磨罐中,抽真空并通入氩气,然后高能球磨机械合金化。球磨参数为,球料质量比12:1,先干磨30h,转速150r/min,后加入无水乙醇作为过程控制剂,湿磨12h,转速300r/min。干燥60h得到高熵合金粉末。
(2)制备复合粉末:将所述高熵合金粉末颗粒和纯铝粉末混合,增强相高熵合金粉末颗粒的添加量以质量分数计为20%。采用球磨机球磨,得到复合粉末,球磨在真空氩气保护下进行。球磨参数为:球料质量比比为6:1,湿磨12h,过程控制剂为无水乙醇,质量分数20%,转速150r/min。
(3)冷等静压成型:压制成型过程的实验参数为:保压时间2min,成型压强为250Mpa。
(4)烧结成型:将所述块状固体复合材料放入坩埚中,采用微波烧结技术进行烧结,得到磁性高熵合金颗粒增强铝基复合材料。微波烧结过程的实验参数为:烧结温度为500℃,保温40min,升温速率30℃/min,真空度<20Pa。
(5)将微波烧结制成的FeCoNiCrY0.5/Al复合材料切割成直径4mm、厚度2.2mm的备用板材。将铝合金切割成长宽90mm×70mm、厚度1.2mm的备用板材,利用微波马弗炉对铝合金板材进行真空预先热处理,热处理参数为:预热温度为500℃、保温时间为2h。利用角磨机、砂纸以及丙酮对复合材料与铝合金板材进行表面清洁处理,处理完依次按照铝合金、FeCoNiCrY0.5/Al铝基复合材料、铝合金的顺序进行叠层并铆接结合。轧制参数为:将铆接好的复合板材置于温度为500℃的加热炉中保温8min,随后立即进行轧制复合。轧制压下量为56.8%,轧制速度控制在30r/min,轧辊温度为120℃。
复合板材的性能值为:硬度:135.2HV,抗拉强度:278MPa,屈服强度:198MPa,应变:37.8%。
所述实施例为本发明的优选的实施方式,但本发明并不限于上述实施方式,在不背离本发明的实质内容的情况下,本领域技术人员能够做出的任何显而易见的改进、替换或变型均属于本发明的保护范围。
Claims (10)
1.一种轧制(FeCoNiCrRn/Al)-2024Al复合板材的制备方法,其特征在于:以纯铝为基体,添加具有高强韧性的FeCoNiCrRn中熵合金颗粒作增强相,制成FeCoNiCrRn/Al铝基复合材料,其中FeCoNiCrRn中熵合金增强相的添加量占材料总质量的10~30%,以2024Al铝合金板材和FeCoNiCrRn/Al铝基复合材料为原材料,采用热轧复合的方式制备金属复合板材。
2.根据权利要求1所述的轧制(FeCoNiCrRn/Al)-2024Al复合板材的制备方法,其特征在于,所述的FeCoNiCrRn中熵合金颗粒的成分组成为:原子比表达式为FeCoNiCrRn,其中R为B、Y、C中的任一种,0<n≤0.8。
3.根据权利要求1所述的轧制(FeCoNiCrRn/Al)-2024Al复合板材的制备方法,其特征在于,包括以下步骤:
(1)以高纯的金属粉末Fe、Co、Ni、Cr和R粉末为原料,按照设计的配比称重混粉;将配比好的混合粉末放入球磨罐中球磨,采用机械合金化的方法制备中熵合金粉末,球磨时抽真空,并通入氩气进行保护;
(2)将制得的中熵合金粉末进行真空干燥处理,将所述高熵合金粉末颗粒和基体铝粉末颗粒混合,采用球磨机低能球磨,得到混合粉末,球磨时抽真空,通氩气进行保护;
(3)将所述复合粉末干燥后利用超声波仪超声分散均匀,然后利用冷等静压工艺成型,制成块状固体复合材料;
(4)将所述块状固体复合材料放入坩埚中,采用微波烧结技术进行烧结固化,得到中熵合金颗粒增强铝基复合材料FeCoNiCrRn/Al;
(6)将所述中熵合金颗粒增强铝基复合材料FeCoNiCrRn/Al切割成板块,将其置于铝合金板块中间,利用铆钉对叠层板材进行固定后进行热轧制。
4.如权利要求3所述的轧制(FeCoNiCrRn/Al)-2024Al复合板材的制备方法,其特征在于:
所述的步骤(1)中,各种元素的粉末纯度≥99.95wt%,粉末粒径≤40μm。
5.如权利要求3所述的轧制(FeCoNiCrRn/Al)-2024Al复合板材的制备方法,其特征在于:步骤(1)中球磨过程实验参数为:球料质量比为8:1~15:1,球磨分为干磨和湿磨,先进行干磨,后进行湿磨,湿磨用无水乙醇作为过程控制剂,质量分数为10%~20%;其中干磨转速100~300r/min,时间20~40h。湿磨转速200~400r/min,时间10~20h;球磨后的粉末粒径范围为0.1~5μm,球磨结束后将粉体真空干燥48~72h后取出;
所述的步骤(2)中,球磨参数为:球料质量比为5:1~10:1,湿磨10~30h,过程控制剂为无水乙醇,质量分数15~25%,转速120~180r/min。
6.如权利要求3所述的轧制(FeCoNiCrRn/Al)-2024Al复合板材的制备方法,其特征在于:所述的步骤(3)中,压制成型过程的实验参数为:保压时间2~5min,成型压强为200~300Mpa。
7.如权利要求3所述的轧制(FeCoNiCrRn/Al)-2024Al复合板材的制备方法,其特征在于:所述的步骤(4)中,微波烧结过程的实验参数为:烧结温度为400℃~600℃,保温30~50min,升温速率20℃/min~60℃/min,真空度<20Pa。
8.如权利要求7所述的轧制(FeCoNiCrRn/Al)-2024Al复合板材的制备方法,其特征在于:所述步骤(5)中,将微波烧结制成的FeCoNiCrRn/Al复合材料切割成直径3~5mm、厚度2~3mm的备用板材;将铝合金切割成长宽90mm×70mm、厚度1~2mm的备用板材,利用微波马弗炉对铝合金板材进行真空预先热处理再进行铆接,热处理参数为:预热温度为400℃~600℃、保温时间为1~3h。
9.如权利要求8所述的轧制(FeCoNiCrRn/Al)-2024Al复合板材的制备方法,其特征在于:利用角磨机、砂纸以及丙酮对复合材料与铝合金板材进行表面清洁处理,处理完依次按照铝合金、FeCoNiCrRn/Al铝基复合材料、铝合金的顺序进行叠层并铆接结合;轧制参数为:将铆接好的复合板材置于温度为300℃~500℃的加热炉中保温5~10min,随后立即进行轧制复合;轧制压下量为20%~60%,轧制速度控制在20~40r/min,轧辊温度100℃~150℃。
10.如权利要求1-9中任一项所述的制备方法制备的轧制(FeCoNiCrRn/Al)-2024Al复合板材。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010893508.4A CN112126822B (zh) | 2020-08-31 | 2020-08-31 | 一种轧制(FeCoNiCrRn/Al)-2024Al复合板材及其制备方法 |
PCT/CN2021/072031 WO2022041636A1 (zh) | 2020-08-31 | 2021-01-15 | 一种轧制(FeCoNiCrRn/Al)-2024Al复合板材及其制备方法 |
US17/777,283 US11731178B2 (en) | 2020-08-31 | 2021-01-15 | Rolled (FeCoNiCrRn/Al)-2024Al composite panel and fabrication method thereof |
GB2207513.9A GB2605890B (en) | 2020-08-31 | 2021-01-15 | Rolled (FeCoNiCrRn/Al)-2024Al composite board and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010893508.4A CN112126822B (zh) | 2020-08-31 | 2020-08-31 | 一种轧制(FeCoNiCrRn/Al)-2024Al复合板材及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112126822A true CN112126822A (zh) | 2020-12-25 |
CN112126822B CN112126822B (zh) | 2021-11-23 |
Family
ID=73848757
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010893508.4A Active CN112126822B (zh) | 2020-08-31 | 2020-08-31 | 一种轧制(FeCoNiCrRn/Al)-2024Al复合板材及其制备方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11731178B2 (zh) |
CN (1) | CN112126822B (zh) |
GB (1) | GB2605890B (zh) |
WO (1) | WO2022041636A1 (zh) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112899531A (zh) * | 2021-01-19 | 2021-06-04 | 江苏大学 | 一种高熵合金颗粒增强铝基复合材料及磁场辅助制备方法 |
CN113322392A (zh) * | 2021-05-18 | 2021-08-31 | 武汉大学 | 一种纳米碳化硅颗粒增强铝合金基复合材料的制备方法 |
CN113957294A (zh) * | 2021-09-13 | 2022-01-21 | 暨南大学 | 一种CrCoNi中熵合金增强Al基复合材料及其制备方法 |
WO2022041636A1 (zh) * | 2020-08-31 | 2022-03-03 | 江苏大学 | 一种轧制(FeCoNiCrRn/Al)-2024Al复合板材及其制备方法 |
CN114457271A (zh) * | 2022-01-28 | 2022-05-10 | 北京科技大学 | 基于Laves相强化的多主元耐磨耐蚀合金及制备方法 |
CN115194140A (zh) * | 2022-07-17 | 2022-10-18 | 中国人民解放军陆军装甲兵学院 | Al-Mg-Sc-Zr系铝基复合粉末及其制备方法和应用 |
CN115338410A (zh) * | 2022-09-19 | 2022-11-15 | 江苏大学 | 一种具有高耐磨性的高熵合金和铝合金复合材料及制备方法 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114606416B (zh) * | 2022-03-25 | 2023-02-10 | 华南理工大学 | 一种黏性流动态高熵非晶合金增强铝基复合材料及其制备方法 |
CN116287909B (zh) * | 2023-01-30 | 2024-07-26 | 华东交通大学 | 一种高比屈服强度高耐磨多级异构铝合金及其制备方法 |
CN116275050B (zh) * | 2023-05-23 | 2023-08-01 | 西安格美金属材料有限公司 | 一种高强度钼的制备方法 |
CN116809936B (zh) * | 2023-08-31 | 2023-12-08 | 长春黄金研究院有限公司 | 微米级片状金粉的制备方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1362654A1 (en) * | 2002-05-14 | 2003-11-19 | Hitachi Powdered Metals Co., Ltd. | Process for producing sintered aluminium alloy |
CN104388764A (zh) * | 2014-11-06 | 2015-03-04 | 华南理工大学 | 一种高熵合金增强的铝基复合材料及其制备方法 |
CN104862510A (zh) * | 2015-06-03 | 2015-08-26 | 华中科技大学 | 一种高熵合金颗粒增强铝基复合材料及其制备方法 |
US20160326616A1 (en) * | 2015-05-04 | 2016-11-10 | Seoul National University R&Db Foundation | Entropy-controlled bcc alloy having strong resistance to high-temperature neutron radiation damage |
CN110273078A (zh) * | 2019-06-28 | 2019-09-24 | 江苏大学 | 一种磁性(FeCoNi1.5CuBmREn)P/Al复合材料及其制备方法 |
CN110273092A (zh) * | 2019-08-01 | 2019-09-24 | 重庆大学 | 一种CoCrNi颗粒增强镁基复合材料及其制备方法 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4347076A (en) * | 1980-10-03 | 1982-08-31 | Marko Materials, Inc. | Aluminum-transition metal alloys made using rapidly solidified powers and method |
US20070084527A1 (en) * | 2005-10-19 | 2007-04-19 | Stephane Ferrasse | High-strength mechanical and structural components, and methods of making high-strength components |
TWI595098B (zh) * | 2016-06-22 | 2017-08-11 | 國立清華大學 | 高熵超合金 |
US11318566B2 (en) * | 2016-08-04 | 2022-05-03 | Honda Motor Co., Ltd. | Multi-material component and methods of making thereof |
US11339817B2 (en) * | 2016-08-04 | 2022-05-24 | Honda Motor Co., Ltd. | Multi-material component and methods of making thereof |
US10640854B2 (en) * | 2016-08-04 | 2020-05-05 | Honda Motor Co., Ltd. | Multi-material component and methods of making thereof |
CN108950343B (zh) * | 2018-08-01 | 2020-10-02 | 四川理工学院 | 一种基于高熵合金的wc基硬质合金材料及其制备方法 |
CN109266947A (zh) | 2018-11-27 | 2019-01-25 | 东莞颠覆产品设计有限公司 | 一种高熵合金复合构件及其制备方法 |
CN109338172A (zh) * | 2018-12-11 | 2019-02-15 | 西安工业大学 | 一种高熵合金增强的2024铝基复合材料及其制备方法 |
CN111497374A (zh) | 2019-01-30 | 2020-08-07 | 上海交通大学 | 一种金属与高熵合金叠层复合材料及其制备方法 |
KR102130690B1 (ko) * | 2019-03-15 | 2020-07-06 | 포항공과대학교 산학협력단 | 고엔트로피 합금을 이용한 클래드 및 그 제조방법 |
US12012647B2 (en) * | 2019-06-21 | 2024-06-18 | United States Government Administrator Of Nasa | Additively manufactured oxide dispersion strengthened medium entropy alloys for high temperature applications |
CN110480018A (zh) | 2019-09-17 | 2019-11-22 | 燕山大学 | 一种铝合金/铝基复合材料复合板的制备方法 |
CN112126822B (zh) | 2020-08-31 | 2021-11-23 | 江苏大学 | 一种轧制(FeCoNiCrRn/Al)-2024Al复合板材及其制备方法 |
-
2020
- 2020-08-31 CN CN202010893508.4A patent/CN112126822B/zh active Active
-
2021
- 2021-01-15 WO PCT/CN2021/072031 patent/WO2022041636A1/zh active Application Filing
- 2021-01-15 US US17/777,283 patent/US11731178B2/en active Active
- 2021-01-15 GB GB2207513.9A patent/GB2605890B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1362654A1 (en) * | 2002-05-14 | 2003-11-19 | Hitachi Powdered Metals Co., Ltd. | Process for producing sintered aluminium alloy |
CN104388764A (zh) * | 2014-11-06 | 2015-03-04 | 华南理工大学 | 一种高熵合金增强的铝基复合材料及其制备方法 |
US20160326616A1 (en) * | 2015-05-04 | 2016-11-10 | Seoul National University R&Db Foundation | Entropy-controlled bcc alloy having strong resistance to high-temperature neutron radiation damage |
CN104862510A (zh) * | 2015-06-03 | 2015-08-26 | 华中科技大学 | 一种高熵合金颗粒增强铝基复合材料及其制备方法 |
CN110273078A (zh) * | 2019-06-28 | 2019-09-24 | 江苏大学 | 一种磁性(FeCoNi1.5CuBmREn)P/Al复合材料及其制备方法 |
CN110273092A (zh) * | 2019-08-01 | 2019-09-24 | 重庆大学 | 一种CoCrNi颗粒增强镁基复合材料及其制备方法 |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022041636A1 (zh) * | 2020-08-31 | 2022-03-03 | 江苏大学 | 一种轧制(FeCoNiCrRn/Al)-2024Al复合板材及其制备方法 |
GB2605890A (en) * | 2020-08-31 | 2022-10-19 | Univ Jiangsu | Rolled (feconicrrn/al)-2024al composite board and preparation method therefor |
GB2605890B (en) * | 2020-08-31 | 2023-04-12 | Univ Jiangsu | Rolled (FeCoNiCrRn/Al)-2024Al composite board and preparation method thereof |
US11731178B2 (en) | 2020-08-31 | 2023-08-22 | Jiangsu University | Rolled (FeCoNiCrRn/Al)-2024Al composite panel and fabrication method thereof |
CN112899531A (zh) * | 2021-01-19 | 2021-06-04 | 江苏大学 | 一种高熵合金颗粒增强铝基复合材料及磁场辅助制备方法 |
CN112899531B (zh) * | 2021-01-19 | 2021-11-23 | 江苏大学 | 一种高熵合金颗粒增强铝基复合材料及磁场辅助制备方法 |
CN113322392A (zh) * | 2021-05-18 | 2021-08-31 | 武汉大学 | 一种纳米碳化硅颗粒增强铝合金基复合材料的制备方法 |
CN113957294A (zh) * | 2021-09-13 | 2022-01-21 | 暨南大学 | 一种CrCoNi中熵合金增强Al基复合材料及其制备方法 |
CN114457271A (zh) * | 2022-01-28 | 2022-05-10 | 北京科技大学 | 基于Laves相强化的多主元耐磨耐蚀合金及制备方法 |
CN115194140A (zh) * | 2022-07-17 | 2022-10-18 | 中国人民解放军陆军装甲兵学院 | Al-Mg-Sc-Zr系铝基复合粉末及其制备方法和应用 |
CN115338410A (zh) * | 2022-09-19 | 2022-11-15 | 江苏大学 | 一种具有高耐磨性的高熵合金和铝合金复合材料及制备方法 |
CN115338410B (zh) * | 2022-09-19 | 2024-01-26 | 江苏大学 | 一种具有高耐磨性的高熵合金和铝合金复合材料及制备方法 |
Also Published As
Publication number | Publication date |
---|---|
GB2605890A (en) | 2022-10-19 |
US11731178B2 (en) | 2023-08-22 |
GB2605890B (en) | 2023-04-12 |
CN112126822B (zh) | 2021-11-23 |
GB202207513D0 (en) | 2022-07-06 |
WO2022041636A1 (zh) | 2022-03-03 |
US20220388049A1 (en) | 2022-12-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112126822B (zh) | 一种轧制(FeCoNiCrRn/Al)-2024Al复合板材及其制备方法 | |
CN108080644B (zh) | 一种高强韧化金属基复合材料的粉末冶金制备方法 | |
CN108723371B (zh) | 一种高熵合金增强铝基复合材料的制备方法 | |
CN112899531B (zh) | 一种高熵合金颗粒增强铝基复合材料及磁场辅助制备方法 | |
CN104911381B (zh) | 一种Ti2AlC/TiAl基复合材料及其制备方法 | |
US7311873B2 (en) | Process of direct powder rolling of blended titanium alloys, titanium matrix composites, and titanium aluminides | |
CN114262872B (zh) | 一种铬铝硼合金复合靶材及其制备方法 | |
CN104060173A (zh) | 一种Ti3AlC2增强Fe基复合材料及其原位热挤压制备方法 | |
CN114645180B (zh) | 一种双相增强铝合金及其制备方法 | |
CN108977689B (zh) | 一种亚稳β钛合金板材及其加工方法 | |
CN113186418A (zh) | 一种铝基复合材料的制备方法 | |
Taotao et al. | Nature-inspired nacre-like Ti6Al4V-(Ti2AlC/TiAl) laminate composites combining appropriate strength and toughness with synergy effects | |
Guan et al. | Strengthening‐toughening of graphene nanoplates and in situ ZrB2 nanoparticles reinforced AA6111 matrix composites with discontinuous layered structures | |
CN115679141B (zh) | 一种层状分布陶瓷增强铝复合材料的制备方法 | |
CN113025844A (zh) | 高温钛合金及其制备方法 | |
CN101457317B (zh) | 一种AlTi基体增压器涡轮材料及其制备方法 | |
Wang et al. | Interface regulation effects on mechanical behavior of heterostructure Ti6Al4V/TiAl-based laminated composite sheets | |
CN115449729A (zh) | 一种阶段式促进六系铝陶材料再结晶和晶粒细化的制备方法及其制得的铝基复合薄片 | |
CN114101680B (zh) | 一种钛合金表面硬质层的制备方法 | |
CN108642311A (zh) | 一种镁合金材料的制备方法 | |
CN106631169A (zh) | 一种Ti3SiC2/SiC/Al复合材料的制备方法 | |
CN106319400A (zh) | 一种高阻尼镍钛丝增强铝基复合材料及其制备方法 | |
Yu et al. | Study on microstructure and bending properties of NbC/Fe cluster-reinforced steel-based laminated composite | |
Yoshimura et al. | Cost effective pure titanium with high mechanical response by oxide dispersion strengthening | |
CN109680182B (zh) | 一种铝-钛铝金属间化合物-氧化铝复合材料及其制备方法和应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |